
www.sciencedirect.com

c o r t e x 1 1 5 ( 2 0 1 9 ) 5 6e7 1
Available online at
ScienceDirect

Journal homepage: www.elsevier.com/locate/cortex
Research Report
Statistical learning of speech regularities can occur
outside the focus of attention
Laura J. Batterink a,b,* and Ken A. Paller b

a Western University, Department of Psychology, Brain & Mind Institute, London, ON, Canada
b Northwestern University, Department of Psychology, Evanston, IL, USA
a r t i c l e i n f o

Article history:

Received 3 April 2018

Reviewed 14 June 2018

Revised 6 August 2018

Accepted 10 January 2019

Action editor Sonja Kotz

Published online 28 January 2019

Keywords:

Statistical learning

Speech segmentation

Attention

Memory

Neural entrainment
* Corresponding author. Western University,
E-mail addresses: lbatter@uwo.ca (L.J. Ba

https://doi.org/10.1016/j.cortex.2019.01.013
0010-9452/© 2019 Elsevier Ltd. All rights rese
a b s t r a c t

Statistical learning, the process of extracting regularities from the environment, plays an

essential role in many aspects of cognition, including speech segmentation and language

acquisition. A key component of statistical learning in a linguistic context is the perceptual

binding of adjacent individual units (e.g., syllables) into integrated composites (e.g.,

multisyllabic words). A second, conceptually dissociable component of statistical learning

is the memory storage of these integrated representations. Here we examine whether

these two dissociable components of statistical learning are differentially impacted by top-

down, voluntary attentional resources. Learners' attention was either focused towards or

diverted from a speech stream made up of repeating nonsense words. Building on our

previous findings, we quantified the online perceptual binding of individual syllables into

component words using an EEG-based neural entrainment measure. Following exposure,

statistical learning was assessed using offline tests, sensitive to both perceptual binding

andmemory storage. Neural measures verified that our manipulation of selective attention

successfully reduced limited-capacity resources to the speech stream. Diverting attention

away from the speech stream did not alter neural entrainment to the component words or

post-exposure familiarity ratings, but did impact performance on an indirect reaction-time

based memory test. We conclude that theoretically dissociable components of statistically

learning are differentially impacted by attention and top-down processing resources. A

reduction in attention to the speech stream may impede memory storage of the compo-

nent words. In contrast, the moment-by-moment perceptual binding of speech regularities

can occur even while learners’ attention is focused on a demanding concurrent task, and

we found no evidence that selective attention modulates this process. These results sug-

gest that learners can acquire basic statistical properties of language without directly

focusing on the speech input, potentially opening up previously overlooked opportunities

for language learning, particularly in adult learners.
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1. Introduction

Listening to an unfamiliar language can be a disorienting

experience. Natural speech is a continuous stream of sound,

with no reliable pauses between individual words (Lehiste,

1960). One of the first steps in acquiring an unfamiliar lan-

guage is the discovery of word boundaries in this continuous

speech stream. This challenge is thought to be at least

partially solved through statistical learning, which refers to

acquisition of statistical structure in the environment. In

spoken language, adjacent syllables within words co-occur

more often than syllables that are adjacent but cross word

boundaries. Gradually gaining knowledge of these syllable co-

occurrences is one way for learners to discover word bound-

aries in continuous speech, as has been demonstrated

convincingly by studies using novel artificial speech streams

(e.g., Saffran, Aslin & Newport, 1996; Saffran, Newport, Aslin,

Tunick, & Barrueco, 1997; Saffran, Newport & Aslin, 1996).

As we have previously proposed (Batterink & Paller, 2017a,

b), statistical learning performance can be conceptualized as

comprising at least two dissociable components: (1) percep-

tual binding and (2) subsequentmemory storage and retrieval.

