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ABSTRACT
Healthy older adults typically perform worse than younger adults
at rule-based category learning, but better than patients with
Alzheimer’s or Parkinson’s disease. To further investigate aging’s
effect on rule-based category learning, we monitored event-
related potentials (ERPs) while younger and neuropsychologically
typical older adults performed a visual category-learning task
with a rule-based category structure and trial-by-trial feedback.
Using these procedures, we previously identified ERPs sensitive
to categorization strategy and accuracy in young participants. In
addition, previous studies have demonstrated the importance of
neural processing in the prefrontal cortex and the medial tem-
poral lobe for this task. In this study, older adults showed lower
accuracy and longer response times than younger adults, but
there were two distinct subgroups of older adults. One subgroup
showed near-chance performance throughout the procedure,
never categorizing accurately. The other subgroup reached
asymptotic accuracy that was equivalent to that in younger
adults, although they categorized more slowly. These two sub-
groups were further distinguished via ERPs. Consistent with the
compensation theory of cognitive aging, older adults who suc-
cessfully learned showed larger frontal ERPs when compared
with younger adults. Recruitment of prefrontal resources may
have improved performance while slowing response times.
Additionally, correlations of feedback-locked P300 amplitudes
with category-learning accuracy differentiated successful
younger and older adults. Overall, the results suggest that the
ability to adapt one’s behavior in response to feedback during
learning varies across older individuals, and that the failure of
some to adapt their behavior may reflect inadequate engage-
ment of prefrontal cortex.
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Introduction

Categories are central to the mental lives of human beings and allow us to describe and
order our mental and physical worlds (Rips, Smith, & Medin, 2012). Our ability to create
and manage categories becomes increasingly important as we learn categories related
to our social life (e.g., which friends can keep a secret or what is appropriate to post on
Facebook), to our occupation (e.g., which emails should be sent through the company
account), and to our health (e.g., which medications to take with food or at bedtime).
Categories come in many different types, from simple featural categories (e.g., objects
that are red) to much more complicated relational concepts (e.g., chases or conduit; see
Ashby & Maddox, 2011; Kéri, 2003; Rips et al., 2012). Neuropsychological (e.g., Koenig,
Smith, Moore, Glosser, & Grossman, 2007; Reber, Knowlton, & Squire, 1996; Smith et al.,
2013; Smith & Grossman, 2008; Ullman et al., 1997), electrophysiological (e.g., Folstein &
Van Petten, 2004; Morrison, Reber, Bharani, & Paller, 2015), and neuroimaging studies
(e.g., Foerde, Knowlton, & Poldrack, 2006; Nomura, Maddox, & Reber, 2007; Nomura
et al., 2007; Nomura & Reber, 2012; Reber, Martinez, & Weintraub, 2003) have suggested
that there is an explicit, rule-based mechanism to learn categories which is distinct from
an implicit, featural similarity-based mechanism.

Although deficits in rule-based category learning have already been related to
cognitively pathological aging disorders such as Alzheimer’s disease and Parkinson’s
disease (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Noble, Filoteo,
Waldron, & Ell, 2003; Filoteo, Maddox, Ing, & Song, 2007; Kéri, 2003; Koenig et al.,
2007; Maddox, Aparicio, Marchant, & Ivry, 2005; Reber et al., 2003; Reber & Squire,
1994, 1999), significant decreases in category-learning performance can still be seen
when comparing performance between younger and neuropsychologically typical older
adults (e.g., Ashby et al., 2003; Maddox, Pacheco, Reeves, Zhu, & Schnyer, 2010; Racine,
Barch, Braver, & Noelle, 2006; Ridderinkhof, Span, & Van Der Molen, 2002).
Understanding this diminished performance in older adults in relation to their cognitive
profile may be useful in the future, diagnostically, in order to identify candidates for
early interventions.

Category learning in older adults

Despite the abundance of studies involving category learning in children and college-
aged adults, relatively few studies have focused on category learning in older adults.
One common category-learning task used with older adults is the Wisconsin Card
Sorting Task (WCST), a neuropsychological test requiring participants to learn and shift
between explicit categorization rules based on trial-by-trial feedback (Berg, 1948).
Successful performance in this task has been found to be dependent on the prefrontal
cortex (Smith, Taylor, Brammer, & Rubia, 2004) and has been related to increased cortical
thickness in frontal and parietal brain regions (Burzynska et al., 2012). Although the
WCST requires both rule induction and rule shifting, rule induction is typically quite easy
for participants, and declines in older adults’ performance are typically explained by
difficulties in rule shifting (Hartman, Bolton, & Fehnel, 2001; Ridderinkhof et al., 2002).
Thus, a more challenging rule-induction task may add additional insight into how real-
world category learning changes with age.
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Using an explicit category-learning task with abstract shapes that varied on two
dimensions (i.e., circle size and line angle), Racine et al. (2006) found that older adults
could learn simple and complex rules as well as younger adults. However, when asked to
apply the previously learned complex rule without receiving trial-by-trial feedback, older
adults showed decreased performance compared with younger adults even though they
could recall the rule at the end of the task. Thus, older adults are able to learn and recall
rules like younger adults but have difficulty meeting the increased demands on cogni-
tive resources that are required to apply complex rules. This result is consistent with
relational reasoning results in older adults, where relational complexity also interacts
with age (Viskontas, Morrison, Holyoak, Hummel, & Knowlton, 2004) and is likely attri-
butable to age-related changes in prefrontal cortex or the way it interacts with more
posterior brain areas (Cabeza & Dennis, 2012). Age-related deficits in rule-based cate-
gorization have additionally been related to deficits in working memory, episodic
memory, inhibitory control, and verbal reasoning (Ashby et al., 1998; Maddox et al.,
2010; Racine et al., 2006).

