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Abstract 
 

The language and speech of individuals with psychosis reflects their impairments in cognition 

and motor processes. These language disturbances can be used to identify individuals with and at 

high-risk for psychosis, as well as help track and predict symptom progression, allowing for 

early intervention and improved outcomes. However, current methods of language assessment – 

manual annotations and/or clinical rating scales – are time intensive, expensive, subject to bias, 

and difficult to administer on a wide scale, limiting this area from reaching its full potential. 

Computational methods that can automatically perform linguistic analysis have started to be 

applied to this problem and could drastically improve our ability to use linguistic information 

clinically. In this paper, we first review how these automated, computational methods work and 

how they have been applied to the field of psychosis. We show that across domains, these 

methods have captured differences between individuals with psychosis and healthy controls and 

can classify individuals with high accuracies, demonstrating the promise of these methods. We 

then consider the obstacles that need to be overcome before these methods can play a significant 

role in the clinical process and provide suggestions for how the field should address them. In 

particular, while much of the work thus far has focused on demonstrating the successes of these 

methods, we argue that a better understanding of when and why these models fail will be crucial 

towards ensuring these methods reach their potential in the field of psychosis. 
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Understanding language abnormalities and associated clinical markers in psychosis: 
The promise of computational methods 

 
         Individuals with psychosis have a number of impairments in cognition1,2 and motor 

processes3–6. Language production – communicating with others through speech, written text, or 

sign – is a domain that is severely disrupted by these impairments7,8. Individuals with psychosis 

exhibit disorganized speech that can be off topic, drift from the original thought, or be incoherent 

or difficult to follow9,10. Speech by individuals with psychosis can be vague and repetitive, as 

well as reduced in quantity and syntactic and lexical complexity11–15. In addition, individuals 

with psychosis differ in their vocal characteristics from healthy individuals. For example, they 

often speak with a flat affect – sometimes producing emotionally intense thoughts in a 

disconnected way16,17. Many of these language disturbances are characteristic symptoms of 

psychosis, contribute to worse outcomes, and are evident in early stages of psychosis, even 

before formal onset18–20. 

 These language disturbances are helpful in identifying individuals at high-risk for and 

with psychosis, allowing for early intervention, as well as for tracking and predicting symptom 

progression12,18,21,22. However, several practical issues limit this area from meeting its full 

potential. Specifically, language is currently assessed via manual annotation by expert raters 

and/or clinical rating scales. These data are highly time-intensive to gather – making it 

impractical to use these methods on a wide scale – and rely on rating scales that may be 

underpowered, making it difficult to pick up on anything but the most extreme versions of these 

impairments. 



COMPUTATIONAL APPROACHES TO LANGUAGE ABNORMALITIES  4 

         Computational methods could drastically improve the ability to use linguistic information 

clinically, providing a scalable method for using language in a more objective, reliable, and 

replicable way. In this paper, we will first review how these automated, computational methods 

work and how they have been applied to the field of psychosis, by reviewing preliminary yet 

promising findings in this area. As will become clear, across many studies, using many different 

methods, at many different levels of language, computational methods have been shown to 

capture differences between individuals with psychosis and healthy controls, and have been able 

to categorize speech samples as belonging to either group at rates of 70-100%23–30,21.  

However, despite their initial promise, there are substantial hurdles to overcome before 

computational methods can play a significant role in the clinical process. In the second part of 

the paper, we argue that while much of the work thus far has focused on demonstrating the 

successes of these methods, critical evaluation of when and why these models fail will be crucial 

towards ensuring these methods reach their potential in the field of psychosis. 

 
Why care about language?  

