
Chapter 2

Work Effort, Production, and
Consumption

Robinson Crusoe is alone on an island, so he is an economy unto himself. He has prefer-
ences over consumption and leisure and can produce consumption goods by using labor
and capital. We examine production first. Then we turn to preferences. Putting these two
pieces together yields Crusoe’s optimal choices of labor, leisure, and consumption.

2.1 Crusoe’s Production Possibilities

Crusoe uses factors of production in order to make output y. We can think of this output as
being coconuts. Two common factors of production, and those we consider here, are capital
k and labor l. Capitalmight be coconut trees, and labor is the amount of time Crusoe works,
measured as a fraction of a day. Howmuch Crusoe produces with given resources depends
on the type of technology A that he employs. We formalize this production process via a
production function.

We often simplify our problems by assuming that the production function takes some par-
ticular functional form. As a first step, we often assume that it can be written: y = Af (k; l),
for some function f (�). This means that as technology A increases, Crusoe can get more
output for any given inputs. It is reasonable to require the function f (�) to be increasing
in each argument. This implies that increasing either input k or l will increase production.
Another common assumption is that output is zero if either input is zero: f (0; l) = 0 and
f (k; 0) = 0, for all k and l.

One functional form that has these properties is the Cobb–Douglas function, for example:
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y = Ak
1��

l
�, for some � between zero and one. This particular Cobb-Douglas function

exhibits constant returns to scale, since (1� �) + (�) = 1. Figure 2.1 is a three-dimensional
rendering of this function for particular values of A and �.
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Figure 2.1: Cobb-Douglas Production

We will not be dealing with capital k until Chapter 9, so for now we assume that capital is
fixed, say, at k = 1. This simplifies the production function. With a slight abuse of notation,
we redefine f (�) and write production as y = f (l). This is like what Barro uses in Chapter 2.

If the original production function was Cobb–Douglas, y = Ak
1��

l
�, then under k = 1 the

production function becomes: y = Al
�. The graph of this curve is just a slice through the

surface depicted in Figure 2.1. It looks like Barro’s Figure 2.1.

As you know, the marginal product of some factor of production (e.g., labor l) is the addi-
tional output, or “product”, that results from increasing the input of that factor. Formally,
the marginal product of an input is the derivative of the production functionwith respect to
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that input. For example, the marginal product of labor is: dy=dl = f
0(l).1 Since the marginal

product is the derivative of the the production function, and the derivative gives the slope,
we can read the marginal product as the slope of the production function, as Barro does in
his Figure 2.1.

In the particular case where production is Cobb–Douglas (and capital is fixed), the produc-
tion function is: y = Al

�, so themarginal product of labor is: dy=dl = A�l
��1. This is always

positive, as we require, and it decreases aswe increase l. Accordingly, this production func-
tion exhibits diminishing marginal product: the first unit of labor is more productive than
the tenth unit of labor. Graphing this marginal product equation gives us something like
Barro’s Figure 2.2.

Barro talks about improvements in technology and argues how both the production func-
tion and the marginal-product schedule shift as a result. The effects of such a change in
technology are clearer when we examine a particular production function. For example,
consider our production function: y = Al

�. The improvement in technology means that A
goes up. Accordingly, whatever production was before, it undergoes the same percentage
increase as the increase in A. For example, if A doubles, then output at each l will be dou-
ble what it used to be. Notably, when l is zero, output is zero just as before, since twice
zero is still zero. The result is that the production function undergoes a kind of upward
rotation, pivoting about the anchored origin, l = 0. That is precisely what Barro depicts in
his Figure 2.3.

We can examine the marginal-product schedule as well. Under the particular functional
form we are using, the marginal product of labor (MPL) is: dy=dl = A�l

��1. Accordingly,
the marginal product at each l undergoes the same percentage change as does A. Since the
MPL is higher at low levels of l, the marginal-product curve shifts up more at those levels
of l. Refer to Barro’s Figure 2.4.

