DON'T
PANIC



Structure of Workshop

Work through slides, with a partner, at your own pace.

— Each module has accompanying R code (e.g., modulel.R)
and datasets (these will be referred to in the code).

You will encounter problems to work on, to check your
understanding of the material.

— After you finish each problem, review answer, in the R
file—labeled by module and problem number.

— E.g., modulel-Answerl.R is the answer to problem 1 in
module 1.

Let me know if you have questions! Things will probably be
confusing at some points; this is a first draft of these
materials.



Structure of Workshop

Module 1: Basics of multiple regression

Module 2: Categorical predictors+dependent measures in
regression

Module 3: Mixed effects regressions
Module 4: Significance testing maximal random effects



Structure of Workshop
Tentative Plan:
— Module 1: 9-10:30
— Module 2:10:30-12
— Module 3: 2-3:30
— Module 4: 3:30-5
15 minutes discussion before end of each module’s time

Warning: this might be optimistic, but that’s ok; we can skip
stuff if need be.

— Some modules might take longer than others.

— Module 4 is essentially “application of methods” —this is
something you can follow up with on your own. Let’s try
to get through Modules 1-3!



Structure of Workshop

* When you’re ready, get started...
— Ask me questions!
— Ask each other questions!!



Module 1A: Simple Linear Regression

* Alinear regression characterizes the relationship that holds
between continuous variables.

* More precisely, it characterizes a line relating two variables



Module 1A: Simple Linear Models
Execute Chunk 1 in the code file modulel.R

— Note throughout the code there is text following the #
symbol. These are comments to help you understand the
code. Make sure to read them!

This loads in the library languageR and the dataset lexdec.

This will create a dataframe called lexdec. These are data

from 21 subjects from a lexical decision task. The data set
contains information on 79 English concrete nouns.

Focus on the columns specifying the log frequency of the

English noun [lexdecSFrequency] and the log reaction time
[lexdecSRT].



Module 1A: Simple Linear Models

Execute code chunk 2.
This will build a linear model relating frequency to reaction
time.

— Inspect the summary.

— Note the intercept (6.58). This is the log reaction time
when frequency = 0.

— Note the slope (—0.04). This is how log reaction time
changes for 1 unit increase in log frequency.

Code chunk 2 will also plot the data and add the regression
line to the figure.

— Compare this line to the intercept/slope in the model
output.



Module 1A: Simple Linear Models

 Execute code chunk 3. This will simulate reaction time data,
fitting the assumptions of the linear model.
— Note: You and your partner will have slightly different
data; it’s randomly generated!
* It then builds a linear model relating frequency to reaction
time.
— Just like lexdec, we are simulating log reaction time.
That’s why the numbers are between 6 and 8 (400-3000
msec)

— Inspect the summary; compare it to the code that
simulated the reaction times. Does the linear model
successfully recover the properties of the model that

generated the data?
* Code chunk 3 will also plot the simulated data and add the
regression line to the figure.



Module 1A: Simple Linear Models

* What else is in the model summary?

 |nformation about the distribution of the residuals

— Residual: Difference between model prediction and
actual observation

— Return to code chunk 3: Note that for each simulated
observation, we add a bit of normally distributed random
noise—that’s what gives rise to the residuals.



Module 1A: Simple Linear Models

* What else is in the model summary?

* For each part of the linear model
— Coefficient: Im’s estimate of the effect
— Standard error: The error in this estimate

— A t statistic: Calculated for the null hypothesis that the
intercept or coefficient is actually equal to O.

* the coefficient estimate / standard error
* N-2 degrees of freedom

e Qverall model: F-test

— Basically: is the amount of variance attributed to model is
greater than that attributed to error?



Module 1A: Simple Linear Models

Problem 1. The lexdec dataset has a column Length that
gives the length of each word. Modify Code Chunk 2 to
build a simple linear model that predicts reaction times
from length. What’s the overall relationship between word
length and reaction time? What does the model predict
should be the reaction time for a word of length 5?



Module 1B: Multiple Regression Basics

A multiple regression extends the linear model to include
multiple factors.

— Linear model equation: y = Intercept +Coefficient™ x+¢
* Note €: Normally distributed random error

— Multiple regression: allows for multiple predictors (and
associated coefficients)

* These coefficients are estimated by taking into account not
only the correlation between each predictor x; and the

dependent measure y (ryi), but the correlations among the
multiple predictors (r;).



Module 1B: Multiple Regression Basics

e Just like the linear model, we can use the t-statistic to test,
for each individual coefficient, the null hypothesis that it is
equal to O.

— Degrees of freedom are N-number of model parameters
(intercept + number of coefficients).



Module 1B: Multiple Regression Basics

Problem 2. Build a multiple regression on reaction time
using the lexdec dataset. Incorporate two predictors:
length and frequency. Compare the coefficients of the
predictors in this regression to those of the simple
regressions using just frequency or just length. Why do
these differences occur?

What does the model predict should be the reaction time
for words of length 5, frequency 4.5?



Module 1B: Multiple Regression Basics

e Execute code chunk 4

— This extends code chunk 3 (and your answer to problem
2), simulating data combining both length and frequency
values.

— It’s a fully balanced design—all levels of frequency
appear at all lengths.

 Compare the output of the linear model based on the data
you simulated. These should be close to the intercept and
coefficients of the process that generated the data.

— Hint: Look for these in the code: 6.6, —0.04, 0.02

 Re-run the code a few times. Does the regression model
tend to recover the right intercepts and coefficients?