Although Racine et al. (2006) reported that younger and older adults were able to learn
both simple and complex rules with equivalent accuracy, other studies have reported
differences between younger and older adults’ ability to learn explicit rules. For instance,
Ashby et al. (2003) found that 14% of their older adult control group were unable to
achieve at least 10 correct responses in a row within 200 trials. Likewise, Maddox et al.
(2005) reported large individual differences in neuropsychologically typical older adults’
performance in their rule-based category-learning task, with several participants failing to
reach 55% accuracy. Similarly, older Parkinson’s disease patients also show great variability
in performance (Ashby et al., 2003; Maddox et al., 2005; Maddox & Filoteo, 2001). However,
Filoteo et al. (2007) ultimately demonstrated that diminished performance in rule-based
category learning in Parkinson’s patients was likely due to deficits in selective attention that
prevented them from ignoring irrelevant stimulus features.

Category learning event-related potentials

Results from the studies discussed so far have explored variability in older adult
performance in rule-based category learning using behavioral measures; however, neu-
roimaging techniques may help us better understand the variability in older adult
category-learning behavior. The sensitivity of neuroimaging has already established
structural differences between two types of category learning. In particular, rule-based
category learning has been found to be dependent on the prefrontal cortex and the
medial temporal lobes (MTLs), areas associated with age-related structural and func-
tional decline (for review see Dennis & Cabeza, 2008) and is distinguished from implicit,
featural, category learning which is dependent on striatal-frontal circuitry (e.g., Foerde
et al., 2006; Nomura, Maddox, & Reber, 2007; Nomura et al., 2007; Nomura & Reber, 2012;
Reber et al., 2003). Additionally, although both younger and older adults activated the
MTL during an explicit category-learning task, functional magnetic resonance imaging
(fMRI) results showed that younger adults’ MTL activity was significantly greater than
older adults’ (Dennis & Cabeza, 2011). These studies show that neuroimaging techniques
are useful both for distinguishing between types of category learning and for investigat-
ing changes due to aging.
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Maddox, Ashby, and Bohil (2003) developed a particularly useful paradigm for
studying rule-based and implicit category learning. In their task, participants must
discover how to divide Gabor patches varying in spatial frequency (i.e., number of
stripes in the patch or mean width of stripes in a patch) and spatial orientation (i.e.,
the angle of stripes in a patch), into two groups, based on trial-by-trial feedback.
Morrison, Reber, Bharani, and Paller (2015) used this task with scalp electroencepha-
lography (EEG) to measure brain activity while people learned categories either
explicitly or implicitly. From the EEG recorded during learning, they calculated
event-related potentials (ERPs) elicited by categorical and feedback stimuli.
Specifically, a stimulus-locked ERP known as the late positive complex (LPC) was
found to differentiate correct and incorrect responses and be predictive of accuracy
in the explicit condition, but not in the implicit condition, supporting the hypothesis
of distinct neural systems engaged in explicit and implicit category learning (Nomura
et al., 2007). Additionally, a feedback-locked P300 was found to be larger in incorrect
trials in the explicit condition, but not the implicit condition, suggesting participants
form a firm hypothesis about the categorization rule in the explicit condition and
express “surprise” (Polich, 2007) when their expectations are violated by negative
feedback.

The LPC is frequently implicated in studies of declarative memory where it has been
linked to explicit memory encoding and retrieval processes (Finnigan, Humphreys, Dennis,
& Geffen, 2002; Paller, Voss, & Westerberg, 2009). In an incidental memory paradigm,
abnormal LPCs have been seen in amnestic mild cognitive impairment and probable
Alzheimer’s disease patients, and LPC abnormalities have been used to successfully
predict conversion from amnestic mild cognitive impairment to probable Alzheimer’s
disease (Chapman et al., 2011; Olichney et al., 2006; Taylor & Olichney, 2007). In the
category-learning task, we expect participants to have a more positive LPC when correctly
categorizing a stimulus, reflecting the process of retrieval of the categorization rule and
mental representation of the boundary condition. Furthermore, anterior shifts in LPC
topography are expected in older adults to the extent that they are engaging prefrontal
cortex (Joyce, Paller, McIsaac, & Kutas, 1998). Relating this frontal shift to performance in
the task will provide insight on whether or not this frontal shift reflects a compensatory
mechanism to counteract age-related neurocognitive deficits (Cabeza, Anderson,
Locantore, & McIntosh, 2002) or inefficient recruitment (Li & Lindenberger, 1999).

The P300 has been shown to arise when working memory is updated after feedback
(Kok, 2001; Polich, 2007) and is sensitive enough to discriminate among older adults,
those with amnestic mild cognitive impairment, and patients with dementia (Bennys,
Portet, Touchon, & Rondouin, 2007). When a participant who is confident in his or her
categorization hypothesis receives negative feedback, a feedback-locked P300 is
expected, reflecting a violation of expectation (Hajcak, Holroyd, Moser, & Simons,
2005; Morrison et al., 2015). A lower magnitude feedback-locked P300 is expected in
response to positive feedback, reflecting confidence in the hypothesized categorization
criteria. Previous studies have suggested that younger adults have an increased ten-
dency to attend to negative information relative to positive information (Rozin &
Royzman, 2001). Interestingly, this negative bias is attenuated by age, and older adults
have been shown to exhibit decreased reactivity to negative information and emphasize
wins rather than losses (Wood, Busemeyer, Koling, Cox, & Davis, 2005; Wood & Kisley,
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2006). Thus, we expect the P300 to be modulated by this age-related difference in
feedback processing.