Perceptual binding involves a transition from the perception

and encoding of raw individual stimulus units to that of larger

integrated items. For example, in the case of word segmen-

tation, learners exposed to an unfamiliar language initially

perceive a sequence of individual syllables, rather than the

organized sequence of coherent words that fluent speakers

perceive. With sufficient exposure to a language, learners’

initial perception of these smaller syllable units is gradually

transformed to that of larger word units. The perceptual

process of identifying words in continuous speech occurs on-

line, during exposure to input, and may be considered the

central challenge of statistical learning. A second key

component of statistical learning involves the storage and

subsequent retrieval of these extracted representation in

long-term memory. These memory-related processes can in

one sense be considered peripheral to the central task of

statistical learning. Nonetheless, both the perceptual binding

component and memory component critically influence all

typical measures of statistical learning performance.

Previous studies of statistical learning have generally been

unable to distinguish between these two conceptually distinct

components of learning. This limitation is largely due to the

experimental approach that is most commonly used to

investigate statistical learning, in which learning is assessed

offline following an exposure period to visual or auditory

regularities. For example, a typical auditory statistical

learning paradigm involves exposing participants to a

continuous speech stream of repeating three-syllable

nonsense “words.” This exposure period is then followed by

a subsequent recognition test in which participants discrim-

inate betweenwords and novel foils through a two-alternative

forced choice measure (e.g., Saffran et al., 1997; Saffran,

Newport, et al., 1996). Reaction-time-based tests have also

been used, in which participants are asked to identify a target

stimulus presented in a continuous stream (Batterink, Reber,

Neville, et al., 2015b; Batterink, Reber, & Paller, 2015a;

Franco, Eberlen, Destrebecqz, Cleeremans, & Bertels, 2015;
Kim, Seitz, Feenstra, & Shams, 2009; Turk- Browne et al.,

2005). Faster response times to predictable targets (i.e., those

that occurs in positions 2 or 3 of a repeating triplet) compared

to unpredictable targets (i.e., those that occur in position 1)

provide evidence of statistical learning. Reaction-time tests

may provide a more sensitive measure of learning that can

potentially capture knowledge above and beyond what is re-

flected by recognition measures (Batterink et al., 2015a, b).

Nonetheless, both types of test are administered after the

exposure period and assess only the final outcome of learning.

Thus, these offline tasks cannot disentangle contributions

from online perceptual binding versus subsequent memory

storage and retrieval processes to statistical learning.

In contrast to these offline behavioral tests, neural mea-

sures can assess statistical learning online, during exposure to

structured input. In particular, several event-related potential

(ERP) components appear to be modulated as a function of

statistical learning during exposure. For example, Cunillera,

Toro, Sebasti�an-Gall�es, and Rodrı́guez-Fornells (2006,

Cunillera, C�amara et al., 2009) compared ERPs to words and

random syllables in continuous speech. Words elicited a

larger N400 relative to nonwords, and interestingly this effect

emerged very quickly, after only 1 min of exposure (Cunillera

et al., 2009). Similarly, De Diego Balaguer, Toro, Rodriguez-

Fornells, and Bachoud-L�evi (2007) found an increase in N400

amplitudes to words in continuous speech as a function of

exposure, with larger N400 amplitudes observed in the second

minute of exposure compared to the first minute. This N400

effect was also associated with better word recognition on a

post-learning task. Sanders, Newport, and Neville (2002) pre-

trained learners on six nonsense words prior to exposing

them to a continuous stream of the concatenated words. In

participants showing the greatest behavioral evidence of word

learning, word onsets elicited a larger N100 after compared to

before training, suggesting that the N100 may index segmen-

tation or recognition of previously learned words in contin-

uous speech. Finally, Abla and colleagues found that both the

N100 and N400 components tracked statistical learning of

repeating tone triplets, or “tritone words,” with tones in the

initial position eliciting larger N100 and N400 effects

compared to second and third position tones. In sum, ERP

studies have shown that statistical learning is associated with

the emergence of specific electrophysiological markers. The

N400 appears to be the most reliable index of statistical

learning across studies, andmay represent the construction of

a pre-lexical trace for new words (De Diego Balaguer et al.,

2007). ERP effects appear to emerge rapidly during exposure

to structured input and provide insight into both the under-

lying mechanisms and the time course of statistical learning.

