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The extraction of patterns in the environment plays a critical role in many types of human

learning, from motor skills to language acquisition. This process is known as statistical

learning. Here we propose that statistical learning has two dissociable components: (1)

perceptual binding of individual stimulus units into integrated composites and (2) storing

those integrated representations for later use. Statistical learning is typically assessed

using post-learning tasks, such that the two components are conflated. Our goal was to

characterize the online perceptual component of statistical learning. Participants were

exposed to a structured stream of repeating trisyllabic nonsense words and a random

syllable stream. Online learning was indexed by an EEG-based measure that quantified

neural entrainment at the frequency of the repeating words relative to that of individual

syllables. Statistical learning was subsequently assessed using conventional measures in

an explicit rating task and a reaction-time task. In the structured stream, neural entrain-

ment to trisyllabic words was higher than in the random stream, increased as a function of

exposure to track the progression of learning, and predicted performance on the reaction

time (RT) task. These results demonstrate that monitoring this critical component of

learning via rhythmic EEG entrainment reveals a gradual acquisition of knowledge

whereby novel stimulus sequences are transformed into familiar composites. This online

perceptual transformation is a critical component of learning.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Spoken words in an unknown foreign language can seem

exceedingly rapid and incomprehensible compared to normal

speech in one's native language, despite the fact that syllable

rate across languages is relatively similar (Pellegrino, Coupe,&

Marsico, 2011). Natural speech consists of a continuous

stream of sound with no reliable pauses between words

(Lehiste, 1960), and a major challenge for language learners is

to discover word boundaries, a process known as speech
rsity, Department of Psy
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segmentation. One reason that beginners learning a new

language may perceive unfamiliar speech as unfolding

quickly is because they are not yet capable of segmenting the

speech stream, leading them to perceive a greater number of

basic perceptual units (i.e., multiple individual syllables rather

than multisyllabic words). Thus, one of the very first stages of

word learning is a perceptual process, requiring a shift in the

perception of smaller syllable-units (Bertoncini & Mehler,

1981; Mehler, Dommergues, Frauenfelder, & Segui, 1981) to

that of larger word-units. Only after this perceptual shift has

been accomplished can the extracted word forms, comprising
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key building blocks of language, be stored in memory and

undergo further processing (e.g., Graf-Estes, Evans, Alibali, &

Saffran, 2007).

Statistical learning, the process of becoming sensitive to

statistical structure in the environment, is thought to be a

critical learning mechanism underlying speech segmentation

(Saffran, 2003). Learners can discover word boundaries by

computing the transitional probabilities between neighboring

syllables, which are higher within words compared to across

word boundaries (Saffran, Newport, & Aslin, 1996, Saffran,

Aslin, Newport, 1996). In the first demonstration of statistical

learning, infants were exposed to a continuous auditory

stream of repeating trisyllabic nonsense words, in which

transitional probabilities served as the only cue to word

boundaries (Saffran, Aslin, et al., 1996). A subsequent test

revealed that infants' visual fixation times differed between

words from the stream and non-word foils made up of

recombined syllables, demonstrating that infants were sensi-

tive to the statistical properties of the input. Since this seminal

study, a large literature has demonstrated that statistical

learningoperates acrossagesand sensorymodalities (e.g., Bulf,

Johnson,&Valenza, 2011; Conway&Christiansen, 2005; Fiser&

Aslin, 2001; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997,

Saffran, Johnson, Aslin, & Newport, 1999; Turk-Browne,

Junge, & Scholl, 2005), and that it contributes to a wide range

of cognitive functions in addition to speech segmentation (e.g.,

Creel, Newport, & Aslin, 2004; Fiser & Aslin, 2001; Goujon &

Fagot, 2013; Hunt & Aslin, 2001; Saffran et al., 1999).

At a mechanistic level, statistical learning can be concep-

tualized as comprising at least two dissociable stages or

components. As illustrated by the earlier example of foreign

speech perception, the initial component is perceptual in

nature, involving a transition from the perception and

encoding of raw individual stimulus units (e.g., syllables) to

that of larger integrated items (e.g., words). This perceptual

process, which we will refer to as the word identification

component, may be considered the central challenge of statis-

tical learning. After words are encoded as units, the extracted

representations can be stored as such in long-term memory.

This memory storage component can in one sense be considered

peripheral to the statistical learning process per se, but

nonetheless critically influences performance on subsequent

tests of statistical learning. Effective memory storage of inte-

grated representations is also a prerequisite for further pro-

cessing that occurs after initial segmentation, such as

acquiring phonological patterns across words (e.g., Saffran &

Thiessen, 2003) and mapping words to objects (Graf Estes

et al., 2007; Mirman, Magnuson, Estes, & Dixon, 2008).

Although it is well-established that there are substantial

individual differences in general long-term memory abilities

(e.g., Bors&MacLeod, 1996), little is known about the extent to

which the word identification component of statistical

learning shows individual variability. These differences may

be considerable, given that performance on post-exposure

statistical learning tasks varies substantially, with at least

one third of a sample often failing to perform the task above

chance levels (Frost, Armstrong, Siegelman, & Christiansen,

2015; Siegelman & Frost, 2015). This variability in statistical

learning performance could in principle be attributable to the

word identification component of statistical learning,
subsequent long-term memory storage, or both. One theo-

retical possibility is that the word identification component of

statistical learning is relatively invariant across individuals

with normal sensory processing, as some studies have sug-

gested for implicit learning (e.g., Reber, Walkenfeld &

Hernstadt, 1991; Reber, 1993). In this case, individual differ-

ences in performance on statistical learning tasks would be

driven primarily by variability in long-term memory storage.

Alternatively, there may also be substantial individual vari-

ability in the online perceptual and encoding processes

contributing to word identification. If so, variability in the

word identification component should at least partially ac-

count for observed individual differences in statistical

learning task performance (Frost et al., 2015; Siegelman &

Frost, 2015).

These two alternatives have not been previously explored,

as previous statistical learning studies generally have not

drawn a conceptual distinction between these two compo-

nents of learning, nor attempted to disentangle them empir-

ically. In large part, this may be due to the experimental

approach that has been used to investigate statistical

learning. With some notable exceptions (Cunillera, Toro,

Sebastian-Galles, & Rodriguez-Fornells, 2006, Cunillera et al.,

2009; Karuza et al., 2013; McNealy, Mazziotta, & Dapretto,

2006, 2010; Turk-Browne, Scholl, Chun, & Johnson, 2008), the

vast majority of studies have followed the same general

approach: an initial learning phase involving exposure to

structured input, followed by an offline test. In infants, this

test generally comprises assessing visual fixation times to test

items (e.g., Aslin, Saffran,&Newport, 1998; Saffran et al., 1999,

Saffran, Aslin, et al., 1996), and in adults, responses on a

forced-choice recognition measure (Saffran et al., 1997,

Saffran, Newport, et al., 1996; Turk-Browne et al., 2005).

These tasks require learners to retrieve previously encoded

knowledge after statistical learning is completed, focusing on

the final outcome of learning rather than on the word identi-

fication component, the central process of online statistical

learning. Poor performance on such tasks may be driven by a

failure of the word identification component of statistical

learning, or of long-term memory storage. Another limitation

of such end-state outcomemeasures is that they are unable to

assess the time course of learning.