Observed impairments in language production in psychosis 
  

In this section, we review empirical work demonstrating what abnormalities individuals 

with psychosis exhibit, as well as their clinical and neuropsychological correlates. We focus on 

three main types of disturbances: (1) disorganized speech (positive thought disorder), (2) poverty 

of speech (negative thought disorder), and (3) flat affect. Lexical abnormalities (e.g. increased 

use of non-words or word approximations) are also present in psychotic disorders, but as they are 

less frequent, less understood neuropsychologically, and less studied from a computational 

perspective (but see Gutierrez et al.31), we do not focus on them here. Within each of these four 

categories, Table 1 provides definitions and examples of specific subtypes. 
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Positive Thought Disorder (Disorganized Speech) 

Disorganized speech has been found to correlate with other positive symptoms of psychosis, 

primarily delusions32–34. While the underlying causes are not yet fully understood, and may vary 

between individuals35, disorganized speech is argued to be related to deficits in semantic memory 

and abnormal semantic associations between words36–39, working memory, attention, and other 

executive function deficits40 (but see Bagner et al.41), and/or failure to incorporate linguistic 

context (possibly due to executive function deficits)42–44. Neurally, severity of disorganized 

speech is associated with reduced grey matter in the superior temporal and inferior frontal 

cortices45 (but see Palaniyappan et al46) and abnormal activation in superior temporal cortex47–49 

during both free speech production and semantic priming tasks. Finally, while disorganized 

speech is associated with poorer outcomes and role functioning, it is often considered to be less 

persistent and less prognostically useful than negative thought disorder18,19,32,50. 

 

Negative Thought Disorder (Poverty of Speech/Content and Reduced Syntactic Complexity) 

Negative thought disorder correlates with other negative symptoms, is predictive of age of onset 

of psychosis, and is prognostic of future outcomes (i.e. transition to psychosis, being psychotic at 

follow-up)51–55 and social role functioning56. It is associated with impairments in lexico-semantic 

retrieval57 as well as working memory deficits.  Neurally, patients who produce less complex 

sentences showed weaker activation in the right temporal and left prefrontal cortex14, and 

negative thought disorder is associated with gray matter reductions in the orbitofrontal and 

insular cortex45,46.  
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Speech and Conversation: Flat Affect and Pausing 

Flat affect predicts course and outcome of the illness 20 years after initial hospitalization58,59, and 

is associated with worse quality of life59 and poorer social functioning60. Studies examining 

individuals with flat affect as measured through facial expressivity and emotion processing show 

that the severity of flat affect is associated with reduced activity in the amygdala, 

parahippocampal gyrus, as well as multiple regions of the left prefrontal cortex61. Flat affect has 

been shown to correlate with other negative symptoms (e.g. negative thought disorder). 

Not all individuals with psychotic disorders exhibit these abnormalities; furthermore, 

some healthy individuals do: in an extreme case, one study found that 32% of healthy individuals 

exhibited ‘tangentiality’ in 50 minutes of speech vs. 50-60% of the patient group62. Additionally, 

these abnormalities need not co-occur within individuals: studies investigating the co-occurrence 

of negative and positive thought disorder have found weak correlations at best (r = 0.23), and 

sometimes observe an inverse relation (r = -0.32). As a result, these abnormalities should be 

approached dimensionally rather than as categorically present vs. absent53.  

In spite of this heterogeneity, we note that each type of language abnormality has 

predictive clinical value. However, language has been underused as a signal in clinical 

evaluations. This is likely due to the subtlety of some of these abnormalities, as well as the 

reliance on time-intensive, manual evaluations or holistic clinical ratings. Computational 

methods may provide a way to capitalize on the predictive value of language abnormalities.  

 

 
Measuring abnormalities in language production using automated, computational methods 

 
Desiderata 
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The goal of the computational approaches we review is to provide quantitative measures of the 

severity of these language abnormalities given a speech/language sample. We evaluate this body 

of work for (i) construct validity, or evidence that the automated measures are indeed measuring 

the language abnormalities they are designed to (e.g., by comparing them to human ratings, by 

showing that systematic changes in language lead to systematic changes in measures, or by 

qualitatively demonstrating the sorts of sentences that score high/low), (ii) theoretical validity, 

(iii) replicability, (iii) generalizability and equity, and (iv) predictive value, or evidence that these 

measures relate to symptoms, functional outcomes, neurocognitive measures, behavior, etc., so 

they can lead to targeted intervention or treatment. However, we note that equally important in 

these early stages of development is critical evaluation of where models fall short of these 

standards and promising directions for improvement.  