In this study, we used a well-established rule-based category-learning paradigm
(Maddox et al., 2003; Nomura et al., 2007) to examine individual differences in behavior
and brain waves in healthy older adults. We included a group of younger adults for
comparison.

Materials and methods

Participants

Nineteen younger adults (9 female; M = 20.7 years old, SD = 2.0) were recruited from
Loyola University Chicago, and 23 cognitively healthy older adults (15 female;
M = 71.0 years old, SD = 3.3) were recruited from the Clinical Core Registry of the
Cognitive Neurology and Alzheimer’s Disease Center (CNADC) at Northwestern
University’s Feinberg School of Medicine. Older adult participants had at least 20/30
corrected vision and completed regular neuropsychological testing at the CNADC using
the Uniform Data Set of the Alzheimer’s Disease program of the National Institute on
Aging and additional tests (Morris et al., 2006; Weintraub et al., 2009), and had neurop-
sychological test scores of attention, executive function, memory, and language within
normal range. None of the older adults had neuropsychological test scores below 2 SD
of age-based norms, and all had no features of amnestic mild cognitive impairment or
probable Alzheimer’s disease. All participants in the study had normal or corrected-to-
normal vision. Participants gave informed consent as approved by the Loyola University
Chicago’s Institutional Review Board and received $15 per hour to compensate them for
participation in the study.

Task description

Morrison et al. (2015) previously adapted Maddox, Ashby, and Bohil’s (2003) category-
learning task for use with EEG. In this paradigm, participants learn to categorize circular
sine-wave gratings (Gabor patches) that vary in spatial frequency and spatial orientation
into two categories via auditory feedback following each response. In the rule-based
(RB) version of the task used in the present study, the two categories are defined by a
boundary based only on spatial frequency, such that variations in spatial orientation are
irrelevant (see Figure 1).

Procedure

Participants were seated in a dimly lit, acoustically shielded room 100 cm away from a
cathode ray tube monitor. Directions for the tasks were presented visually and were read
aloud by the experimenter.

Category-learning task (see Figure 2)
Participants categorized 320 gratings presented in four blocks of trials. Criteria defining
categories “A” and “B” were based solely on the spatial frequency of the sine-wave
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grating, where category “A” consisted of stimuli with lower frequency (i.e., wider stripes)
and category “B” consisted of stimuli with higher frequency (i.e., thinner stripes). Prior to
testing, participants were familiarized with the procedures, including trial timing, button
pressing, and feedback. Participants did not receive instructions about the nature of the
categories. Instead, they were asked to discover them with the aid of auditory feedback.
Participants were instructed to make a categorization decision before the stimulus
disappeared (2 s after stimulus onset) and before a visual mask appeared. A bell then
sounded for correct feedback, or a short buzzer sounded for incorrect feedback. For
responses not made within the allotted time, participants heard a long buzzer. Trials on
which participants did not respond within 2 s were not considered in the EEG analysis.

Figure 1. An example of a rule-based category distribution where categories were determined by
spatial frequency regardless of spatial orientation.

Figure 2. Participants saw a stimulus to be categorized after a fixation cross and were asked to press
buttons labeled “A” or “B” indicating their categorization decision while the stimulus was on the
screen. Feedback on the categorization decision was given in the form of a tone after 500 ms of
stimulus offset. EEG was recorded continuously; stimulus- and feedback-locked ERPs were calculated
for each trial.

6 K. L. BHARANI ET AL.

D
ow

nl
oa

de
d 

by
 [

L
oy

ol
a 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

],
 [

D
r 

R
ob

er
t M

or
ri

so
n]

 a
t 0

9:
14

 2
3 

N
ov

em
be

r 
20

15
 



Participants were debriefed about their categorization strategies after the testing ses-
sion. Compared with the distribution of sine-wave gratings used in the rule-based
learning task in Morrison et al. (2015), the distribution of sine-wave gratings in the
task used in the current study included more stimuli far from the boundary condition in
order to reduce task difficulty for older adults.

Spatial frequency discrimination task
In order to ensure that participants were capable of discerning the difference in spatial
frequency between category A and B stimuli, we administered a spatial frequency
discrimination task after category learning. Participants viewed two sine-wave gratings
side by side and were asked if the right sine-wave grating had wider or thinner stripes
than the left sine-wave grating. The left sine-wave grating had spatial frequency repre-
sentative of the boundary condition and remained on the screen throughout. The right
sine-wave grating changed in every trial and was representative of the range of spatial
frequency and orientation used during the category-learning task. All participants
achieved at least 75% accuracy on this task (M = 83.40%, SD = 10.50%).

EEG recording and analysis

EEG was recorded from each participant using a Biosemi Active-Two EEG system. Elastic
caps with 32 active electrodes (Ag-AgCl) arranged in a 10/20 pattern were used for data
collection. Biosemi CMS/DRL electrodes were placed near the vertex. Four additional
electrodes surrounding the eyes were used to monitor horizontal and vertical eye
movements, and two additional electrodes were placed over the left and right mastoid
bones for re-referencing after data collection. Data were recorded with a band pass of
0–104 Hz, and sampled at a rate of 512 Hz. EEG data were processed using EMSE (Source
Signal Imaging, San Diego CA). EEG data were re-referenced to an average of the two
mastoid electrodes and then digitally filtered with a 0.01 Hz high-pass filter and 59 to
61 Hz band-stop filter to remove AC electrical noise. All filters had a cutoff attenuation of
12 dB/octave. A spatial principal components analysis (PCA) filter was applied to remove
ocular artifacts (Liu & Yao, 2006). Muscle and other artifacts were removed via visual
inspection of the raw EEG signal and a ± 125µV trial-by-trial rejection criterion during
averaging. A polynomial detrend was applied to the data to implement a 200-ms
prestimulus baseline adjustment for stimulus-locked ERP averaging. Participants who
were included in ERP analyses had fewer than 25% rejected trials in every condition
(correct trials: M = 219, SD = 40; incorrect trials: M = 69, SD = 36).