In addition to ERPs, a “frequency-tagging” approach has

also been used to track statistical learning online (Buiatti,

Pena, & Dehaenelambertz, 2009; Kabdebon, Pena, Buiatti, &

Dehaene-Lambertz, 2015; Batterink & Paller, 2017a, b). This

approach takes advantage of the neural steady-state

response, the tendency of the brain to entrain or oscillate at

the same frequency as an ongoing rhythmic stimulus. In

addition to reflecting bottom-up sensory processing, neural

entrainment is sensitive to internally driven stimulus inte-

gration processes, reflecting abstract, higher-level features

such as syntactic rules (Ding et al., 2016) or imagined metric
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beats (Nozaradan et al., 2011). Ding and colleagues presented

isochronous monosyllabic words in both a natural and artifi-

cial language and observed neural entrainment not only at the

syllabic rate, but also at the level of phrases and sentences,

reflecting learners’ knowledge of hierarchical syntactic rules.

Similarly, when participants were instructed to imagine a bi-

nary or ternary metric beat while listening to a sequence of

isochronous tones, increased neural entrainment was

observed at the corresponding imagined beat frequencies

(Nozaradan et al., 2011).

Because of its sensitivity to perpetual integration pro-

cesses, the frequency tagging method offers a particularly

promising means to quantify the perceptual binding compo-

nent of statistical learning. The central assumption here is

that as learners gradually discover words in continuous

speech, their brains should progressively entrain more

strongly at the word frequency compared to the raw syllable

frequency, representing a shift in perception from syllables to

words. This idea appears to be supported by several recent

studies. Buiatti et al. (2009) presented participants with a

speech stream composed of trisyllabic artificial words con-

structed according to a nonadjacent AXC rule structure, in

which the third syllable of a word was predicted by the first

syllable.Wordswere either separated by a 25-msec subliminal

pause or concatenated together continuously. Interestingly, a

peak in neural entrainment at the word frequency was

observed only when the AXC words were separated by the

subliminal pauses, suggesting that the pauses facilitated

learning of the nonadjacent dependencies and corresponding

word extraction. This condition was also accompanied by a

suppression in entrainment at the syllable frequency,

reflecting that syllables were no longer processed in isolation

but rather linked together with neighboring syllables to form

coherent words. Kabdebon et al. (2015) exposed infants to a

similar artificial stream of AXC words separated by 25-msec

subliminal pauses, and found that infants also showed neu-

ral entrainment at the word frequency.

Building on these findings, in a recent studywe used neural

entrainment to track “pure” statistical learning, presenting

concatenated words without any subliminal pauses that may

facilitate segmentation. Even without the insertion of pauses,

we found that neural entrainment tracks the extent to which

learners bind neighboring syllables into the underlying

component words of the speech stream (Batterink & Paller,

2017a, b). Specifically, we computed EEG-based neural

entrainment at the frequency of the repeating words relative

to that of individual syllables. The ratio of neural entrainment

to words versus syllables (which we termed the “word

learning index,” orWLI) distinguishes between structured and

random input, tracks the progression of learning over time,

and predicts performance on a subsequent offline reaction-

time test of statistical learning. Thus, this neural entrain-

ment measure appears to reflect learners’ perceptual sensi-

tivity to the hidden component words within the structured

speech stream, without requiring subsequent behavioral

testing. Applied to future studies, this measure may be a

valuable tool to address questions about statistical learning,

such as the necessary versus sufficient conditions under

which this type of learning can proceed.
In the present study, we addressed one such outstanding

question: the role of top-down, voluntary attention to the

perceptual binding component and subsequent memory

processes underlying statistical learning. Only a small subset

of all possible stimuli in the environment can be selected

(attention) and maintained in an active state over time

(working memory; cf. Fougnie et al., 2008). Attention and

workingmemory are limited in capacity, such that allocation

of these resources towards some information comes at the

cost of processing other information. In a typical listening

environment, learners may choose to focus their attention

and limited processing resources on a speech stream, or on

other competing stimuli and tasks. Thus, it is important to

determine whether statistical learning occurs automatically

or is impacted by the voluntary allocation of these resources.