 
Obtaining speech samples 

 
The first step in any analysis is obtaining the relevant data. Currently, most studies gather data in 

clinical or research settings (e.g. in a therapy session, at an in-patient hospital, or in a research 

lab). Speech can come from clinical assessments or be elicited by a variety of prompts, e.g.: 

“Could you tell me about your favorite hobby and how one does it?”; “Tell me the story of 

Cinderella”; or prompts relating to personal experiences. The benefit of this approach is that the 

investigator can simultaneously collect demographic and symptom information from 

participants, which can lead to nuanced and particularly informative analyses. More recently, 

computational linguists have turned to social media, finding users who declare a psychosis 

diagnosis, and collecting other posts of theirs on unrelated topics, which they contrast against 

analogous posts by individuals who do not report a diagnosis63,64. This method allows access to 
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large language samples of text produced by many users, including those who may not otherwise 

seek help – but does not allow for analysis of speech, nor for systematic clinical measurement. 

  
Computational methods 

 
With these data in hand, researchers have applied a number of computational techniques to 

measure a variety of linguistic abnormalities. We focus on the most studied methods, but list 

other promising methods in Table 1.  

 
Measuring disorganized speech 
 
Vector representations 
 
 Latent semantic analysis (LSA) and word embedding models (e.g., word2vec, GloVe) 

have been used to obtain measures of disorganized speech (i.e., measures of derailment, 

tangentiality, coherence). These methods provide a measure of how similar phrases are to one 

another and have been applied to psychosis research with the idea that more coherent and less 

derailed speech will, on average, have phrases that are more similar to one another than less 

coherent texts. These methods first represent each word in the text as a vector – a list of numbers. 

Roughly speaking, these vectors represent the contexts in which a word is used; words with 

similar meaning will appear in the same context. For example, (“king”/“queen”) are likely to co-

occur in similar articles and, consequently, have similar vectors, whereas dissimilar words 

(“broccoli”/“shoe”) are less likely to co-occur and, consequently, will have less similar vectors 

(Figure 1). Word vectors are combined to obtain phrase-level vectors (e.g. by averaging word 

vectors); similarity of the phrase vectors is used to get measures of disorganization (e.g. by 

measuring how similar adjacent sentences are or how dissimilar subsequent sentences get from 

the participant’s first sentence; see Figure 2).  
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 As shown in Table 2, studies using these methods show considerable promise, finding 

that (i) disorganization scores are significantly higher for individuals with psychotic disorders 

than controls23,29,30, (ii) disorganization scores correlate with manual holistic ratings of 

disorganization23,28, and (iii) disorganization scores, in combination with other factors, can 

predict conversion to psychosis or discriminate patients vs. controls with accuracies around 70-

100%, sometimes even outperforming classifications based on clinical symptoms scales (i.e. 

SIPS)28,29,65. 

 Despite this initial promise, this research area faces key challenges. As of yet, no 

consistent measure of disorganization has yielded reliable findings across multiple papers (e.g., 

Bedi et al.’s and Elvevåg et al.’s implementations did not work on the Iter et al. sample). It is 

hard to interpret these inconsistent results as papers have used different categorization methods 

(Table 2; “Classification”) and different ways of obtaining word vectors, have studied different 

subsets of measures (Table 2; “Study”) and have applied them to small, heterogeneous, 

sometimes poorly-controlled samples (e.g. age in Iter et al.; Table 3). 

 Existing measures of disorganization are also difficult to interpret. While these 

computational measures correlate with human judgments, it is still unclear what aspect(s) of the 

complex construct of disorganization dissimilarity measures reflect. These interpretive 

difficulties are critical because measures of disorganization sometimes do not correlate with 

positive symptoms (but see Bedi et al.65) – but do correlate with other confounds like age28 (older 

participants exhibited less disorganized speech) and sentence length29 (shorter sentences are 

rated as more disorganized). Relatedly, measures of disorganization are typically just one of 

many other variables in categorization models, so it is difficult to quantify the unique 
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contribution of disorganized speech. While these methods show considerable promise, more 

validation work is clearly needed. 

 

Measuring poverty of speech and content 

Word graphs 
 
 Mota and colleagues have used word graphs to measure differences in speech between 

individuals with schizophrenia, mania, and healthy controls. The structure of speech is 

represented by linking word nodes based on their order and then using established measures of 

graph connectivity and complexity (e.g. number of nodes/edges/loops, length of longest path) to 

obtain thought disorder scores. These measures show group differences between schizophrenia, 

bipolar disorder, and control participants66,67, correlate with negative symptoms67,68, can predict 

the presence of psychosis six months later68, and relate to differences in neural measures69. The 

performance of these measures is impressive; however, it is not yet clear what abnormalities 

these measures reflect (i.e. positive thought disorder vs. negative thought disorder), and how 

theoretically valid they are. 