Results

Behavioral results

Criteria for learning subgroups
Although older adults were within their age-based norms on neuropsychological tests,
many of the older adults performed near chance in the category-learning task, unlike
younger adults who all learned the category rule. To distinguish high and low perfor-
mers, participants who achieved over 60% accuracy (chance was 50%) were considered
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to be learners, and those who did not achieve over 60% accuracy were considered to be
nonlearners. As shown in Figure 3a, 14 older adults (9 female; M = 71.3 years old,
SD = 3.5) were high performers (hereto referred to as OA-Learners) while 9 older adults
(6 female; M = 70.7 years old, SD = 3.2) were low performers (hereto referred to as OA-
Nonlearners). From this point forth, the term YA-Learners refers to the entire group of
younger adults and the term Older Adults refers to the entire group of older adults
including both OA-Learners and OA-Nonlearners.

Neuropsychological results
Older adults completed the Unified Data Set (UDS) neuropsychological battery (Morris
et al., 2006; Weintraub et al., 2009) within 1 year prior to EEG testing. These testing
results as well as results from the spatial frequency discrimination task are presented for
the OA-Learners and OA-Nonlearners groups in Tables 1 and 2.

Categorization accuracy
As shown in Figure 3a, accuracy was found to differ across the participant groups
(YA-Learners, OA-Learners, and OA-Nonlearners), as confirmed via a one-way Analysis
of Variance (ANOVA; F(2, 39) = 90, p < 0.001, ηp

2 = 0.82). A Tukey’s post-hoc comparison
of the three groups showed that YA-Learners (M = 0.81, SD = 0.06) and OA-Learners

Figure 3. (a) A plot of overall task accuracy and age showing the accuracy-age distribution of
YA-Learners, OA-Learners, and OA-Nonlearners. Older adults that achieved 60% or higher categor-
ization accuracy were considered OA-Learners. Accuracy (b) and correct response time (c) from YA-
Learners, OA-Learners, and OA-Nonlearners in each of four 80-trial blocks. (d) Proportion of 80-trial
blocks best fit by an RB-F DBT model for each participant. Error bars represent ±1SEM.
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(M = 0.81, SD = 0.07) performed equivalently (p = 0.98) while OA-Nonlearners (M = 0.50,
SD = 0.02) performed reliably lower than OA-Learners and YA-Learners (p < 0.001). We
also report the relationship of category-learning accuracy and a variety of neuropsycho-
logical measures in Table 2. Most notably, accuracy was significantly correlated with
both MMSE and a composite of executive function measures even though all partici-
pants in the study were well within the normal range for their age.

To further explore learning differences, mean accuracy was calculated separately for
every block of 80 trials, as shown in Figure 3b. These data were subjected to a 2 group
(YA-Learners, OA-Learners) × 4 block Mixed ANOVA. There was a main effect of block
(F(3, 93) = 39, p < 0.001, ηp

2 = 0.56), and category learning linearly increased over the
four blocks (F(1, 31) = 67, p < 0.001, ηp

2 = 0.68). The group × block interaction was also
statistically significant (F(3, 93) = 3.7, p < 0.01, ηp

2 = 0.11), suggesting that OA-Learners
continued to improve with experience while YA-Learners reached asymptotic accuracy
during the second half of learning.

Categorization response time (Figure 3c)
Response time (RT) on correct trials was evaluated across the three participant sub-
groups (YA-Learners, OA-Learners, and OA-Nonlearners) using a one-way ANOVA, reveal-
ing statistically significant differences among subgroups (F(2, 39) = 8.4, p = 0.001,

Table 1. Characterization of analysis groups.
YA- Learners OA- Learners OA-Nonlearners

M SD M SD M SD p

Demographics
Age 20.68 2.03 71.29 3.47 70.67 3.20 0.90
Education 14.52 1.58 16.54 2.39 16.75 2.12 0.82

Rule-based category-learning task
Accuracy (proportion correct) 0.81 0.06 0.81 0.07 0.50 0.02 <0.001
RT (ms) 697 100 883 114 703 223 0.02

Global functioning
MMSE (total = 30) 29.79 0.58 28.67 1.00 0.03

Vision
Spatial frequency discrimination task 0.84 0.08 0.81 0.15 0.83 0.10 0.52
Harder trials near to category boundary 0.81 0.11 0.83 0.13 0.83 0.14 0.59
Easier trials far from category boundary 0.88 0.14 0.80 0.19 0.85 0.13 0.58

Processing speed
Digit Symbol (WAIS-R) (total = 99) 52.36 8.38 50.67 12.54 0.17

Attention
Digit Span Forward (WMS-R) 6.86 1.17 7.22 0.97 0.41
Trail Making Test (Part A) (seconds to complete) 25.57 6.37 23.67 6.44 0.71

Language
Boston Naming Task (Short, Total = 30) 29.07 1.14 27.44 3.17 0.09

Executive function
Digit Span Backwards (WMS-R) 5.57 1.02 4.56 0.88 0.88
Trail Making Test (Part B) (secs) 62.86 24.30 68.11 29.32 0.90
Category List (animals in 60 secs) 23.71 4.39 21.56 4.82 0.61
Category List (vegetables in 60 secs) 17.14 5.11 16.11 3.89 0.39