According to our conceptualization of statistical learning, a

shift in the perception and encoding of raw individual stim-

ulus units towards that of larger integrated items is a critical

component of statistical learning, and a prerequisite for

above-chance performance on subsequent statistical learning

tests. The goal of the present study was to characterize this

word identification component of statistical learning,

including its time course, its variability among individuals,

and its relation to performance on post-exposure learning

tasks. First, we hypothesized that a shift in perception of in-

tegrated items over individual units should increase as a

function of exposure to structured input. Second, we hy-

pothesized that individuals would show measurable differ-

ences in this word-identification component, with some

individuals showing evidence of more effective segmentation

than others. Third, we hypothesized that individual variability

in the word-identification component would predict perfor-

mance on post-exposure statistical learning tasks. Such a

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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Fig. 1 e EEG-based entrainment measure of learning. If perceptual grouping of individual syllables into trisyllabic words

occurs during statistical learning, the steady-state response should show a decrease at the frequency of the individual

syllables and an increase at the frequency of the trisyllabic words.
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result would provide evidence that the perceptual shift from

syllables to words is a key component of statistical learning,

giving rise to long-term memory storage of segmented rep-

resentations that can then be measured on post-exposure

tasks.

To test these hypotheses, we used an online EEG

frequency-based measure of learning that allowed us to track

a potential shift in learners' perception of integrated items

over individual stimuli in an ongoing sensory stream.

Following previous auditory statistical learning studies (e.g.,

Saffran, Newport, et al., 1996, Saffran, Aslin, et al., 1996),

participants were presented with a stream of repeating

trisyllabic nonsense words, in which transitional probabilities

served as the only cue to word boundaries. EEG was recorded

throughout the exposure period. We quantified learners'
perception of integrated word items using an EEG measure

that takes advantage of the neural steady-state responseda

property of the electromagnetic activity of the brain to reso-

nate at the same frequency as an ongoing rhythmic stimulus

(Buiatti, Pena, & Dehaene-Lambertz, 2009; Picton, Sasha,

Dimitrijevic, & Purcell, 2003). When EEG signal power is

computed across frequencies, this effect appears as an in-

crease in power at the stimulus frequency and/or its har-

monics. The steady-state response corresponds to the

presentation frequency of basic perceptual units and thus

should be sensitive to statistical learning. Our prediction was

that when a learner is successful in perceptually grouping the

syllables into words in the speech stream, then the concur-

rently recorded steady-state response will show a decrease at

the frequency of the individual syllables and an increase at the

frequency of the trisyllabic words (Fig. 1).

A similar approach has previously been used to investigate

the effects of acoustic cues such as subliminal pauses on

speech segmentation (Buiatti et al., 2009). In this study,

concatenated syllables were presented at a regular rate, either

in random order or structured as trisyllabic items with

nonadjacent dependencies, in which the first syllable of each

item predicted the identity of the third syllable (i.e., AXC). The

syllable streams were generated in two versions, with and

without the addition of a subliminal (25 msec) pause after

every third syllable. Successful speech segmentation occurred
only in the structured streams with pauses, resulting in an

increase in EEG power corresponding to the frequency of the

underlying word units and a corresponding decrease in power

corresponding to the raw syllable presentation frequency,

relative to the other three conditions. The peak in power at the

word frequency was correlated with the number of correctly

reported words, as assessed at regular intervals throughout

the learning phase. Critically, this result suggests that the

neural steady-state response is not dominated by low-level

sensory processing but is modulated by higher-level percep-

tion and integration processes.

Because of the continuous nature of the statistical speech

stream, the neural steady-state response is ideally suited as a

measure of statistical learning. In contrast, the computation

of event-related potentials (ERPs) to individual syllables

within rapidly presented speech is complicated by baseline

issues as well as a dampening in amplitude of the evoked

response to each syllable, affecting the signal-to-noise ratio

(cf. Buiatti et al., 2009). Nonetheless, several ERP components

have been implicated as potential indices of statistical

learning across a number of different studies (Cunillera et al.,

2009, 2006; De Diego Balaguer, Toro, Rodriguez-Fornells, &

Bachoud-Levi, 2007; Sanders, Newport, & Neville, 2002). Of

these effects, the N400 component appears to be the most

robust ERP index of speech segmentation (Cunillera et al.,

2009, 2006; De Diego Balaguer et al., 2007; Sanders et al.,

2002), though N100 (Sanders et al., 2002) and P200 (De Diego

Balaguer et al., 2007) effects have also been reported. In this

context, the N400 may reflect lexical search (Sanders et al.,

2002), which occurs only after learners have segmented the

continuous stream of syllables into individual words. To align

with this prior literature, in the present study we also

computed ERPs to word onsets, though our main measure of

interestwas the neural steady-state response in the frequency

domain.

To summarize our design, EEGwas recordedwhile learners

were exposed to a speech stream of repeating trisyllabic

nonsense words. As a control, participants were also exposed

to a speech stream of pseudorandomly concatenated sylla-

bles. After exposure to the structured stream, participants

performed two post-exposure learning tasks designed to

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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assess statistical learning knowledge. Knowledge of words in

the structured stream was assessed directly using a rating

task, in which participants provided familiarity ratings to

words from the stream and foil items made up of recombined

syllables. Statistical learning was also assessed indirectly

using a target detection task, an online, speeded,

performance-based measure (Batterink, Reber, & Paller, 2015;

Batterink, Reber, Neville, Paller, 2015; Franco, Eberlen,

Destrebecqz, Cleeremans, & Bertels, 2015). This task requires

participants to respond to target syllables occurring in a

continuous syllable stream and assesses the extent to which

learners use their acquired statistical knowledge to optimize

online processing. We expected to observe faster reaction

times (RTs) to relatively predictable targets (i.e., those occur-

ring in later syllable positions compared to the first position),

indexing more efficient processing (e.g., Batterink, Reber,

Neville, et al., 2015; Batterink, Reber, & Paller, 2015; Franco

et al., 2015; Kim, Seitz, Feenstra, & Shams, 2009; Turk-

Browne et al., 2005). Whereas the rating task is presumably

most sensitive to explicit memory, the target detection task

has the potential to capture knowledge above and beyond

what is reflected by explicit memory and may partially reflect

contributions from implicit memory (Batterink, Reber, Neville,

et al., 2015). Together, these tasks allowed us to assess both

explicit and implicit memory following statistical learning,

and to relate these measures to the online perception of word

units as assessed through our neural entrainment measure.

Our central prediction was for greater neural entrainment

to the underlying word structure in the structured condition

compared to the random control condition. We also expected

to observe increased evidence of word learning in the struc-

tured condition as a function of exposure, with progress

following a learning curve. Finally, we hypothesized that in-

dividual differences in online neural entrainment would pre-

dict performance on post-exposure learning tasks, providing

evidence that the online perception and encoding of under-

lying words in continuous speech is an important component

of statistical learning that can be reliably measured at the

neural level.
2. Materials and methods

2.1. Participants

Two groups of participants were run. A primary group of

participants (n ¼ 24; 13 women; mean age ¼ 20.8 y, SD ¼ 1.5 y)

completed an online statistical learning exposure task fol-

lowed by several post-exposure learning tests. A secondary

group of participants (n ¼ 21; 13 women; mean age ¼ 21.1 y,

SD ¼ 3.1 y) completed the same online statistical learning

exposure task as the primary group, but did not complete the

same post-exposure learning tasks. Because the experimental

protocol during the exposure task was identical for both

groups of participants, data from both groups (n ¼ 45) were

included in all EEG analyses that did not involve behavioral

data, thereby increasing statistical power. Analyses that

involved behavioral data were conducted only on the primary

group of participants (n¼ 24). Two additional participants (one

from the primary group and one from the secondary group)
completed the protocol but their data were subsequently

excluded from all analyses due to technical issues with EEG

recording.