 

Vector unpacking 
 

Rezaii and colleagues used a method called vector unpacking to automatically measure 

poverty of speech content (vague, repetitive, or non-substantive speech)70. They examined 

whether sentence vectors could be well-approximated by other vectors composed of fewer words 

(e.g., the meaning of The president flew to China on a plane is well-approximated by The 

president flew to China; the corresponding sentence vectors are likely to be very similar). This 

measure could categorize which CHR adolescents would convert to psychosis with accuracy 
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exceeding 80%70, correlated with negative symptoms and non-expert human ratings, and was 

shown to outperform related measures such as idea density (roughly the density of content 

words) and information value (roughly the average sentence vector length). This measure shows 

particular promise as it was individually tested on a held-out dataset and was well-validated 

against clinical scales and human judgments; future work should test its generalizability. 

 
 
Syntactic parsing 
 
 Speech by individuals with psychosis often exhibits reduced syntactic complexity11–14,71. 

This has primarily been studied by automatically tagging each word in a text with its part-of-

speech information (e.g., noun, verb) and counting the number of subordinated clauses 

individuals use72–74. For example, in addition to the semantic coherence measures described 

above, Bedi and colleagues found that reduced density of determiner pronouns (e.g. ‘that’, 

‘what’, ‘whatever’), reflecting fewer subordinated clauses, was associated with worse symptom 

severity26. Similarly, Corcoran and colleagues showed that reduced possessive pronoun (e.g. 

‘her’, ‘his’, ‘mine’) counts improved performance of their model of CHR conversion28. 

However, these measures have not been considered independently of disorganization measures, 

so the relative role that each plays is not yet clear.  

 
 
Measuring flat affect and abnormal pausing 
 

The methods described above focus on what is said and, thus, can work off of written 

transcripts of speech. To measure flat affect, researchers have used automated methods to 

analyze how individuals speak, studying the acoustic characteristics of their vocal productions, as 

well as pausing behavior. We briefly review some promising results (e.g., classifying psychosis 
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vs. control samples at 70-94% accuracy25,27) here. However, we note that a recent meta-

analysis75 has documented substantial heterogeneity in the findings across both computationally-

oriented and manual annotation studies, making it clear that there is much work to be done in this 

area. 

Researchers have automatically measured mean pitch (i.e. fundamental frequency, F0), as 

well as pitch variability, of speech by individuals with psychosis vs. healthy controls. Some have 

found that individuals with psychosis have reduced pitch variability relative to controls27,76 and 

that within the psychosis group, reduced pitch variability is associated with worse negative 

symptoms77. However, other studies have not found this relationship25,78. Other studies have 

automatically measured the mean and variance of formant values (a measure of spectral 

properties of speech, largely determined by the shape of the vocal tract). Some studies found that 

individuals with psychosis exhibit decreased variability in the first two formant values, and that 

decreased variability in formants is associated with worse negative symptoms76–79, but others 

have failed to replicate these findings80. Additional work in this area has shown that individuals 

with schizophrenia speak at a slower rate27,79,81, show less variability in syllable timing27, and 

show decreased variability in loudness/intensity25,76. In addition to acoustic differences, 

individuals with psychosis have also shown abnormal conversational turn-taking relative to 

controls, pausing more often and for longer25,27. Between-turn pauses have also been associated 

with worse positive symptoms in youth at high-risk for psychosis, but showed no significant 

differences between high-risk and control participants20. 

Meta-analyses of this body of work have documented substantial heterogeneity in the 

results. Across five studies, Cohen et al.82 found no meaningful differences between patients and 

controls after controlling for sociodemographic and contextual factors. Parola et al.75 reviewed 
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55 studies (1254 schizophrenia, 699 controls), and found modest, variable effects of pause 

duration, pitch variability, spoken time, speech rate, and number of pauses (with some evidence 

of publication bias). 