Memory
Logical Memory I (WMS-R) 16.43 2.50 15.67 3.16 0.76
Logical Memory II (WMS-R) # 16.00 2.89 14.00 2.91 0.76
RAVLT Immediate Recall Trial 5 (Total = 15) 12.14 2.93 11.78 1.86 0.39
RAVLT Delayed Recall (total = 15) 12.14 2.93 10.89 2.15 0.37

Note: Mean and standard deviations for three analysis groups. p-Values are for independent t-tests between OA groups.
MMSE, mini mental status exam score.
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ηp
2 = 0.30). A Tukey’s post-hoc comparison indicated that YA-Learners (M = 697 ms,

SD = 99 ms) and OA-Nonlearners (M = 703 ms, SD = 223 ms) had similar RTs (p = 0.99)
while OA-Learners (M = 884 ms, SD = 114 ms) took significantly more time to respond
than YA-Learners (p = 0.001) and OA-Nonlearners (p = 0.01), suggesting OA-Learners
required increased processing time to perform as well as YA-Learners.

Decision-bound theory modeling
In addition to the accuracy-based analysis above, we also employed Decision-Bound
Theory (DBT) models based on General Recognition Theory (Ashby & Gott, 1988; Ashby
& Maddox, 1993) to classify behavior in relation to particular categorization strategies.
We previously used this approach to dissociate neural correlates of explicit (RB) and
implicit (information integration) versions of this task (Morrison et al., 2015). Using
Matsuki’s (2014) implementation of General Recognition Theory in R, we fit the pattern
of categorization responses for each participant using maximum likelihood procedures
(Maddox & Ashby, 1993; Wickens, 1982) to three different models. The RB-F model is
based on spatial frequency (a vertical boundary in stimulus space). The RB-O model is
based on spatial orientation (a horizontal boundary in stimulus space). The random
responder (RR) model assumes a participant guessed or applied different strategies

Table 2. Correlations of sample characterization measures with categorization task accuracy for older
adult participants and OA-Learners.

Task accuracy

All Older Adults OA-Learners

r p r p

Demographics
Age 0.21 0.34 0.28 0.33
Education 0.21 0.37 0.83 < 0.01

Task performance
RB-F Model Fit −0.36 0.09 −0.96 <0.01

Global functioning
MMSE 0.53 0.01 0.01 0.98

Vision
Spatial frequency discrimination task −0.05 0.87 0.21 0.79
Harder trials near to category boundary −0.05 0.87 −0.01 0.97
Easier trials far from category boundary −0.04 0.89 0.19 0.66

Processing speed
Digit Symbol (WAIS-R) 0.13 0.54 0.27 0.35

Attention
Digit Span Forward (WMS-R) −0.15 0.51 0.07 0.82
Trail Making Test (Part A) 0.00 0.99 −0.50 0.07

Language
Boston Naming Task 0.36 0.09 0.22 0.45

Executive Function
Digit Span Backwards (WMS-R) 0.49 0.02 0.25 0.38
Trail Making Test (Part B-Reversed) 0.26 0.23 0.60 0.03
Generation (animals) 0.35 0.09 0.53 0.05
Generation (vegetables) 0.26 0.23 0.53 0.05
EF Composite (all tasks) 0.46 0.03 0.48 0.09

Memory
Logical Memory I (WMS-R) 0.22 0.30 0.35 0.23
Logical Memory II (WMS-R) 0.36 0.10 0.24 0.42
RAVLT Immediate Recall 0.07 0.76 −0.06 0.84
RAVLT Delayed Recall 0.19 0.38 −0.03 0.92
LTM Composite (LM II, RAVLT Delay) 0.29 0.18 −0.01 0.97

Correlation between indicated measure and categorization task accuracy.
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across trials. For the category distributions used in this experiment, the RB-F strategy
would yield the highest accuracy. The quality of the fit was contrasted across models
using Akaike’s (1974) information criterion (AIC). We compared the AIC for the various
models and tabulated whether the RB-F fit significantly better (Burnham & Anderson,
2002) than both the RB-O and RR models for a given block of trials (see Figure 3d). We
conducted a 3 group (YA-Learners, OA-Learners, OA-Nonlearners) × 4 block Mixed
ANOVA for RB-F model fit. There was a main effect of group (F(2, 39) = 88, p < 0.001,
ηp

2 = 0.82), and block (F(3, 117) = 7.0, p < 0.001, ηp
2 = 0.15) but no significant group x

block interaction (F(6, 117) = 1.4, p = .24, ηp
2 = 0.07). A Tukey’s post-hoc comparison of

the three groups confirmed that that YA-Learner and OA-Learners were not significantly
different in RB-F model fit (p = 0.85) while OA-Nonlearners were less likely to be fit by
the RB-F model than either OA-Learners (p < 0.001) or YA-Learners (p < 0.001). Lastly, we
examined the two learner groups using a 2 group (YA-Learners, OA-Learners) × 4 block
Mixed ANOVA. There was no main effect of group (F(1, 31) = .24, p = .63, ηp

2 = 0.008), a
significant effect of block (F(3, 93) = 9.8, p < 0.001, ηp

2 = 0.24) but once again no group ×
block interaction (F(3, 93) = .64, p = .59, ηp

2 = 0.02).
Overall, the OA-Nonlearners showed considerable random responding, perhaps as a

result of frequent strategy shifts. One of the nine OA-Nonlearners was best fit by the
RB-O model in the first two blocks and then by the RR model in the final two blocks. This
participant may have been fixated on spatial orientation, as seen in children who fail to
learn with this task (Huang-Pollock, Maddox, & Karalunas, 2011). Another of the OA-
Learners appears to have learned the RB-F rule late during learning and was best fit by
the RB-F only in block 4.