2.2 Crusoe’s Preferences

Crusoe cares about his consumption c and his leisure. Since we aremeasuring labor l as the
fraction of the day that Crusoe works, the remainder is leisure. Specifically, leisure is 1� l.
We represent his preferences with a utility function u(c; l). Take note, the second argument
is not a “good” good, since Crusoe does not enjoy working. Accordingly, it might have
been less confusing if Barro had written utility as v(c; 1 � l), for some utility function v(�).
We assume that Crusoe’s preferences satisfy standard properties: they are increasing in
each “good” good, they are convex, etc.

We will often simplify the analysis by assuming a particular functional form for Crusoe’s

1Barro uses primes to denote shifted curves rather than derivatives. For example, when Barro shifts the f (l)
curve, he labels the new curve f (l)0 . This is not a derivative. Barro’s notation is unfortunate, but we are stuck
with it.
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preferences. For example, we might have: u(c; l) = ln(c) + ln(1� l). With such a function in
hand, we can trace out indifference curves. To do so, we set u(c; l) to some fixed number ū,
and solve for c as a function of l. Under these preferences, we get:

c =
e
ū

1� l
:

As we change ū, we get different indifference curves, and the set of those looks like Barro’s
Figure 2.6. These should look strange to you because they are increasing as we move to the
right. This is because we are graphing a “bad” good (labor l) on the horizontal axis. If we
graph leisure (1 � l) instead, then we will get indifference curves that look like what you
saw in your microeconomics courses.

2.3 Crusoe’s Choices

When we put preferences and technology together, we get Crusoe’s optimal choices of
labor l, leisure 1� l, and consumption c. Formally, Crusoe’s problem is:

max
c;l

u(c; l); such that:(2.1)

c � y; and:(2.2)
y = f (l):(2.3)

There are two elements of equation (2.1). First, under the max, we indicate the variables
that Crusoe gets to choose; in this case, he chooses c and l. Second, after the word “max”
we place the maximand, which is the thing that Crusoe is trying to maximize; in this case,
he cares about his utility.

Equation (2.2) says that Crusoe cannot consumemore than he produces. We can use simple
deduction to prove that we can replace the “�” symbol with “=”. Suppose Crusoe chooses
c and l such that c < y. This cannot be optimal because he could increase the maximand a
little bit if he raised c, since u(c; l) is increasing in c. Simply put: it will never be optimal for
Crusoe to waste output y, so we know that c = y.

Finally, equation (2.3) simply codifies the production technology that is available to Crusoe.

With all this in mind, we can simplify the way we write Crusoe’s problem as follows:

max
c;l

u(c; l); such that:

c = f (l):

Here, we aremaking use of the fact that c = y, andwe are substituting the second constraint
into the first.
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There are two principal ways to solve such a problem. The first is to substitute any con-
straints into the objective. The second is to use Lagrange multipliers. We consider these
two methods in turn.

Substituting Constraints into the Objective

In the maximization problem we are considering, we have c in the objective, but we know
that c = f (l), so we can write the max problem as:

max
l

u[f (l); l]:

We no longer have c in the maximand or in the constraints, so c is no longer a choice
variable. Essentially, the c = f (l) constraint tacks down c, so it is not a free choice. We
exploit that fact when we substitute c out.

At this point, we have a problem of maximizing some function with respect to one vari-
able, and we have no remaining constraints. To obtain the optimal choices, we take the
derivative with respect to each choice variable, in this case l alone, and set that derivative
equal to zero.2 When we take a derivative and set it equal to zero, we call the resulting
equation a first-order condition, which we often abbreviate as “FOC”.

In our example, we get only one first-order condition:

d

dl
fu[f (l?); l?]g = u1[f (l?); l?]f 0(l?) + u2[f (l?); l?] = 0:(FOC l)

(See the Appendix for an explanation of the notation for calculus, and note how we had to
use the chain rule for the first part.) We use l? because the l that satisfies this equation will
be Crusoe’s optimal choice of labor.3 We can then plug that choice back into c = f (l) to get
Crusoe’s optimal consumption: c? = f (l?). Obviously, his optimal choice of leisure will be
1� l

?.