Recent literature has begun investigating the puzzling discrepancy between the size of 

group differences as measured by acoustic measures vs. clinical ratings of blunt affect (the 

construct that these acoustics are thought to measure). Researchers have suggested that these 

measures operate at “different resolutions,” with clinical ratings providing holistic measures of 

an entire interaction, while acoustic measures zoom in on sub-portions. This may allow for more 

nuanced understanding of flat affect, though more work needs to be done to validate this 

suggestion83.  

Additional factors could contribute to the heterogeneity in findings. Acoustic analyses 

currently require that speech be recorded under very good conditions, such that different 

recording conditions can make different studies incomparable. In addition, much of the work on 

vocal characteristics has attempted to measure flat affect; however, other factors that have not 

been accounted for could lead to voice differences. For example, some individuals with 

psychosis exhibit motor difficulties, which would likely affect their articulations, and in 

Andreasen & Grove’s sample62, between 16-32% of individuals with schizophrenia exhibited 

pressured speech, which would have the opposite impact on vocal productions than flat affect. 

The heterogeneity in results could simply reflect the heterogeneity in mechanisms involved, so 

more systematic, hypothesis-driven study is required to tease these factors apart and better 

understand what these measures reflect.  

 

Exploratory analyses 
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While the previous methods have studied well-documented language abnormalities in 

psychosis, investigators have also adopted a more exploratory approach to see whether 

individuals with psychotic disorders differ from controls in the topics they discuss and words 

they use, primarily focusing on social media language63,64,84–86. Some of these studies84 have 

used Linguistic Inquiry and Word Count (LIWC)87, which counts the proportion of words that 

fall within certain pre-defined categories (e.g. negative or positive affect, anxiety). Others have 

used topic modeling63,74, which automatically discovers which topics participants discuss88 

without prespecifying them. Some of the most promising and consistent results suggest that 

individuals with psychosis use more function words (e.g. ‘the’, ‘a’), first person singular 

pronouns (e.g. ‘I’), auxiliary verbs, negative emotion words, insight words, and health words, but 

show a decreased focus on leisure63,64,84–86. However, there has been substantial variability in 

findings, with sometimes opposing effects. For example, of five papers, two papers84,85 found 

that controls used more first person plural pronouns (‘we’) than the psychosis group, but 

another86 found the opposite, and the remaining studies reported no difference between groups.  

In addition, the use of social media data means that these results cannot be linked with 

symptomatology. 

 
Moving forward 

 
Across domains of language structure and use, computational methods have shown 

promise in being able to identify the linguistic properties that differentiate individuals with 

psychosis from healthy controls. But there are clear challenges that the field must address, 

especially given its high social impact. It can be difficult to evaluate how well these methods are 

measuring linguistic abnormalities due, in part, to an overreliance on categorization methods. 
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Discrepancies in findings across studies undermine confidence that these methods are 

generalizable.  

How can we move forward? Much of the work thus far has focused on the successes of 

these methods; an increased focus on when and why these methods fail will help refine our work. 

A great deal of research has been exploratory in nature; adopting a more hypothesis-driven 

approach that relates these automated measures to other known, relevant measures in psychosis 

will help ground these methods in the wider psychosis literature. Finally, we emphasize the 

importance of considering sociodemographic factors front and enter when evaluating these 

models, especially in light of an extensive literature documenting that computational methods 

magnify biases. We discuss each of these in turn. 

 

Difficulty evaluating performance 

Overreliance on categorization 
 
Much of the past work has focused on developing functions that categorize patients as having (or 

developing) psychosis or not. While this is important work, overly focusing on categorization 

creates several interrelated issues. Given the dimensional aspect of these abnormalities -- not all 

patients exhibit these abnormalities, some healthy individuals do, and some patients exhibit 

opposite patterns of impairment (e.g. alogia vs. pressured speech, derailment vs. 

perseverance/repetition) -- it is unclear how to evaluate classification accuracy. It is unlikely one 

can classify based solely on speech/language, and the true target accuracy is likely to vary 

between studies. On the other hand, categorization functions are very likely to “overfit” the data 