EEG results

Comparisons between older and younger adult ERPs are complicated by differences in
topography (Mueller, Brehmer, Von Oertzen, Li, & Lindenberger, 2008) and latency
(Gazzaley et al., 2008). To address these complications, we used a data-driven approach
to identify time windows and locations of interest. The same large time windows of
interest were used to compare components between younger and older adults in order
to account for any possible latency differences between the two age groups. Regions of
interest were determined from the topography of each age-grouped component, and
clusters of electrodes within the regions of interest were used to incorporate possible
individual differences in topography.

Stimulus-locked categorization ERPs (Figure 4)
Agreeing with the ERP results reported by Morrison et al. (2015), a stimulus-locked LPC
was found to be largest in parietal-occipital recordings at 400–700 ms after stimulus
onset, as shown in Figure 4. Mean amplitudes from the same electrodes (Pz and Oz) and
time ranges (400–700 ms) were used in a 3 participant group (YA-Learners, OA-Learners,
OA-Nonlearners) by 2 accuracy (Correct, Incorrect) mixed ANOVA which yielded a sig-
nificant main effect of accuracy (F(1, 39) = 25.60, p < 0.001, η2 = 0.40) and an interaction
between group and accuracy (F(1, 39) = 6.93, p = 0.003, ηp

2 = 0.26), suggesting that the
LPC was larger for correct trials than incorrect trials and that the LPC correct/incorrect
difference was different between groups. Additionally, in both the YA-Learners and the
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Older Adults, the LPC difference between correct and incorrect trials was correlated with
task accuracy (YA-Learners: r = 0.47, p = 0.04; Older Adults: r = 0.54, p = 0.007).

Next a one-way ANOVA was used to compare the LPC correct/incorrect difference
among the three participant groups (YA-Learners, OA-Learners, and OA-Learners) and
was found to be significant (F(2, 39) = 6.93, p = 0.003, ηp

2 = 0.26). Post-hoc comparisons
confirmed that the LPC difference in YA-Learners (M = 2.55, SD = 2.03) and OA-Learners

Figure 4. (a) Grand average stimulus-locked ERPs and corresponding topographic maps for
YA-Learners, Older Adults, OA-Learners, and OA-Nonlearners. The LPC was measured from
400–700 ms (gray shading) from a parietal electrode cluster marked in the topographic maps
with black dots. Scatterplots showing the relationship of accuracy to correct minus incorrect mean
amplitude ERP subtractions from 400–700 ms for YA-Learners (b) and Older Adults (c) with
OA-Learners depicted in solid gray diamonds and OA-Nonlearners depicted in open gray diamonds.
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(M = 2.10, SD = 1.78) was not significantly different (p = 0.77), whereas OA-NonLearners’
LPC difference (M = −0.16, SD = 1.37) was significantly smaller (YA-Learners, p = 0.002;
OA-Learners, p = 0.02). This result suggests that the reduced LPC effect in Older Adults
was driven by the negligible LPC correct/incorrect difference in OA-Nonlearners.

Topographic results during categorization
To examine whether greater engagement of the frontal lobe may have been partly
responsible for OA-Learners’ successful performance, we examined whether there
were differences in ERP topography between the younger and older learners.
Because topographical comparisons could be influenced by differential amplitudes,
LPC mean amplitudes were normalized by dividing by the root mean squared activity
across all electrodes (McCarthy & Wood, 1985; Picton et al., 2000). A 2 group
(YA-Learners, OA-Learners) by accuracy (correct, incorrect), by electrode (32) ANOVA
with Greenhouse–Geisser correction on the normalized data yielded a significant
group by accuracy by electrode interaction (F(8.4, 261.4) = 3.5, p = 0.001,
ηp

2 = 0.1). Next, we compared electrodes over the front and back half of the scalp
to look for a specific frontal shift in the neural correlate of successful categorization in
the older adults. A 2 group (YA-Learners, OA-Learners) by 2 (Front, Back) by 2
(Correct, Incorrect) ANOVA on the normalized data yielded a significant three-way
interaction (F(1,31) = 15.6, p < 0.001, ηp

2 = 0.34). Specifically, YA-learners showed a
greater difference effect in posterior electrodes (F(1,18) = 23.2, p < 0.001, ηp

2 = 0.56)
while OA-Learners showed no difference between frontal compared to posterior
electrodes (F(1,13) = 0.16, p = .69, ηp

2 = 0.012).

Feedback-locked ERPs
The difference between correct and incorrect feedback P300 was measured from
250–450 ms after feedback tone onset for each group and subgroup (see Figure 5).
Electrode clusters for analysis were selected to capture the separate maximum activity in
YA-Learners and in Older Adults. A 3 participant group (YA-Learners, OA-Learners,
OA-Nonlearners) by 2 accuracy (Correct, Incorrect) mixed ANOVA yielded a significant
main effect of accuracy (F(1,39) = 43.59, p < 0.001, ηp

2 = 0.53) and a significant group by
accuracy interaction (F(2,39) = 20.00, p < 0.001, ηp

2 = 0.51), suggesting that the P300 was
larger for incorrect than correct trials and that the P300 correct-incorrect mean ampli-
tude difference was different between groups. Additionally, YA-Learners’ P300 correct/
incorrect difference was correlated with accuracy in YA-Learners (r = −0.62, p = 0.005)
and in Older Adults (r = −0.74, p < 0.001).