Under the particular functional forms for utility and consumption that we have been con-
sidering, we can get explicit answers for Crusoe’s optimal choices. Recall, we have been
using u(c; l) = ln(c) + ln(1� l) and y = f (l) = Al

�. When we plug these functions into the
first-order condition in equation (FOC l), we get:

�
1

A(l?)�

��
A�(l?)��1

�
+

�1
1� l?

= 0:(2.4)

2The reason we set the derivative equal to zero is as follows. The maximand is some hump-shaped object. The
derivative of the maximand gives the slope of that hump at each point. At the top of the hump, the slope will be
zero, so we are solving for the point at which the slope is zero.

3Strictly speaking, we also need to check the second-order condition in order to make sure that we have
solved for a maximum instead of a minimum. In this text we will ignore second-order conditions because they
will always be satisfied in the sorts of problems we will be doing.
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The first term in parentheses is from u1(c; l) = 1=c, using the fact that c = Al
�. The second

term in parentheses is from the chain rule; it is the f 0(l) term. The final term is u2(c; l). We
can cancel terms in equation (2.4) and rearrange to get:

�

l?
=

1
1� l?

:

Cross multiplying and solving yields:

l
? =

�

1 + �
:

When we plug this value of l? into c? = f (l?), we get:

c
? = A

�
�

1 + �

��
:

These are Crusoe’s optimal choices of labor and consumption.

Using Lagrange Multipliers

In many problems, the technique of substituting the constraints into the objective is the
quickest and easiest method of carrying out the constrained maximization. However,
sometimes it is difficult to solve the constraints for a particular variable. For example,
suppose you have a constraint like:

c + ln(c) = 10 + l + ln(1� l):

You cannot solve for either c or l, so the solution method described above is not applicable.

Accordingly, we describe how to use Lagrange multipliers to tackle problems of constrain-
ed maximization when it is either difficult or impossible to solve the constraints for indi-
vidual variables. At first we treat the method as a cook-book recipe. After we are done, we
will try to develop intuition for why the technique works.

Recall, we are working with the following problem:

max
c;l

u(c; l); such that:

c = f (l):

The first step in using Lagrange multipliers is to solve the constraint so that everything is
on one side, leaving a zero on the other side. In that regard, we have either:

f (l)� c = 0; or:
c� f (l) = 0:
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Either of those two will work, but we want to choose the first one, for reasons that are
described below. The general heuristic is to choose the one that has a minus sign in front
of the variable that makes the maximand larger. In this case, more c makes utility higher,
so we want the equation with �c.

The second step is to write down a function called the Lagrangean, defined as follows:

L(c; l; �) = u(c; l) + �[f (l)� c]:

As you can see, the Lagrangean is defined to be the original objective, u(c; l), plus some
variable � times our constraint. The Lagrangean is a function; in this case its arguments
are the three variables c, l, and �. Sometimes we will write it simply as L, suppressing
the arguments. The variable � is called the Lagrange multiplier; it is just some number that
we will calculate. If there is more than one constraint, then each one is: (i) solved for
zero; (ii) multiplied by its own Lagrange multiplier, e.g., �1, �2, etc.; and (iii) added to the
Lagrangean. (See Chapter 3 for an example.)

Before we used calculus to maximize our objective directly. Now, we work instead with
the Lagrangean. The standard approach is to set to zero the derivatives of the Lagrangian
with respect to the choice variables and the Lagrange multiplier �. The relevant first-order
conditions are:

@

@c
[L(c?; l?; �?)] = u1(c?; l?) + �

?[�1] = 0;(FOC c)

@

@l
[L(c?; l?; �?)] = u2(c?; l?) + �

?[f 0(l?)] = 0; and:(FOC l)

@

@�
[L(c?; l?; �?)] = f (l?)� c

? = 0:(FOC �)

Again, we use starred variables in these first-order conditions to denote that it is only for
the optimal values of c, l, and � that these derivatives will be zero. Notice that differen-
tiating the Lagrangian with respect to � simply gives us back our budget equation. Now
we have three equations in three unknowns (c?, l?, and �

?) and can solve for a solution.
Typically, the first step is to use equations (FOC c) and (FOC l) to eliminate �?. From (FOC
c) we have:

u1(c?; l?) = �
?
;

and from (FOC l) we have:

�
u2(c?; l?)
f 0(l?)