All participants were fluent English speakers and had no

history of neurological problems. Experiments were under-

taken with the understanding and written consent of each

participant. Participants were compensated $10/h for their

time.

2.2. Stimuli

Syllables contributing to the speech streamswere individually

generated using an artificial speech synthesizer and recorded

as separate sound files in Audacity with a sampling rate of

44100 Hz. Two separate sets of syllable inventories were

created, corresponding to the two streams and consisting of

12 individual syllables. Each syllable was unique and belonged

only to one stream. The two syllable inventory sets were

recorded using different synthesizer voices in order to mini-

mize interference between the two streams. For each partic-

ipant, one inventory of syllables was assigned to the

structured condition and the other inventory of syllables was

assigned to the random condition. Assignment of the syllable

inventories to the structured and random conditions was

counterbalanced across participants. The continuous speech

streams were created by concatenating the individual sylla-

bles together in a predefined order, at a rate of 300 msec per

syllable. Syllable sound files were 300 msec or shorter in

duration.

Because some syllables could have been easier to perceive

than others, in our primary group (n ¼ 24) assignment of in-

dividual syllables to the first, second and third positions of

each word was counterbalanced across participants, resulting

in three different counterbalancing versions. This counter-

balancing procedure was carried out in order to minimize any

stimulus-driven effects on our RT measure in the target

detection task. The different counterbalancing versions (1e3)

included 10, 7, and 7 participants, respectively. We confirmed

that RT results were unchanged when 3 participants were

randomly excluded from the first counterbalancing group,

yielding exactly 7 participants in each counterbalancing

version.

2.3. Procedure

A visual summary of the experimental design is shown in

Fig. 2. Auditory stimuli were presented at a comfortable

listening level (approximately 70e75 dB) from two speakers

(Dell) placed approximately 120 cm in front of the participant.

2.3.1. Exposure task
Each participant was presented with both a structured and a

random syllable stream. In the structured condition, syllables

were grouped into 4 repeating trisyllabic words (e.g., tupiro,

golabu, bidaku, and padoti), with the transitional probability

between neighboring syllables higher within words (1.0) than

between words (.33). For example, a transitional probability of

1.0 for a word, like tupiro, means that every tu in the stream

was followed by pi and every piwas followed by ro; in contrast,

rowas equally likely to be followed by go, bi, or pa (words were

http://dx.doi.org/10.1016/j.cortex.2017.02.004
http://dx.doi.org/10.1016/j.cortex.2017.02.004


Fig. 2 e Summary of experimental design. The exposure

task in the structured condition consisted of 12 min of

continuous auditory exposure to four repeating nonsense

words. The exposure task in the random condition

consisted of exposure to pseudorandomly repeating

syllables. The main test of explicit memory was the rating

task, which required participants to provide words and foil

items with a familiarity rating. This task was followed by

two additional tests of explicit memory, the comparison

task and the recognition task. Finally, the target-detection

task was a reaction-time-based measure of statistical

learning, in which participants detected target syllables

embedded in a continuous auditory speech stream

composed of the four nonsense words. The syllable

assigned as the target was rotated across trials.
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not allowed to repeat). In the randomcondition, syllableswere

concatenated pseudorandomly, without any higher-order

structure; the only constraint was that syllables could not

repeat. A total of 2400 syllables (corresponding to 800 “words”

in the structured condition) were presented in each stream, at

a rate of 300 msec per syllable (i.e., 3.3 Hz). Each stream was

broken up into three blocks, each block approximately 4 min

in duration. Participants were given a brief break after each
block. During the break, they were asked to complete a

questionnaire in which they estimated the number of unique

words in the streamcontaining a specified number of syllables

(1, 2, 3, 4, 5, or 6 or more).

Condition order (structured before random or random

before structured) was counterbalanced across participants.

Participants in the primary group completed all subsequent

behavioral learning tasks immediately after exposure to the

structured stream. All post-exposure learning tasks referred

exclusively to the structured stream, and no post-exposure

learning tasks were conducted on the random stream.

2.3.2. Rating task
Following exposure to the structured stream, participants

completed a rating task designed to assess explicit memory of

the nonsense words. On each trial, participants were pre-

sentedwith one of three types of auditory stimuli: a word from

the language that had been previously presented 800 times

during the Exposure task (e.g., tupiro), a part-word that con-

sisted of a syllable pair from aword from the language plus an

additional syllable (e.g., gopiro), or a non-word that consisted

of three syllables from the language that were never paired

together within a word (e.g., godapi). As in the Exposure task,

the stimulus onset asynchrony (SOA) between consecutive

syllables within each word, part-word, or non-word was 300

msec. A prompt (“Please give familiarity rating”) was pre-

sented 770 msec after the onset of the final syllable. Partici-

pants were asked to rate on a 1e4 scale how familiar the

stimulus sounded based on the language that they had just

heard, with 1 indicating “very unfamiliar” and 4 indicating

“very familiar.” A total of 12 trials were presented, consisting

of 4 words, 4 part-words, and 4 non-words. The next trial

began approximately 1500 msec after the participant entered

his or her response.

2.3.3. Additional tasks of explicit memory
The rating task represented our primary test of explicit

memory, as it included the largest number of test items and

was performed prior to the other tasks, thus avoiding poten-

tial interference caused by repeated testing. However, we also

included two additional tests of explicit memory following the

rating task.

The first task was a comparison task, designed to assess

whether explicit, strategic processing improved discrimina-

tion between words from the language and foils. The com-

parison task consisted of two phases. In the first phase,

participants listened to eight auditory stimuli (four words and

four non-words) sequentially. On each trial, they were asked

to circle a number from 1 to 10 on a piece of paper indicating

the likelihood that the word was present in the language that

they had just heard, with 10 being highly likely. In the second

phase, participants were informed that four of the wordswere

in fact from the language and that four were not from the

language. Again, they were asked to provide a rating from 1 to

10 indicating the likelihood that each stimulus was found in

the language. Before giving their final responses, they were

allowed to listen to each stimulus asmany times as they liked,

and in any order, by pressing a button corresponding to each

of the eight stimuli. This procedure was designed to

encourage participants to explicitly compare the auditory

http://dx.doi.org/10.1016/j.cortex.2017.02.004
http://dx.doi.org/10.1016/j.cortex.2017.02.004
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stimuli, providing a measure of whether this type of strategy

resulted in better or poorer discrimination betweenwords and

foils.

Secondly, we also included a forced-choice recognition

task, as this task has traditionally been themost commonway

of assessing statistical learning. Each trial included a word

and either a part-word or non-word foil, separated by a

1500-msec ISI. Participants gave two responses for each trial,

(1) indicating which of the two sound strings sounded more

like a word from the language, and (2) reporting on their

awareness of memory retrieval, with remember indicating

confidence based on retrieving specific information from the

learning episode, familiar indicating a vague feeling of famil-

iarity with no specific retrieval, and guess indicating no con-

fidence in the selection. The four words were paired

exhaustively with four foils, resulting in a total of 8 test items

and 16 trials. The next trial began approximately 150 msec

after the participant's second response. As in prior tasks, the

SOA between consecutive syllables within words for both the

comparison and recognition tasks was 300 msec.