We sought to address this issue by manipulating the focus of

learners' voluntary attention using a dual task manipulation.

We aimed to answer several interrelated questions. First, can

learners become sensitive to the component words in

structured speech even in the absence of focused attention

to the speech stream? Relatedly, does focused attention to

speech facilitate learners’ ability to bind neighboring sylla-

bles into accurate component words in continuous speech?

Finally, does focused attention to the speech stream have

different effects on online perceptual word binding and

subsequent memory storage processes? Resolving these

questions would lead to a better understanding of the

mechanisms of statistical learning. These results would also

provide important insight into the external conditions under

which statistical learning does or does not occur, yielding

information that may have valuable practical implications

for language acquisition.

Although no prior research has looked at these questions

specifically, a small number of previous studies have investi-

gated the role of selective attention in overall levels of sta-

tistical learning, as assessed by performance on offline tests.

Several of these studies suggest that statistical learning may

require some degree of selective attention to the stimuli.

Using a typical auditory statistical learning paradigm, Toro,

Sinnet, and Soto-Faraco (2005) found a dramatic decrease in

offline recognition of words versus nonwords when partici-

pants' attentionwas diverted to an unrelated, concurrent task,

relative to conditions of passive listening. Under some types of

attentional manipulations, performance declined to chance

levels. Using a similar design, Palmer and Mattys (2016)

demonstrated an impairment in performance on a forced-

choice recognition task under conditions of high attentional

load. Attention has also been observed to impact statistical

learning in the visual domain (Turk-Browne, Junge, & Scholl,

2005). In this study, learners’ attention was directed to one

of two interleaved stimulus sets of repeating shape triplets.

Whereas robust statistical learning was observed to the

attended stream, performance was at chance level for the

unattended stream across different tasks. Taken together,

these results suggest that statistical learning under conditions

of reduced attention is seriously compromised and may often

fail to occur at all; in order for statistical learning to occur,

some level of attentional resources must be directed to the

input stream.
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In contrast, in a more recent visual statistical learning

study with a design comparable to that used by Turk-Browne

et al. (2005), equivalent learning was observed for both the

attended and unattended stimulus set (Musz, Weber, &

Thompson-Schill, 2015). Not even a weak effect of attention

was present across several different experimental manipula-

tions, suggesting that statistical learning can occur evenwhen

attention is actively directed away from unattended input and

towards competing stimuli. At present, the reason for the

discrepancy in results between these two studies is not

obvious, given the high similarity in experimental procedures.

In the auditory domain, statistical learning has also been

shown to occur to a speech stream played in the background,

while participants were actively engaged in a picture-drawing

task (Saffran et al., 1997). Although this study was not spe-

cifically designed to manipulate attention, these results sug-

gest that statistical learning of speech regularities can occur to

input that is processed outside of learners’ focus of attention.

Finally, Fernandes, Kolinsky, and Ventura (2010) found that

high attentional load had no impact on statistical learning of

words with high transitional probabilities, but negatively

influenced learning of words with less salient statistical cues.

In sum, there are conflicting results regarding the role of

attention in statistical learning as assessed through offline

tasks, and the question of whether focused attention to input

is necessary for such learning has not yet been satisfactorily

resolved. Further, these prior studies have been unable to

address the additional question of whether attention and top-

down resources may play different roles in different compo-

nents of statistical learningdnamely perceptual binding and

subsequent memory-related processesdbecause of their

reliance on offline measures.