= �
?
:

Combining the two gives us:

u1(c?; l?) = �
u2(c?; l?)
f 0(l?)

:(2.5)
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When we are given particular functional forms for u(�) and f (�), then equation (2.5) gives
us a relationship between c

? and l
? that we can plug into the budget equation and solve

further. For example, under u(c; l) = ln(c) + ln(1� l) and f (l) = Al
�, equation (2.5) becomes:

1
c?

= �

�
�1

1� l?

��
1

A�(l?)��1

�
;

or equivalently:

c
? = A�(1� l

?)(l?)��1:

Now we plug in the budget equation c = Al
� to get:

A(l?)� = A�(1� l
?)(l?)��1:

After some canceling and algebraic manipulation, this reduces to:

l
? =

�

1 + �
:

Finally, we plug this answer for the optimal labor l? back into the budget equation to get:

c
? = A

�
�

1 + �

��
:

Notice that these are the same answers for c? and l
? that we derived in the previous sub-

section, when we plugged the constraint into the objective instead of using a Lagrange
multiplier.

Now let’s try to figure out why the technique of Lagrange multipliers works. First, we
want to understand better what the Lagrange multiplier � is. Our first-order condition
with respect to c gave us:

u1(c?; l?) = �
?
;(2.6)

This tells us that, at the optimum, �? is the marginal utility of an extra unit of consumption,
given by the left-hand side. It is this interpretation of � that motivated our choice of f (l)�
c = 0 rather than c � f (l) = 0 when we attached the constraint term to the Lagrangean. If
we had used the latter version of the constraint, then the right-hand side of equation (2.6)
would have been ��, which would have been minus the marginal utility of income.

Now look at the terms in the Lagrangian:

L(c; l; �) = u(c; l) + �[f (l)� c]:

It contains our objective u(�) and then the Lagrange multiplier times the constraint. Re-
member, � is the marginal utility of an additional unit of consumption. Notice that if the
budget equation is satisfied, then f (l) = c, so the constraint term is zero, and the Lagrangian
L and the objective u(�) are equal. Ceteris paribus, the Lagrangian will be big whenever the
objective is.
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Now, think about the contributions from the constraint term. Suppose Crusoe is at some
choice of c and l such that the budget is exactly met. If he wants to decrease labor l by a
little bit, then he will have to cut back on his consumption c. The constraint term in the
Lagrangean is: �[f (l)� c]. The Lagrangean, our new objective, goes down by the required
cut in c times �, which is the marginal utility of consumption. Essentially, the Lagrangean
subtracts off the utility cost of reducing consumption to make up for shortfalls in budget
balance. That way, the Lagrangean is an objective that incorporates costs from failing to
meet the constraint.

2.4 Income and Substitution Effects

Barro uses graphs to examine how Crusoe’s optimal choices of consumption and labor
change when his production function shifts and rotates. He calls the changes in Crusoe’s
choices “wealth and substitution effects”. That discussion is vaguely reminiscent of your
study of income and substitution effects from microeconomics. In that context, you con-
sidered shifts and rotations of linear budget lines. Crusoe’s “budget line” is his production
function, which is not linear.

This difference turns out to make mathematical calculation of income and substitution ef-
fects impractical. Furthermore, the “wealth effects” that Barro considers violate our as-
sumption that production is zero when labor l is zero. Such a wealth effect is depicted
as an upward shift of the production function in Barro’s Figure 2.8. This corresponds to
adding a constant to Crusoe’s production function, which means that production is not
zero when l is.

Barro’s Figure 2.10 depicts a pivot of the production about the origin. This type of change
to production is much more common in macroeconomics, since it is how we typically rep-
resent technological improvements. If Crusoe’s production function is y = Al

�, then an
increase in A will look exactly like this. Given a specific functional form for u(�) as well, it
is straightforward to compute how Crusoe’s choices of consumption c and labor l change
for any given change in A.