2.3.4. Target detection task
Finally, as in our previous statistical learning studies

(Batterink, Reber, Neville, et al., 2015; Batterink, Reber, &

Paller, 2015), participants completed a speeded target detec-

tion task as a final measure of statistical learning. On each

trial, participants were presented with a speech stream con-

taining the four words from the structured language repeated

four times each, which was shorter but otherwise similar to

the speech stream presented during the Exposure task. For

each stream, participants were required to detect a specific

target syllable. Both RT and accuracy were emphasized. Each

of the 12 syllables of the structured syllable inventory served

as the target syllable three times, for a total of 36 streams. The

order of the 36 streams was randomized for each participant.

Each stream contained 4 target syllables, providing a total of

48 trials in each of the three-syllable conditions (word-initial,

word-medial, and word-final). At the beginning of each trial,

participants pressed “Enter” to listen to a sample of the target

syllable. The stimulus stream was then initiated. Stimulus

timing parameters were identical to those in the Exposure

task. Based on our previous findings (Batterink, Reber, Neville,

et al., 2015; Batterink, Reber, & Paller, 2015), we expect graded

RT effects as a function of syllable position. Syllable targets

that occur in the final position of a word should elicit faster

RTs, indexing facilitation due to statistical learning.

2.4. Behavioral data analysis

For each individual, we computed two measures of perfor-

mance on the Rating task. “Rating accuracy”was computed as

the percentage of trials that were rated correctly, defined as a

rating of 3 or 4 for words and 1 or 2 for part-words and

non-words. In addition, a “rating score” was computed by

subtracting the average score given for part-words and non-

words from the average score given for words. Perfect sensi-

tivity on this measure would be a score of 3, with values above

0 providing evidence of learning.

For the target-detection task, median RTs to detected

targets (“hits”) were calculated for each syllable condition
(word-initial, word-medial, and word-final) for each partici-

pant. Responses that did not occur within 0e1200 msec of a

target were considered to be false alarms. It was noted

empirically that some syllables weremore difficult to perceive

and detect than others, resulting in undesirable stimulus-

driven influences on RTs that varied between the three

different counterbalancing conditions. To correct for these

differences, we computed adjusted RT scores for each

participant at the individual level. First, across all participants,

we computed median RTs for each of the 24 distinct syllables.

We then conducted a repeated-measures ANOVA with sylla-

ble (1e24) and syllable position (1e3) as within-participants

factors, yielding predicted and residual RTs for each individ-

ual syllable based on the effect of syllable position. For each

participant, we then subtracted the residual RT value from the

observed value for each syllable, co-varying out the effects of

physical stimulus factors and yielding a corrected RT effect.

Corrected RTs were analyzed using a repeated-measures

ANOVA with syllable position (initial, medial, final) as a

within-participants factor. Planned contrasts were used to

examine whether RTs decreased linearly as a function of

syllable position. Finally, an “RT score”was computed for each

individual participant by subtracting the corrected median RT

to third syllable targets from the corrected median RT to first

syllable targets, with larger values indicating greater

facilitation.

2.5. EEG recording and analysis

During both the Exposure Task and the Target Detection

task, EEG was recorded with a sampling rate of 512 Hz from

64 Ag/AgCl-tipped electrodes attached to an electrode cap

using the 10/20 system. Recordings were made with the

Active-Two system (Biosemi, Amsterdam, The Netherlands).

Additional electrodes were placed on the left and right mas-

toid, at the outer canthi of both eyes, and below both eyes.

Scalp signals were recorded relative to the Common Mode

Sense (CMS) active electrode and then re-referenced off-line to

the algebraic average of the left and right mastoid.

EEG analyses were carried out using EEGLAB (Delorme &

Makeig, 2004). Our analysis followed the same general pro-

cedure used by Buiatti et al. (2009) and Kabdebon, Pena,

Buiatti, and Lambertz-Dehaene (2015). EEG data acquired

during the Exposure task were band-pass filtered from .1 to

30 Hz. Data from each block were timelocked to the onset of

each word (or every third syllable, in the random condition)

and extracted into epochs of 10.8 sec, corresponding to the

duration of 12 trisyllabic words or 36 syllables (with no pre-

stimulus interval). This procedure yielded epochs over-

lapping for 5/6 of their length. We employed an automatic

artifact rejection procedure designed to remove only data

containing large artifacts, based on threshold amplitude

values adjusted individually for each participant (average

threshold value ¼ 210 mV; range ¼ 200e350 mV). Data con-

taining stereotypical eye movements were retained, as eye

artifacts have a broad power spectrum and do not affect

narrow-band steady-state responses (Srinivasan & Petrovic,

2006). An average of 90 (SD ¼ 46) trials per participant were

rejected in the structured condition and 104 (SD ¼ 53) trials in

the random condition, yielding averages of 708 (SD ¼ 47)

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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remaining structured trials and 694 (SD ¼ 53) remaining

random trials for analyses. Bad channels were identified and

interpolated when necessary (mean number of interpolated

channels per participant ¼ 2.9 (SD ¼ 3.4).

We quantified neural entrainment at the syllabic and word

frequencies by measuring inter-trial coherence (ITC) within

each condition (structured/random). ITC, also known as

phase-locking value, is a measure of event-related phase

locking. ITC values range from 0, indicating purely non-phase-

locked activity, to 1, indicating strictly phase-locked activity. A

significant ITC indicates that the EEG activity in single trials is

phase-locked at a given time and frequency, rather than

phase-random with respect to the time-locking experimental

event. As described by Kabdebon et al. (2015), phase-locking is

a better suited measure of neural entrainment than power

spectrum peak estimation, as it (1) is much more robust to

background low frequency fluctuations (Forget, Buiatti, &

Dehaene, 2009) and (2) has been shown to reliably track

speech comprehension in other paradigms (Ahissar et al.,

2001; Kerlin, Shahin, & Miller, 2010; Luo & Poeppel, 2007;

Peelle, Gross, & Davis, 2013).

ITC was computed using a continuous Morlet wavelet

transformation from .2 to 20.2 Hz via the newtimef function of

EEGLAB. Wavelet transformations were computed in .1 Hz

steps with 1 cycle at the lowest frequency (.2 Hz) and

increasing by a scaling factor of .5, reaching 45 cycles at the

highest frequency (20.2 Hz). This approach was selected to

optimize the tradeoff between temporal resolution at lower

frequencies and frequency resolution at high frequencies

(Delorme & Makeig, 2004).

We hypothesized that the word identification component

of statistical learning would be indexed as relatively higher

ITC at the word frequency and lower ITC at the syllable fre-

quency in the structured condition. That is, if participants

become sensitive to the underlying trisyllabic structure of the

speech stream, they should show a preferential shift in the

entrainment of neural oscillations to underlying words rela-

tive to individual syllables. Within each condition, we quan-

tified sensitivity to the trisyllabic structure according to the

following simple formula, subsequently referred to as the

Word Learning Index (WLI):

WLI ¼ ITCword frequency

ITCsyllable frequency

Higher WLI values indicate greater neural entrainment

towards the triplet frequency relative to the raw syllable fre-

quency, indicative of statistical learning in the structured

condition. TheWord frequency corresponded to 1.1 Hz, which

is the presentation frequency of the trisyllabicwords,whereas

the Syllable frequencywas computed at 3.3 Hz, corresponding

to the base presentation frequency of individual syllables. The

WLI was computed across 6 centro-frontal midline electrodes

where ITC at the word and syllable frequencies showed the

strongest values (FC1, C1, FCz, Cz, FC2, and C2).