To investigate the role of focused attention and associated

central, limited-capacity resources on these different com-

ponents of statistical learning, we used our previously

described neural entrainment measure to quantify the

perceptual binding of component words during exposure to

structured speech (Batterink & Paller, 2017a, b). To assess

overall levels of statistical leaning performance, we adminis-

tered both a direct, familiarity-based rating measure and an

indirect, reaction-time based measure after the exposure

period (Batterink, Reber, & Paller, 2015a; 2015b, Batterink &

Paller, 2017a, b). Our familiarity-rating task required partici-

pants to provide ratings of words, part-words, and non-words,

providing a measure of explicit knowledge of the underlying

component words of the stream. Our reaction-time based

measure involved a target detection task, in which partici-

pants were required to make speeded responses to syllable

targets in short streams of continuous speech (e.g., Batterink,

Reber, Neville, & Paller, 2015b, 2015a; Franco et al., 2015; Kim

et al., 2009; Turk-Browne et al., 2005). Faster reaction times

(RTs) index more efficient processing of predictable syllable

targets (i.e., those occurring in the later positions of a trisyl-

labic word). In previous work, we found that our online neural

entrainment measure predicted performance on the target

detection task, with greater relative entrainment at the word

frequency correlatingwith a larger reaction time (RT) effect on

the target detection task (Batterink & Paller, 2017a, b).

Using a standard statistical learning speech segmentation

task, in which learners are presented with a continuous
speech stream of repeating three-syllable nonsensewords, we

compared neural entrainment and behavioral performance

under two processing conditions. Participants assigned to a

“Full Attention” conditionwere instructed to focus fully on the

speech stream, whereas other participants in a “Divided

Attention” condition were required to perform a demanding

concurrent visual task while the speech stream was pre-

sented, such that limited-capacity resources to the speech

input would be reduced. Based on prior results (Toro et al.,

2005; Palmer & Mattys, 2016), we hypothesized that diverting

the focus of learners’ attention away from the speech stream

would decrease performance on the explicit familiarity-rating

task. Given lack of prior evidence, we remained agnostic about

whether our attentional manipulationwouldmodulate neural

entrainment to the underlying words and performance on the

target detection task. We also examined the time course of

neural entrainment across the exposure period to test

whether reduced attention to the speech stream delays the

progression of learning, even if it does not prevent it entirely.

This possibility has been proposed to occur (Fernandes et al.,

2010; Toro et al., 2005), but has not been directly tested. Any

of these different patterns of results would inform our un-

derstanding of the role of attention and limited-capacity re-

sources in the perceptual binding of speech regularities and

memory-related components of statistical learning.
2. Material and methods

2.1. Participants

A total of 49 participants were run (mean age ¼ 21.8 years,

SD ¼ 2.8 years, 37 female/12 male), assigned randomly to the

Divided Attention condition (n ¼ 25) or the Full Attention

condition (n ¼ 21). Three additional participants were

excluded from the Full Attention condition, due to either

technical failures with EEG recording (n ¼ 2) or extremely poor

target-detection performance (<10% targets detected; n ¼ 1).

All participants were fluent English speakers and had no

history of neurological problems. Experiments were under-

taken with the understanding and written consent of each

participant. Participants were compensated at $10/h for their

time.

2.2. Stimuli

Syllables contributing to the speech stream were recorded by

amale native English speaker using neutral intonation and no

co-articulation between syllables. Individual sound files, each

containing a single syllable, were spliced from the recordings.

The beginning of each sound file coincided with the precise

onset of the syllable. Syllables had an approximate duration of

220e250 msec from onset to offset and were equated for

perceived volume. The continuous speech streamwas created

by concatenating the individual syllables together in a preset

order, as describedmore fully below, with a constant stimulus

onset asynchrony between each syllable.