– that is, learn and rely on spurious differences between the (necessarily limited size) psychosis 

and control groups that do not necessarily generalize to other datasets, an issue exacerbated by 
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how heterogeneous the manifestations of psychosis are89. This could, in part, explain how some 

models have achieved 100% on one dataset, while being at chance on another. Finally, overly 

focusing on categorization makes it difficult to evaluate construct validity. Demonstrating that a 

measure can categorize individuals into two groups well does not reveal how and why the 

measure works, as well as what constructs it is tapping in to. Instead of simply focusing on 

classification accuracy, it may instead be more useful to (i) evaluate computational methods on 

speech samples that are known to contain (or not) particular linguistic abnormalities, (ii) focus 

primarily on comparisons with symptoms, behavior, neurocognitive variables, and clinical 

ratings (less emphasized in past work), and (iii) start to tackle questions about the sensitivity of 

these methods, how specific they are to psychotic disorders vs. other illnesses, and what the time 

course of their predictive value is. 

 

Increasing comparability of studies 
 
 Although many of the individual papers we report on show promising findings, these 

findings do not always align with one another. The papers we review have studied different and 

heterogeneous subgroups (e.g. individuals with schizotypy, CHR youth, individuals with 

schizophrenia, schizoaffective disorder, mania, individuals with or without thought disorder), in 

a variety of contexts (hospitals, research labs, on the internet), using different kinds of prompts 

(written vs. spoken, spontaneous speech vs. read speech, more or less personal questions) that 

elicited varied lengths of responses. In addition, these studies have made different modeling 

decisions (e.g. have used different categorization techniques) and have studied different subsets 

of linguistic variables measured in different ways. Any of these differences could have 
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contributed to the heterogeneity across studies; however, the discrepancies make it difficult to 

evaluate the generalizability of these methods. 

This is why it is critical that computational studies make direct comparisons with past 

work. To facilitate this, studies should share their analyses so that replications are possible. 

Direct comparison of results can also be helpful for considering qualitatively different methods. 

For example, directly comparing word graphs vs. vector-based coherence measures on the same 

sample would allow for better understanding of what each of the methods is capturing and what 

their relative benefits are.  

Where possible, standardizing elicitation methods for speech and written text, or 

explicitly considering differences between elicitation methods, would be helpful. It has become 

clear that different methods result in different speech sample lengths, which can add noise to 

automatic speech and language measures; this leads investigators to make different modeling 

decisions (e.g., Bedi et al.26 vs. Corcoran et al.28), further exacerbating differences. Ideally, 

research would be done on larger samples of data collected specifically for the purpose of 

analyzing language90; barring this, computational models should be run across multiple datasets 

to ensure that the model is not overly sensitive to idiosyncratic properties of one dataset26,28–30.  

 

Understanding model failures/successes for model refinement 

 To improve modeling, there now needs to be a shift away from emphasizing the good 

performance of models towards more of a focus on where and why these models fail. This can be 

done by performing detailed error analyses of the systems. In particular, it would be helpful to 

examine the speech/language tasks that the model incorrectly marked as having high or low 

levels of a particular abnormality to identify classes of recurring patterns that the model does not 
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handle well. This approach has successfully fueled innovation in analysis methods. Error 

analyses of particular language samples allowed Iter et al. to realize that methods from Elvevåg 

et al. and Bedi et al. performed poorly on text that is heavy with verbal fillers (e.g., ‘uh’, ‘like’, ‘I 

mean’), heavy with repetitions, and also to realize that sentence length was related to 

disorganization scores.  

In addition to leading to refinements, qualitative analyses of errors can reveal the 

strengths of methods that might not otherwise have been appreciated. In trying to understand 

why the biobehavioral measures they studied did not mirror the large effects in clinical ratings, 

Cohen et al. were able to show a temporal resolution at which their measures did show larger 

effects. This revealed an additional potential benefit of automated methods – that they can 

capture differences at resolutions that clinical ratings cannot. Especially at the early stage of 

development, this type of analysis can help move the field in the right direction (and is currently 

being more emphasized in computational research for this very reason). 

 
Adopting a hypothesis-driven approach 
 
 Most of the research thus far has been data-driven and exploratory in nature. While this 

work has been promising, more focus on theoretical validity, and direct connections between 

computational analyses and the broader psychosis literature could help address some of the 

issues outlined above. For example, acoustic differences that individuals with psychosis exhibit 

relative to controls could be due to documented motor difficulties4, differences in how 

individuals represent particular sounds91, cognitive difficulties1, aprosody76, and so forth. Each of 

these possibilities makes different predictions about what symptoms, behavioral task 

performance, or neural abnormalities the changes in speech acoustics should be associated with. 