Our statistical analyses focused on testing two main hy-

potheses. First, we hypothesized that the WLI in the struc-

tured condition should be higher than in the random

condition. This result would indicate that participants

extracted the structure from the structured stream, perceiving

or processing the stimuli as trisyllabic units rather than
individual syllables, providing evidence of statistical learning.

Second, we hypothesized that the WLI in the structured con-

dition should increase as a function of exposure, but should

showno change as in the random condition. This result would

provide evidence that participants became increasingly sen-

sitive to the trisyllabic word structure as exposure increased.

To test these hypotheses, we divided data from the exposure

period into three equal blocks in each condition and

computed the WLI within each block. A repeated-measures

ANOVA was then conducted with condition (structured,

random) and block (1e3) as within-participants factors. Plan-

ned contrasts were used to examine whether the WLI

increased linearly as a function of block. Data from both the

primary and secondary group of participants were combined

for these analyses to increase power.

We also calculated correlations between the WLI in the

structured condition and the WLI in the random condition,

computed across blocks. It was noted that the distributions of

WLI values in both conditions were significantly positively

skewed [Structured WLI: skewness ¼ 2.69, SE ¼ .47,

W(24) ¼ .610; p < .001; Random WLI: skewness ¼ 3.33, SE ¼ .47,

W(24) ¼ .53, p < .001]. Therefore, for all correlational analyses,

we used log-transformed WLI values in order to increase

sensitivity of these tests. We examined whether structur-

ederandom WLI correlations differed as a function of task

order (structured first vs random first) by using the web utility

providedbyLeeandPreacher (2013),which converts correlation

coefficients into z-scores using Fisher's r-to z-transformation.

To relate our results to those in previous ERP studies, we

also computed ERPs to word onsets. After applying the same

filter settings and artifacterejection parameters as in the ITC

analysis, data were timelocked to the onset of each word in

the structured condition or every third syllable in the random

condition, and extracted into epochs of 1200msec, including a

300 msec baseline. Epochs were baseline corrected from �300

to 0 msec relative to stimulus onset, corresponding to the

duration of the prior syllable. Statistical analyses focused on

theN400, as only this component showed differences between

the structured and random conditions, based on visual in-

spection of the waveform. The N400was analyzed statistically

by averaging amplitudes from 300 to 500 msec post-stimulus

across neighboring electrodes to form nine channel groups

of interest (left anterior region: AF7, AF3, F7, F5, F3; left central

region: FT7, FC5, FC3, T7, C5, C3; left posterior region: TP7, CP5,

CP3, P7, P5, P3, PO7, PO3; midline anterior region: AFZ, F1, FZ,

F2; midline central region: FC1, FCZ, FC2, C1, CZ, C2; midline

posterior region: CP1, CPZ, CP2, P1, PZ, P2, POZ; right anterior

region: AF4, AF8, F4, F6, F8; Right central region: FC4, FC6, FT8,

C4, C6, T8; right posterior region: CP4, CP6, TP8, P4, P6, P8, PO4,

PO8). These mean amplitudes were analyzed using a

repeated-measures ANOVA with condition (structured,

random), left/mid/right (left, middle, right), and anterior/

posterior (anterior, central, posterior) as within-subjects fac-

tors. GreenhouseeGeisser corrections were applied for factors

with more than two levels. We also examined whether the

WLI and ITC at theword frequency in the structured condition

were related to the N400 effect by calculating correlations

between these measures. In correlational analyses, the N400

effect was computed by subtracting N400 amplitude in the

random condition from N400 amplitude in the structured

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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condition, across the same 6 centro-frontal midline electrodes

as used for the WLI analyses.

2.6. Correlations between WLI and performance on post-
exposure tasks

Finally, we examinedwhether theWLI predicted performance

on post-exposure statistical learning tasks, namely the Rating

task and the Target Detection task. Pearson's correlations

were computed between individual participants' log-

transformed WLI values in the structured and random con-

ditions and Rating scores and Rating accuracy (from the Rat-

ing task) and RT scores (from the Target Detection task).
Fig. 3 e Behavioral results reflecting statistical learning. (A)

Familiarity ratings provided on the rating task. (B)

Corrected reaction times as a function of syllable position

on the target detection task.
3. Results

3.1. Behavioral results

3.1.1. Exposure questionnaire
Across the three blocks, participants greatly overestimated

the number of unique words in both the structured and

random streams (overall number of words estimated in

structured condition ¼ 26.3, SD ¼ 37.0; random

condition ¼ 37.1, SD ¼ 38.5). Although far from accurate, this

measure of perception showed significant differences be-

tween conditions. Participants estimated that there was a

greater overall number of unique words in the random block

compared to the structured block [Condition effect:

F(1,23) ¼ 5.60, p ¼ .027]. This measure also showed significant

differences in the time course over exposure between condi-

tions [Condition � Block: F(2,46) ¼ 4.52, p ¼ .034]. In the

structured condition, the overall number of estimated words

did not significantly change as a function of block [Block:

F(2,46)¼ .20, p ¼ .72]. In contrast, in the random condition, the

number of estimated words significantly increased as a

function of exposure [Block: F(2,46) ¼ 6.40, p ¼ .014; linear

contrast: F(1,23) ¼ 6.86, p ¼ .015].

3.1.2. Rating task
Participants demonstrated significant evidence of statistical

learning on the rating task [Word Category effect:

F(2,46) ¼ 24.5, p < .001; linear effect of word category:

F(1,23) ¼ 40.3, p < .001]. Words were rated as most familiar,

followed by part-words, with non-words rated as least

familiar (Fig. 3A). Rating accuracy was 62.1% (SD ¼ 14.3%),

significantly above chance [t(23) ¼ 21.3, p < .001]. Mean rating

score across participants was .78 (SD¼ .61), significantly above

chance [t(23) ¼ 6.28, p < .001].

3.1.3. Target detection task
Participants performed well on the target detection task,

responding to 89.1% (SD ¼ 9.2%) of targets within 1200 msec

and making an average of 12.3 false alarms (SD ¼ 10.5). As

hypothesized, RTs were significantly modulated as a function

of syllable position [Uncorrected RTs: Syllable Position effect:

F(2,46) ¼ 14.3, p < .001; linear effect of Syllable Position:

F(1,23) ¼ 24.5, p < .001; Corrected RTs: Syllable Position effect:

F(2,46) ¼ 30.6, p < .001; linear effect of Syllable Position:
F(1,23) ¼ 42.1, p < .001], with slowest responses to

initial-position targets, intermediate responses to second-

position targets, and fastest responses to final-position tar-

gets (Fig. 3B). These results indicate the processing was pro-

gressively facilitated for more predictable syllables, providing

evidence of statistical learning. Mean RT score across partic-

ipant (computed as the RT difference between first syllable

targets and third syllable targets) was 79.1 msec (SD ¼ 59.7),

significantly above chance [t(23) ¼ 6.49, p < .001].