A one-way ANOVA of the P300 correct/incorrect difference was used to compare the
three participant groups (YA-Learners, OA-Learners, OA-Nonlearners) and was found to
be significant (F(2, 39) = 20.00, p < 0.001, ηp

2 = 0.51), confirming that the P300 correct/
incorrect effect differs between groups. A post-hoc comparison of the three groups
further revealed that the YA-Learners’ (M = −12.86, SD = 7.19) P300 correct/incorrect
difference was significantly greater than that of OA-Learners’ (M = −4.75, SD = 3.97;
p < 0.001) and OA-NonLearners’ (M = 0.20, SD = 1.45; p < 0.001), but that OA-Learners’
and OA-Nonlearners’ P300 correct/incorrect difference did not significantly differ
(p = 0.097). This suggests that YA-Learners and Older Adults processed feedback
differently. In addition, Older Adults’ P300 from positive feedback was negatively
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correlated with the frontal LPC during categorization (r = −0.44, p = 0.04), suggesting an
Older Adult specific interaction between stimulus processing and feedback processing.

Considering the large accuracy difference between OA-Learners and OA-Nonlearners,
additional analysis on feedback processing was limited to YA-Learners and OA-Learners
whose accuracy were similar. YA-Learners’ P300 from negative feedback was found to be
positively correlated with accuracy (r = 0.64, p = 0.003) while OA-Learners’ feedback

Figure 5. (a) Grand average feedback-locked ERPs and corresponding topographic maps for
YA-Learners, Older adults, OA-Learners, and OA-Nonlearners. The P300 was measured from
250–450 ms (gray shading) from an electrode cluster marked in the topographic maps with black
dots. Scatterplots showing the relationship of accuracy to correct minus incorrect mean amplitude
ERP subtractions from 250–450 ms for YA-Learners (b) and Older Adults (c) with OA-Learners
depicted in solid gray diamonds and OA-Nonlearners depicted in open gray diamonds.
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P300 to positive feedback was found to be negatively correlated with accuracy (r = −0.71,
p = 0.004; see Figure 6. This suggests an age-related shift in feedback processing or
feedback preference where younger adults’ attention to negative feedback, rather than
positive feedback, is related to their successful categorization while older adults atten-
tion to positive feedback, rather than negative feedback is related to their successful
categorization.

Discussion

The current study examined rule-based category learning in younger and older adults
utilizing EEG to monitor neural signals of categorization-related processing. Similar to
previous reports (Ashby et al., 2003; Maddox et al., 2010; Racine et al., 2006; Ridderinkhof
et al., 2002), learning in older adults was generally less successful than that in younger
adults. However, large individual differences in performance led us to classify a sub-
group of high-performing older adults who learned the category rule and were able to
use it to successfully categorize stimuli (OA-Learners). These high-performing older
adults exhibited rule-based category-learning accuracy equivalent to that in younger
adults, but took longer to make correct categorization responses. In contrast, low-
performing older adults (OA-Nonlearners) failed to learn the category rule and categor-
ized at near-chance levels. RTs in this subgroup were equivalent to those in younger
adults, and were much faster than those of OA-Learners.

Racine et al. (2006) suggested that older adults had slower RTs and lower accuracy when
categorizing complex rules with high interference. Considering that the category-learning

Figure 6. Scatterplots showing the relationship of accuracy to correct feedback-locked 250–450 ms
mean amplitude ERP and corresponding mean amplitude topographic maps for YA-Learners (a) and
OA-Learners (b). Scatterplots showing the relationship of accuracy to incorrect feedback-locked
250–450 ms mean amplitude ERP and corresponding mean amplitude topographic maps for
YA-Learners (c) and OA-Learners (d).
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task in the present study did not reproduce the accuracy difference but did reproduce
slower RTs in successful older adults, our results suggest that older adults need to take
more time to properly apply an explicit categorization rule. This finding is consistent with a
large body of literature, suggesting that older adults show age-related response slowing in
cognitive tasks (Salthouse, 1996). ERP results can help clarify whether or not this slowing in
older adults is simply a hallmark of inefficient processing or instead reflects a compensatory
mechanism to counteract age-related cognitive decline.

Compensation in aging

Replicating the brain potential findings reported by Morrison et al. (2015), we found a
posterior LPC difference between correct and incorrect trials related to categorization
accuracy (Figure 4). Interesting, older adults who learned showed a frontal shift in their
correct/incorrect LPC subtraction compared to younger adult learners. Likewise, cate-
gorization accuracy in older adults was correlated with a variety of measures of execu-
tive function (Table 2). Although it is tempting to entertain the possibility that these
enhanced frontal ERPs reflect prefrontal cortical activity engaged to improve task
performance, we cannot infer the neural sources based on merely scalp EEG data.
Nevertheless, this possibility is consistent with results from a previous study with
concurrent EEG and fMRI where a similar posterior–anterior shift in P300 topography
was suggestive of increased frontal lobe engagement in a visual oddball task (O’Connell
et al., 2012).

The significance of the posterior–anterior shift in older adults is highly debated (for
review, see Cabeza et al., 2002; Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008; Friedman,
2003; Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Lustig, 2005). O’Connell et al.
(2012) interpreted their concurrent EEG and fMRI results as suggesting that increased
frontal engagement may help overcome inefficient perceptual processing of task stimuli
in posterior cortical regions. This idea is in agreement with the posterior–anterior shift in
aging (PASA) model proposed by Davis et al. (2008), where the frontal shift in activity
was specifically attributed to aging and not to task difficulty or confidence levels. In this
study, however, we did not find significantly diminished posterior activity in high-
performing older adults as the PASA theory would predict. Instead, we found that
high-performing older adults and younger adults had similar posterior magnitudes.
This may suggest that a frontal-posterior network of activity, instead of just a frontal
shift of activity, was necessary for our older adults to succeed.