Module 1B: Multiple Regression Basics

Our simulated data nicely obeys the assumptions of the
linear model—in particular, that residual error is normally
distributed.

How can we verify this?
Execute code chunk 5

— This plots the distribution of residuals (deviation of
observations from model predictions).

— Looks pretty normal!



Module 1B: Multiple Regression Basics
Additional, more precise visualization
Execute code chunk 6

— A normal distribution quantile-quantile plot, with a
superimposed line passing through what should be the
first and third quartiles.

Quartile: Quarter of the data

Quantile: Any regular division of a probability distribution.
— Here: Quantiles are based on the normal distribution
— (see next slide for explanation)



Module 1B: Multiple Regression Basics

Baayen (2008: 77)

[this plot] "...graphs the quantiles of the standard normal
distribution (displayed on the horizontal axis) against the
guantiles of the empirical distribution (displayed on the
vertical axis). If the empirical distribution is normal
(irrespective of mean or variance), its quantiles should be
identical to those of the standard normal, and the quantile-
qguantile plot should produce a straight line.”

This is what we see here.



Module 1B: Multiple Regression Basics

* Johnson’s chapter explained how multiple regression deals
with inter-correlations among predictors. As it turns out, this
solution is imperfect.

— As the correlations between predictors get larger, the
linear model does a much worse job at recovering the
properties of the process that generated the data.

 Toillustrate this, code chunk 7 simulates an unbalanced
dataset. In this dataset, someone has foolishly designed an
experiment where all of the low frequency words are long,
and high frequency words are short.

— (A correlation we saw in the actual dataset—just a lot
stronger.)



Module 1B: Multiple Regression Basics

Execute chunks 7+8.

— Chunk 8 shows you that the simulated data have high
correlations between our predictor variables.

Execute chunk 9. Compare the output of the regression
model to the properties of the process that generated the
data.

— Execute chunks 7+9 repeatedly (say 5 times). Notice how

the estimates of the effects of frequency and length are
highly unstable.

Problem 3. Recall from slide 12 that this wasn’t the case
with the dataset simulated in chunk 4. Why is that the

case?



Module 1B: Multiple Regression Basics

Examine what happens when inter-correlations are lower.
Vary the noiseSD parameter in code chunk 7. This changes
the standard deviation of the random, normally distributed
variable used to generate frequencies. As this goes up,
frequencies will be less correlated with length.

— Note: at high levels, simulated frequencies will be
negative. Don’t worry about that, it’s just a simulation!

Problem 4. Re-run chunks 7, 8 and 9; 5 times at each of the
following levels of the noise SD parameter (1, 5, 10). How
does intercorrelation relate to the success of regression in
recovering the process that generated the predictions?



Module 1B: Multiple Regression Basics

Another issue for regressions is outliers—extreme
observations that don’t reflect the overall trends in the data.

Execute code chunk 10. This builds a dataset with a few
outliers—extremely long reaction times—built in.

Execute code chunk 11. This graphs the reaction times. Note
there is a small number of very long reaction times.



Module 1B: Multiple Regression Basics

Execute code chunk 12. Examine the outputs of the linear
model and the structure of the quantile-quantile plot.

Note that the plot provides clear evidence of outliers; there
are many points on the right edge of the plot that are far
away from the quantile-quantile line.

Execute code chunks 10+12 5 times. How well does the
linear model do at recovering the properties of the process

that generated the data?



Module 1B: Multiple Regression Basics

Execute code chunk 13. This examines a subset of the data,
removing RTs that are longer than 7.5 (recall this is log RT, so
this is roughly > 1800 msec). Examine the outputs of the
linear model and the structure of the quantile-quantile plot.

Execute code chunks 10+13 5 times. How well does the
linear model using trimmed data do at recovering the
properties of the process that generated the data?



Module 1B: Multiple Regression Basics

In code chunk 10, outlierProb controls the probability that
an outlier will be generated.

Problem 5. Re-run code chunks 10 and 12 multiple times,
varying the probability that an outlier will be produced (try
0.005 and 0.10). How does the probability of an outlier
being produced influence the error in the linear model’s

estimate?



Module 1B: Multiple Regression Basics

 Why are outliers bad?

— When your dependent measure is highly skewed, the fit
of the regression can be strongly biased by a few extreme
measurements.

* Note: this can also happen not just in the case of
extreme outliers, but if the dependent measure is
itself skewed

* Ex: Speech sound duration typically follows gamma
distributions; see code chunk 13

— A similar problem can arise with skewed predictors; a
small set of observations with an extreme value for a
predictor can also skew your linear model’s estimate of
coefficients.



Module 1B: Multiple Regression Basics

e What can we do?

— |If outliers represent a few isolated cases, they can be
removed manually (as in example code)

— For cases where the measure is “naturally” skewed,
transformation of dependent measures/predictors can
also help (e.g., using log RT rather than raw RT)

— BUT

* Not always

* Need to be careful about motivations behind
particular transformation you’re using.

» Verify that the transformation actually helps! If
observations are still highly skewed, this is not useful.



INTERIM SUMMARY

Multiple regressions: Extension of simple models to multiple
variables.

Significance of predictors assessed via t-tests (individual
coefficients), f-tests (whole model)

Sensitive to inter-correlations among predictors, outliers

— These issues can be examined through correlation tables,
graphs of dependent measures and predictors, quantile-
qguantile plots of residuals