For example, suppose u(c; l) = ln(c) + ln(1� l) as before. Above we showed that:

c
? = A

�
�

1 + �

��
:

Determining how c
? changes when A changes is called comparative statics. The typical

exercise is to take the equation giving the optimal choice and to differentiate it with respect
to the variable that is to change. In this case, we have an equation for Crusoe’s optimal
choice of c?, and we are interested in how that choice will change as A changes. That gives
us:

@c
?

@A
=
�

�

1 + �

��
:(2.7)
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The derivative in equation (2.7) is positive, so Crusoe’s optimal choice of consumption will
increase when A increases.

The comparative statics exercise for Crusoe’s optimal labor choice l? is even easier. Above
we derived:

l
? =

�

1 + �
:

There is no A on the right-hand side, so when we take the partial derivative with respect
to A, the right-hand side is just a constant. Accordingly, @l?=@A = 0, i.e., Crusoe’s choice of
labor effort does not depend on his technology. This is precisely what Barro depicts in his
Figure 2.10.

The intuition of this result is as follows. When A goes up, the marginal product of labor
goes up, since the slope of the production function goes up. This encourages Crusoe to
work harder. On the other hand, the increase in A means that for any l Crusoe has more
output, so he is wealthier. As a result, Crusoe will try to consume more of any normal
goods. To the extent that leisure 1 � l is a normal good, Crusoe will actually work less.
Under these preferences and this production function, these two effects happen to cancel
out precisely. In general, this will not be the case.

Variable Definition

y Income, in units of consumption
k Capital
l Labor, fraction of time spent on production

f (l) Production function
� A parameter of the production function
A Technology of production
c Consumption

1� l Leisure, fraction of time spent recreating
L(�) Lagrangean function
� Lagrange multiplier

Table 2.1: Notation for Chapter 2

Exercises

Exercise 2.1 (Easy)
An agent cares about consumption and leisure. Specifically, the agent’s preferences are:
U = ln(c) + ln(l), where c is the agent’s consumption, and l is the number of hours the agent



Appendix: Calculus Notation 19

spends per day on leisure. When the agent isn’t enjoying leisure time, the agent works,
either for herself or for someone else. If she works ns hours for herself, then she produces
y = 4n0:5

s
units of consumption. For each hour that she works for someone else, she gets

paid a competitive wage w, in units of consumption.

Write out the agent’s optimization problem.

Exercise 2.2 (Moderate)
Suppose Crusoe’s preferences are given by: u(c; l) = c


(1� l)1�
 , for some 
 between zero
and one. His technology is: y = f (l) = Al

�, just like before. Solve for Crusoe’s optimal
choices of consumption c and labor l. (You can use either substitution or a Lagrangean, but
the former is easier in this sort of problem.)

Appendix: Calculus Notation

Suppose we have a function: y = f (x). We can think of differentiation as an operator that
acts on objects. Write d

dx
as the operator that differentiates with respect to x. We can apply

the operator to both sides of any equation. Namely,

d

dx

�
y
�
=

d

dx

�
f (x)

�
:

We often write the left-hand side as dy

dx
, and the right-hand side as f 0(x). These are just

notational conventions.

When we have functions of more than one variable, we are in the realm of multivariate
calculus and require more notation. Suppose we have z = f (x; y). When we differenti-
ate such a function, we will take partial derivatives that tell us the change in the function
from changing only one of the arguments, while holding any other arguments fixed. Par-
tial derivatives are denoted with curly dees (i.e., with @) to distinguish them from normal
derivatives. We can think of partial differentiation as an operator as before:

@

@x

�
z
�
=

@

@x

�
f (x; y)

�
:

The left-hand side is often written as @z

@x
, and the right-hand side as f1(x; y). The subscript

1 on f indicates a partial derivative with respect to the first argument of f . The derivative
of f with respect to its second argument, y, can similarly be written: f2(x; y).

The things to remember about this are:

� Primes (f 0) and straight dees (df ) are for functions of only one variable.

� Subscripts (f1) and curly dees (@f ) are for functions of more than one variable.