This can drive more targeted, well-controlled analyses that will yield more reliable performance 
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with the small, heterogeneous samples that characterize this area of research. By expanding the 

types of questions being asked beyond categorization, hypothesis-driven work can also clearly 

improve our understanding of what these linguistic measures reflect. 

 

Bias in computational methods 

 Sociodemographic factors, such as race, age, education, gender, as well as linguistic and 

geographical background, have been understudied in relation to automated methods in psychosis. 

On the one hand, an extensive literature has documented harmful bias in computational methods 

across domains92, including in some of the very methods described here: vector embeddings 

show biases based on race and gender93,94, automatic speech recognition systems show greater 

error rates for black speakers than white speakers95, and facial recognition software currently 

used is being recalled because of performance disparities96. It is critical to ensure the models we 

describe are not plagued by similar biases.  

There is some evidence that they may be. For example, Bedi et al. found an association 

with age, such that older individuals had more organized speech samples, but age has not been 

controlled for in most of the reported analyses, even when patients and controls are not matched 

on age29. Similarly, Mota et al.97 found an association between graph-based speech 

connectedness and education. In measuring flat affect, researchers have used acoustic cues like 

formant values and pitch76–79; however, these acoustics are affected by a number of other factors, 

including vowel type, neighboring sounds, dialect, gender, and age78,98–100 – factors which were 

not modeled in previous work. In fact, Cohen et al.82 found that when controlling for social 

factors and task type, all group differences disappeared. Controlling for potential social factor 

confounds is clearly a key area for development. 
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At the same time, it is important to recognize that speech and language measures must 

ultimately be evaluated in a social context, as what is considered ‘normal’ (e.g. a normal 

response length to a question) varies drastically by culture. Body language, gestures, and 

intonation can change how something is perceived, so these methods may ultimately need to be 

used in conjunction with such measures101–105. In addition, most models have been developed for 

English, and other languages may require different, tailored approaches to measuring the same 

constructs. Although these issues are by no means unique to automated approaches, models that 

gloss over cultural/contextual factors could magnify the problem, especially as one of the 

potential benefits of computational methods is that they can reach a wider range of individuals. 

The field must confront these issues early and consistently to ensure its benefits reach everyone. 

 

These issues will remain even with improved measures 

Computational linguistics is a rapidly developing field. Static word embeddings are being 

replaced with context-sensitive models (e.g. BERT, ELMo). Automated speech analysis is 

yielding more accurate measurement of a wider range of acoustic measures. Advances in related 

areas may allow for these methods to be used in conjunction with automated measures of body 

language, gesture, facial expressions, and so forth101–105. As we capitalize on these advances, we 

will still need to address the core issues we’ve identified here: compare performance across 

models, identify their strengths and areas for potential improvement, link model results to the 

broader psychosis literature (e.g., through hypothesis-driven methods), and inspect models for 

bias.  

 

Conclusion 
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 Abnormalities in language production are characteristic of psychosis, present prior to 

disease onset, and can directly contribute to worse outcomes. Computational methods can be 

used to automatically detect these language abnormalities and have shown great promise in being 

able to classify and predict psychosis, sometimes outperforming clinical measures. These 

methods are particularly promising, as they are objective and cost-effective, meaning they could 

be applied on a wide scale to reach and help individuals who might previously fall through the 

cracks. Much of the work to this point has understandably focused on demonstrating the 

successes of these methods. However, to best move the field forward, we argue that the field 

should now shift focus towards understanding when and why current models fail. Accomplishing 

this will require collaborations between psychosis researchers, linguists who understand the 

measures and language abnormalities, as well as computational researchers who can develop and 

refine these models to be appropriate for this area. By performing qualitative error analyses, 

testing the generalizability of these models, adopting a more hypothesis-driven approach where 

possible, and aligning results with decades of psychosis research, we can better adapt these 

methods to the psychosis domain, to ensure that these methods can be as beneficial for all as 

quickly as possible. 
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