3.1.4. Relation between performance on rating task and
target detection task
Performance on the rating task and target detection task

significantly correlated across participants (rating score:

r ¼ .51, p ¼ .010; rating accuracy: r ¼ .42, p ¼ .044), indicating

that learners who performed better on the rating task also

showed larger facilitation effects on the target detection task.

Given that the rating task provides a measure of explicit

memory, this correlation suggests that the target detection

task is at least somewhat sensitive to explicit memory as well.

Nonetheless, a subgroup of participants (n ¼ 7) who did not

achieve above 50% accuracy on the rating task (mean ¼ 45%,

SD ¼ 4.4%) still showed a significant RT effect [Corrected RTs:

Syllable Position effect: F(2,12) ¼ 6.11, p ¼ .030; linear effect of

Syllable Position: F(1,6) ¼ 28.7, p ¼ .002]. In keeping with our

prior studies of target detection after SL (Batterink et al., 2015),

this result indicates that performance on the target detection

task cannot be entirely accounted for by explicit memory, and

also reflects contributions from implicit memory.

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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3.1.5. Additional tests of explicit memory
On the comparison task, across both the first and second

round, participants rated the 4 words from the language as

being more likely to have been presented in the language

(M ¼ 7.04, SD ¼ 1.33) compared to the 4 non-words (M ¼ 4.84,

SD¼ 1.35), providing additional evidence of statistical learning

[Word Category effect: F(1,23) ¼ 21.3, p < .001]. Overall ratings

of familiarity declined from round 1 (mean familiarity score

across items ¼ 6.2) to round 2 [mean score across items ¼ 5.7;

Round effect: F(1,23) ¼ 7.72, p ¼ .011], suggesting that the

additional round of testing may have caused some interfer-

ence and made all items seem somewhat less familiar.

On the recognition task, mean accuracy was 61.7%

(SD ¼ 19.1%), significantly above chance [t(23) ¼ 15.8, p < .001].

Qualitatively, “remember” responses were the most accurate

(M ¼ 64.9%, SD ¼ 34.3%), followed by “familiar” responses

(M ¼ 55.1%, SD ¼ 26.6%), with “guess” judgments showing the

lowest degree of accuracy (M ¼ 53.7%, SD ¼ 33.7%). However,

effect of memory judgment on accuracy was not significant,

likely due to the variable and low number of trials in each

subdivided condition [F(2,42) ¼ .84, p ¼ .43]. Mean proportion

of trials in each condition was 28.4% (range ¼ 0%e100%) for

“remember,” 50.0% for “familiar” (range¼ 0%e94%), and 21.6%

for “guess” (range ¼ 0%e50%).

Performance on the comparison task in both rounds

correlated strongly across participants with rating score

(round 1: r ¼ .50, p ¼ .013; round 2: r ¼ .45, p ¼ .027). Therefore,

tominimize the number of comparisons, we included only our

main measure of explicit memory, the rating task, in subse-

quent correlational analyses with the WLI.

3.2. EEG results

ITC as a function of condition (structured, random), block

(1e3), and frequency, computed across the combined partici-

pant groups (n ¼ 45), is plotted in Fig. 4A. Consistent with our

predictions, the structured condition showed an increase in

ITC at the word frequency and a decrease in ITC at the syllable

frequency, relative to the random condition. This relative shift

in ITC towards theword frequency and away from the syllable

frequency appeared to increase as exposure progressed. The

distribution of ITC across the scalp is shown in Fig. 4B.

These observations were quantified and statistically tested

using the WLI, which is plotted as a function of condition and

learning block in Fig. 4C. As we predicted, the structured

condition showed a significantly higher WLI than the random

condition across the three blocks [Condition effect:

F(1,44) ¼ 17.3, p < .001]. This WLI in the structured condition

compared to the random condition differed significantly as a

function of block [Condition � Block: F(2,88) ¼ 3.72, p ¼ .029;

linear contrast: F(1,44) ¼ 6.62, p ¼ .014]. In the structured

condition, the WLI increased linearly as exposure progressed

[Block: F(2,88) ¼ 3.11, p ¼ .056; linear contrast: F(1,44) ¼ 4.89,

p ¼ .032]. This increase in the WLI corresponded to a signifi-

cant interaction in ITC between frequency and block [Fre-

quency � Block: F(2,88) ¼ 4.14, p ¼ .021], reflecting an increase

in ITC at the word frequency and a decrease in ITC at the

syllable frequency as a function of block. In contrast, there

was no significant change over blocks in the random-

condition WLI [Block: F(2,88) ¼ .049, p ¼ .92]. In sum, as
hypothesized, EEG oscillatory phase-locking to triplet or word

units was enhanced in the structured condition relative to the

random condition, and increased as a function of exposure

only in the structured condition. These results provide evi-

dence of online statistical learning of the underlying word

units in the structured condition.

The structured WLI and random WLI were strongly and

significantly correlated (r ¼ .63, p ¼ .001; WLI values log-

transformed). Task order (structured vs random) had a mar-

ginal effect on these correlations. Although both groups of

participants showed significant correlations between the

structured WLI and random WLI (“structured first”: r ¼ .74,

p < .001; “random first”: r ¼ .46, p ¼ .024), correlations were

marginally stronger in participants who were exposed to the

structured stream first (z ¼ 1.43, p ¼ .076, one-tailed). Task

order did not have a significant effect on either the overallWLI

condition effect or the condition by block interaction (all

p values > .1).

3.3. EEGebehavioral correlations

We tested whether the WLI in the structured condition,

computed across the entire exposure period, predicted sub-

sequent learning effects on our two main post-learning

behavioral measures, the rating task and the target detec-

tion task. Critically, across all participants (n ¼ 24), the WLI in

the structured condition significantly predicted RT scores at

the individual level (Table 1; Fig. 5). Correlations between the

WLI (in both conditions) and performance on the rating task

(both rating accuracy and rating score) were also positive but

did not reach statistical significance. These results suggest

that the tendency to segment the speech streams into triplet

chunks, as assessed online through the WLI, predicts subse-

quent facilitation on the post-exposure target detection task.

Unexpectedly, the WLI in the random condition also signifi-

cantly predicted task performance on the target detection task

(Table 1).

3.4. ERP results

Word onsets in the structured condition elicited a significantly

larger N400 effect compared to triplet onsets in the random

condition [Condition: (F(1,44) ¼ 5.96, p¼ .019; Fig. 6]. This N400

effect was maximal over midline sites [Condition � left/mid/

right: F(2,88) ¼ 11.88, p < .001]. Visual inspection of the ERP

waveforms did not reveal any other ERP components showing

differences between the structured and random conditions.

Across participants, the N400 effect (i.e., the difference in

N400 amplitude between words and random triplets) did not

significantly correlate with the WLI in the structured condi-

tion (p ¼ .15), or with ITC at the word frequency (p ¼ .30). Thus

these measures may reflect different aspects of statistical

learning and word segmentation.
4. Discussion

Our results provide support for the idea that the identification

of word-like items in continuous speech is a critical compo-

nent of statistical learning, and is conceptually dissociable
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Fig. 4 e EEG results. (A) ITC as a function of condition (structured, random), block (1e3), and frequency. ITC values were used

to compute the WLI, as described in Methods. (B) Topographical plots showing distribution of ITC across the scalp, as a

function of condition and frequency (word, syllable). Note that different scales are used for word versus syllable frequencies.