In further support of the compensation hypothesis of aging, in this study, we found
frontal LPC activity in high-performing older adults was significantly larger than in
younger adults, while low-performing older adults’ frontal activity was not significantly
different than younger adults’. This parallels the results described by Cabeza et al. (2002),
where high-performing older adults who performed as well as younger adults in a
source memory task had increased neural activity in the left prefrontal cortex and low-
performing older adults had similar frontal activity as younger adults. This increase in
frontal activity in successful older adults may be related to scaffolding theory of aging
and cognition (STAC), where recruitment of additional circuitry is required to maintain
high cognitive function despite neural deterioration (Park & Reuter-Lorenz, 2009).
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Feedback learning and aging

According to the context-updating theory of P300 (for review, see Polich, 2007), P300
amplitude is related to updating a mental representation or schema in working memory
after receiving meaningful information. Previous literature has shown that younger and
older adults respond to feedback differently (Eppinger & Kray, 2011; Frank & Kong, 2008;
Mathewson, Dywan, Snyder, Tays, & Segalowitz, 2008; Wood & Kisley, 2006). In this
study, younger adults’ P300 to negative feedback were correlated with task accuracy,
suggesting that their success in refining the categorization rule was related to their
attention to negative feedback and not positive feedback. In our previous study with a
more difficult rule-based category distribution (Morrison et al., 2015), we found that
younger adults’ P300 to positive feedback, instead of negative feedback, was related to
rule-based categorization performance. The easier distribution of stimuli and the conse-
quently higher performance of younger adults in this study may explain this discre-
pancy. Indeed, in the previous study, a similar negative feedback/P300 correlation was
found when low-performing younger adults were excluded (unpublished results). In the
present study, task accuracy for high-performing older adults was correlated with the
P300 for positive feedback, instead of negative feedback, suggesting that success was
related to preserving their mental representation of the rule instead of updating or
changing their mental representation of the rule. Differences in the negative feedback
P300 ERP magnitude between younger and older adult rule learners may be partially
due to older adults’ reduced reactivity to negative feedback (Wood & Kisley, 2006),
related to their bias to learn from positive outcomes (Eppinger & Kray, 2011).

Older adult subgroups and future studies

The low-performing older adults identified in this study have neuropsychologically
normal profiles (well within 2 SD of the UDS norms) but were distinguished by their
poor performance in this task (see Table 1). Further analysis of their neuropsychological
scores, in comparison with those of the high performing older adults, revealed that they
had lower working-memory scores (i.e., Digit Span Backwards) and lower MMSE scores
(Table 1). Indeed a composite of executive function measures in the UDS significantly
correlated with categorization accuracy (Table 2). Considering that executive dysfunction
at the time of a diagnosis of amnestic mild cognitive impairment has been shown to be
an effective predictor of conversion to probable Alzheimer’s disease (Albert, Moss,
Blacker, Tanzi, & McArdle, 2007), longitudinal study is ongoing to check for risk of
cognitive decline in older adults who exhibit difficulties in rule-based category learning
of the sort studied here.

Additionally, electrophysiological analyses from the current study may further high-
light the nature of individual differences in older adults. Specifically, in this study, high-
performing older adults showed similar posterior activity but increased frontal activity
during stimulus processing when compared to younger adults. This suggests that
higher-performing older adults engaged additional processes to perform as well as
younger adults. The degree to which they engage these additional resources may be
related to the decline of their long-term memory capabilities.
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On the other hand, the low-performing older adults showed significantly lower
posterior activity than younger adults and failed to show increases in frontal activity
compared to younger adults during stimulus processing. This suggests that low-
performing older adults failed to recruit additional processing, which may be necessary
for successful cognitive aging (Cabeza et al., 2002). This lack of recruitment of additional
processing and possible lack of compensation for deficient systems in low-performing
older adults is also complemented by our findings that low-performing older adults
responded as fast as younger adults and failed to adjust their RT to succeed in this task.
Moreover, differences in the parietal LPC in non-rule learning older adults is similar to
LPC abnormalities in mild cognitive impairment patients who subsequently converted to
Alzheimer’s disease (Olichney et al., 2008) and may indicate that the non-rule learning
older adults have deficiencies in integration of the MTL with working memory functions
critical for effective category rule learning. Additionally, aberrations in the feedback
P300, as seen in non-rule learning older adults, has been related to poor resource
allocation and working memory (Kok, 2001) as well as pathologic aging (Bennys et al.,
2007; Mathewson et al., 2008).

In summary, our results suggest that the ability to adapt one’s behavior in
response to feedback during learning is a source of marked individual differences in
older adults. The failure of some individuals to adapt their behavior may be the result
of a failure to adequately engage a network including prefrontal cortex. An important
follow-up question that should be addressed in future studies is whether such
individuals can be trained to engage this network so as to improve cognitive
performance in such tasks. We also believe that our results suggest that a feed-
back-based learning task such as this one may be a useful addition to efforts
designed to predict subsequent cognitive change in both older adults already experi-
encing memory changes, as well as in older adults currently exhibiting neuropsycho-
logical profiles within normal range.
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Loyola University Chicago Institutional Review Board. Before beginning the experi-
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with no adverse consequences. The informed consent forms are kept on record in
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