The six darker dots on the upper left scalp plot denote the approximate locations of the six centro-frontal electrodes used for

WLI computations, where ITC was generally maximal at both the word and syllable frequencies. (C) TheWLI as a function of

condition and block.
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from effective memory storage of the extracted representa-

tions for later use. The EEG frequency tagging approach (cf.

Buiatti et al., 2009; Kabdebon et al., 2015), whichwas used here
to generate a Word-Learning Index or WLI, is a powerful tool

to study the progressive shift of word units over syllable units

as the basic perceptual unit in continuous speech. In the

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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Table 1 e N ¼ 24. Pearson's correlations between
log-transformed WLI values in the structured and random
condition and post-exposure behavioral measures of
learning. Significant correlations are bolded.

Structured WLI Random WLI

Rating Accuracy r ¼ .30, p ¼ .16 r ¼ .22, p ¼ .29

Rating Score r ¼ .32, p ¼ .12 r ¼ .34, p ¼ .11

RT Score r ¼ .42, p ¼ .039 r ¼ .59, p ¼ .003

Fig. 6 e ERP analysis of word/triplet onsets in the

structured (red) and random (blue) conditions. Data are

timelocked to the onset of each word in the structured

condition, and the onset of each random triplet (i.e., every

third syllable) in the random condition. Words in the
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present study, using a standard auditory statistical learning

task, we showed that the WLI was enhanced in the structured

condition relative to the random control condition. Using the

WLI as an index of the word identification component of

statistical learning, we also confirmed all three of our major

hypotheses: (1) the WLI increased as a function of block in the

structured condition only, (2) the WLI showed observable in-

dividual variability, and (3) variability in the WLI systemati-

cally predicted performance on post-exposure learning tasks.

First, the finding that the WLI increased as a function of

block in the structured condition, reflecting a relative increase

in neural entrainment to the trisyllabic structure, demon-

strates that learners showed an overall shift in their percep-

tion from individual stimuli units to more integrated items as

exposure increased. This result indicates that perception of

underlying word units is built upon and shaped by previous

knowledge. It follows a learning curve rather than occurring

instantaneously, a hallmark of learning. Second, the percep-

tion and encoding of word units shows quantifiable differ-

ences at the individual level. Learners' demonstrated

substantial differences in terms of their overall perception of

the underlying word units, with some individuals showing

relatively higher entrainment at the word frequency and

others showing relatively higher entrainment at the syllable

frequency. Differences were also found with respect to indi-

vidual learning curves. Finally, and perhaps most critically,

the online perception of integrated units predicted individual

performance on offline measures of statistical learning, most

notably the target detection task. Learners who showed a

greater tendency to perceive trisyllabic items, as measured
Fig. 5 e Scatterplot showing the relation between the

corrected reaction time effect and WLI in the structured

stream (log-transformed scale).

structured condition differed from triplets in the random

condition in the 300e500 msec range, showing a

significantly larger N400 amplitude. The topographical

voltage plot shows the distribution of this effect, computed

by subtracting the mean amplitude in the random

condition from the mean amplitude in the structured

condition, from 300 to 500 msec.
through our online neural measure, also showed a larger RT

effect, reflecting greater facilitation in processing from

knowledge acquired through statistical learning. This result

indicates that individual differences in online perception are

measurable and relate systematically to other measures of

statistical learning. It also indicates that long-term memory

storage processes depend upon and perhaps interact with

processes involved in perceptual segmentation.

We had originally hypothesized that the WLI in the struc-

tured condition, and not the random condition, would predict

performance on post-exposure learning measures. However,

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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somewhat surprisingly, we found that the WLI in both the

structured and random conditions predicted performance on

post-exposuremeasures, namely RT score. In otherwords, the

correlation between the WLI and post-exposure task perfor-

mance was not specific to the structured condition. In addi-

tion, the WLI in the structured and random conditions were

highly correlated across learners (r¼ .63). This result indicates

that learners who showed high neural entrainment to the

trisyllabic structure in the structured stream also tended to

show high entrainment to every third syllable in the random

stream, despite the absence of an underlying trisyllabic

structure in the latter condition. Together, these findings

suggest that the WLI in both conditions may be tapping into

the general tendency of an individual to seek out underlying

patterns in the environment, particularly at the triplet level.

Some individuals may tend to naturally process incoming

stimuli in groups of three and thus may also process even

purely random sequences as potential triplets. On average,

these individuals would show better statistical learning in the

structured condition, showing superior performance on post-

exposuremeasures. In contrast, other individuals may tend to

naturally process input in bundles of 2 or 4 stimuli at a time,

rather than in triplets. Still others may tend to show more

bottom-up processing, being less likely to impose or organize

input according to any overarching structure at all. Both of

these latter groups on average would show lower WLI values

as well as poorer statistical learning performance in the

structured condition.

The observed correlation between the WLI in the struc-

tured and random conditions also appears to be partially

influenced by which speech stream was delivered first.

Learners who were exposed to the structured stream first

showed marginally significantly higher correlations between

structured and random WLI values than learners who were

exposed to the random stream first. This result suggests that

initial exposure to the structured speech stream may have

induced participants to process the subsequent random

stream in a similar way to the structured stream, using

trisyllabic grouping.

4.1. Sources of individual differences in statistical
learning performance

Our data may be understood in the context of recent theo-

retical work on individual differences in statistical learning

conducted by Frost et al. (2015). This model proposes that

there are two major sources that influence variance in sta-

tistical learning performance: (1) variance in encoding repre-

sentations of individual elements in a stream, within the

presentation modality, and (2) variance in detecting the

distributional properties of the encoded representations (e.g.,

the transitional probabilities between syllables). Binding of

temporal or spatial contingenciesmay occur in bothmodality-

specific brain areas (such as higher-level visual areas for vi-

sual stimuli, and higher-level auditory areas for auditory

stimuli) as well as domain-general areas that are involved

regardless of the stimulus modality (such as the medial tem-

poral lobe system). A recent study provided support for this

model, showing that these two factors can be dissociated and

that they interact to jointly determine statistical learning
performance (Bogaerts, Siegelman, & Frost, 2016). This study

also demonstrated that these two mechanisms are not inde-

pendent or additive, but interact with one another. For

example, sensitivity to the distributional properties of input

can facilitate encoding of individual elements, and

conversely, better encoding of elements can enhance the

extraction of underlying statistics (Bogaerts et al., 2016). In the

context of the present study, both of these mecha-

nismsdencoding and bindingdshould presumably lead to

changes at the perceptual level and influence the WLI in the

structured condition. For example, learners in our study who

encode the clearest representations of individual syllables

and/or who are superior at computing the transitional prob-

abilities between syllables will ultimately have the greatest

success at uncovering the hidden trisyllabic structure,

showing greater neural entrainment to the word frequency.

Another potential mechanism contributing to statistical

learning performance, which is related to, yet distinct from,

the encoding of individual elements within a sensory modal-

ity, involves contributions from “echoic” (Neisser, 1967) or

auditory sensory memory. Analogous to the rapidly decaying

sensory memory mechanisms that underlie the mismatch

negativity (MMN; see Naatanen, Paavilainen, Rinne, & Alho,

2007 for a review), syllables that were recently heard should

be represented as short-lived memory traces in auditory

sensorymemory. If the same syllable is presented again while

its sensory memory representation is still active, it will be

processed differently from syllables that have not recently

been encountered, just as deviant tones are processed differ-

ently from congruent tones in MMN paradigms. For example,

if two words in the structured stream were presented in close

succession, separated by only one other word (e.g., tupiro-

golabu-tupiro), the individual syllables occurring in the sec-

ond word (e.g., tu-pi-ro) would all be processed as “recent re-

peats.” This differential processing of neighboring syllables

within a triplet may potentially lead learners to perceive these

syllables as an underlying integrated unit, rather than as in-

dividual syllables. Although not commonly discussed in the

context of statistical learning, such a mechanism may allow

learners to discover patterns in sensory input, independent

from the computation of transitional probabilities. In the

present study, learners who canmaintain a greater number of

syllables in auditory sensory memory and/or clearer repre-

sentations in sensory memory may be more likely to “recog-

nize” if the same triplet has occurred twicewithin a given time

interval, ultimately leading to word identification and faster

statistical learning.

Finally, our data from the random condition additionally

implicate a fourth source of variance as contributing to the

perceptual component of statistical learning, which is the

extent to which individuals spontaneously or naturally pro-

cess incoming stimuli in groups or bundles, even in the

absence of structure. Together, all these mechanisms should

lead to corresponding changes in the online perception of

input, as captured by our neural-frequency-tagging method.

In addition to these mechanisms that contribute to the

online word identification component, we propose that the

storage of segmented representations should also logically

influence performance on statistical learning tasks. Partici-

pants may successfully encode the individual elements in a

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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stream and compute their distributional properties, allowing

them to perceive integrated units rather than the raw stimuli.

However, if they are unable to effectively store the extracted

representations into long-term memory, they will subse-

quently perform poorly on offline statistical learning tasks.

Rather than influencing statistical learning performance

independently, storage of the extracted representations is

likely to interact with and influence word-identification

mechanisms. For example, having access to strong represen-

tation of a single unitized word stored in long-term memory

may facilitate further segmentation, by providing a means of

segmenting adjacent words in the continuous speech stream.

Consistent with this idea, one study found that infants were

able to discriminate high probability and low probability items

only when a subset of words in the speech stream (nontargets

not included in the test) were also presented in isolation,

suggesting that knowledge of discrete items may enhance

statistical learning (Lew-Williams, Pelucchi, & Saffran, 2011).

Thus, we propose that the storage of extracted representa-

tions also influences perception and correspondingly the

frequency-tagging index, but through a less direct path than

online perceptual mechanisms.

Finally, our results also provide support for the idea that

statistical learning shows reliable individual differences

(Siegelman & Frost, 2015). The strong correlation between the

WLI in the structured and random conditions is consistent

with previous evidence showing that statistical learning is a

stable individual capacity, as measured by test-retest reli-

ability on a number of different statistical learning tasks

(Siegelman & Frost, 2015). Future studies may address

whether the WLI within individuals varies across different

statistical learning tasks. This question is interesting in light

of recent research suggesting that an individual's statistical

learning ability is highly task specific. Siegelman and Frost

(2015) demonstrated a lack of correlation across a wide

range of statistical learning tasks, suggesting that statistical

learning is characterized by both modality- and stimulus-

specificity. In addition, performance on statistical learning

tasks is largely independent of general cognitive abilities such

as intelligence, working memory, and executive function.

These findings suggest that individuals in our study may

exhibit a very different WLI pattern if assessed on a different

statistical learning task (e.g., visual stimuli instead of audi-

tory, or tones instead of syllables).

4.1.1. Relation of the WLI to subsequent learning measures
The WLI showed the strongest correlation with the RT score,

derived from the target detection task. The WLI did not

significantly predict performance on the rating task. This

finding suggests that the target detection task, as an indirect,

processing-based test of memory, may be a more sensitive

measure of statistical learning than direct tests of memory

used in statistical learning studies, such as the recognition

task or the rating task used in the present study. This

conclusion converges with one of our previous studies of

statistical learning, in which we also found that the target

detection task was more sensitive than the recognition task

(Batterink, Reber, Neville, et al., 2015). In particular, the rating

and recognition tasks primarily reflect contributions from

explicit memory, whereas the target detection task may
reflect contributions from both implicit and explicit memory

(Batterink, Reber, Neville, et al., 2015). The WLI, as an index of

the word identification component of statistical learning, is

dissociable from subsequent explicit memory storage. Better

online word identification, as reflected by a higher WLI, gives

rise to representations that can potentially contribute to both

implicit and explicit memory. Thus, even if explicit memory

storage is ineffective (as in a subset of participants in the

present study who showed chance-level performance on the

rating task), theWLI would correlate with performance on the

target detection task, reflecting implicit memory.

4.1.2. Frequency trade-off in neural entrainment
Relative to the random condition, the structured condition

showed both an increase in neural phase-locking at the word

frequency and a decrease in phase-locking at the syllable

frequency (Fig. 4A and B). Similarly, Buiatti et al. (2009)

observed that the presence of the trisyllabic structure in

both the pause-present and pause-absent conditions induced

the suppression of entrainment at the syllable frequency,

relative to conditions in which no structure was present.

Thus, our results support Buiatti and colleagues' suggestion
that “word learning induces both an enhancement in power at

the frequency of the discovered word, and an inhibition of

power at frequencies associated to alternative words with

different lengths” (p. 516e517). At the neural level, this trade-

off effect may represent a perceptual sharpening mechanism,

simultaneously enhancing the signal at the relevant item

frequency while reducing entrainment at nontarget or irrele-

vant frequencies.

Perceptually, this frequency trade-off in neural entrain-

ment may underlie the subjective experience of incompre-

hensible continuous speech in an unknown language. During

early stages of language acquisition prior tomastery of speech

segmentation, language learners may perceive a continuous

speech stream as a sequence of syllables confusingly blending

into each other. However, once segmentation has occurred,

the same physical stimulus will be perceived as a sequence of

words rather than individual syllables. In fact, the learner will

no longer be capable of experiencing the same continuous

speech stream in the now-familiar language as he or she once

did, as individual syllables. This shift in perception may be

driven by the suppression in neural entrainment at the syl-

lable frequency that accompanies word learning. Binocular

rivalry and bistable representations represent similar phe-

nomena, in which an individual's subjective perceptual

experience fluctuates in the absence of any change in the

physical stimulus. Consistent with the present data, one

binocular rivalry study that presented two rivalrous stimuli at

different flicker rates found an increase in power at the flicker

frequency of the consciously perceived stimulus relative to

the unperceived stimulus (Tononi, Srinivasan, Russell, &

Edelman, 1998).

4.1.3. Conclusion
The neural WLI tracks the perceptual binding of individual

discrete stimuli into integrated items. Our results indicate that

this perceptual process is a critical component of statistical

learning and predicts subsequent performance on post-

exposure learning tasks. In addition to providing insight into

http://dx.doi.org/10.1016/j.cortex.2017.02.004
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the underlying mechanisms involved in statistical learning,

use of thismeasure also has the potential to address a number

of unresolved questions in this area. For example, future work

may focus on using this measure to investigate the optimal

learning conditions under which statistical learning occurs, or

to directly compare learning in different populations where

behavioral responses may not be easily acquired or readily

comparable (e.g., infants and patients).
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