For the visual 3-back task, a total of 10 unique kaleidoscope

images were used (see Fig. 1 for example images). These im-

ages were selected because they are difficult to label verbally

https://doi.org/10.1016/j.cortex.2019.01.013
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auditory exposure to four repeating nonsense words. Participants in the Full Attention condition were instructed to attend

the speech stream while passively viewing the kaleidoscope images, whereas participants in the Divided Attention

condition were instructed to perform a demanding 3-back task on the visual images, while ignoring the speech stream. Our

online neural entrainment measure was used to assess statistical learning during the exposure task. After exposure,

statistical learning was assessed using the familiarity-rating and target detection tasks.
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and thus less likely to tax phonetic or linguistic attentional

resources (Voss & Paller, 2009), allowing us to examine the

effects of domain-general attention and limited-capacity re-

sources on auditory statistical learning. Images were created

by overlaying three opaque hexagons of different colors and

performing three rounds of side bisection and random

deflection on each. All images were overlaid over a black

background on a computer monitor placed approximately

120 cm in front of the participant, presented within the upper

half of the display. For participants in the Divided Attention

condition, thumbs-up and thumbs-down images were also

presented in the lower half of the display as a method of

feedback on performance.

2.3. Procedure

Fig. 1 shows a visual summary of the experimental design.

Auditory stimuli were presented at a comfortable listening

level (approximately 70e75 db) from two speakers placed

approximately 120 cm in front of the participant.

2.3.1. Exposure task
During the exposure task, participants were exposed to an

auditory speech stream made up of repeating nonsense

words. Participants in both attention conditions were

informed that they would hear a “nonsense language,” but
theywere not given any information about the structure of the

language, such as the number of component words or the

number of syllables per word. Syllables were grouped into 4

repeating trisyllabic words (e.g., tafuko, rugeme, repuni, and

fetisu), with the transitional probability between syllables

higher within words (1.0) than between words (.33). For

example, a transitional probability of 1.0 for a word, like

tafuko, means that every ta in the stream was followed by fu

and every fu was followed by ko; in contrast, ko was equally

likely to be followed by ru, re or fe (words were not allowed to

repeat). A total of 2400 syllables (corresponding to 800

“words”) were presented at a constant rate for each partici-

pant (range across participants: 260msec/syllablee 300msec/

syllable). We originally intended to use the same stimulus

presentation rate as our earlier study for all participants

(300 msec/syllable; Batterink & Paller, 2017a, b), but a com-

puter hardware upgrade made partway through data collec-

tion unexpectedly produced faster stimulus presentation

rates for approximately half of the participants. This small

change in stimulus presentation rate affected equal numbers

of participants in both groups (divided attention group: faster

rate n ¼ 12, slower rate n ¼ 13; full attention group: faster rate

n ¼ 10; slower rate n ¼ 11), and we confirmed statistically that

stimulus presentation rate did not significantly differ between

the two groups [t (44) ¼ .033, p ¼ .97]. The syllable stream was

broken up into 3 blocks. Each block contained exactly 800

https://doi.org/10.1016/j.cortex.2019.01.013
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syllables, with a duration of approximately 4min; blocks 2 and

3 did not begin with a word-initial syllable and thus block

onset did not provide any additional segmentation cues. Par-

ticipants were given a brief break after each block and allowed

to resume the task whenever ready.

To ensure that idiosyncratic perceptual differences be-

tween syllables could not drive group-level statistical learning

performance, the assignment of individual syllables to the

first, second and third positions of each word was counter-

balanced across participants, resulting in three different

counterbalancing condition. For example, counterbalance

order 1 contained the word tafuko, counterbalance order 2 the

word fukota, and counterbalance order 3 the word kotafu.

2.3.2. Concurrent visual 3-back task
While listening to the speech stream, all participants

concurrently viewed a sequence of kaleidoscope images pre-

sented on a computer monitor. The same image was never

repeated consecutively. The duration of each image was

randomized at both the individual and trial levels, with each

image presented for a random time interval from 2.4 to 5 sec

before being replaced by the subsequent image. This

randomization procedure ensured that the onset of visual

stimuli could not provide a segmentation cue and would not

systematically influence the auditory EEG response at the

group level. Image order was predetermined and consistent

across all participants. Approximately 25% of the images

represented a 3-back match (i.e., the same image presented 3

previously), with the remaining 75% of trials representing 3-

back non-match.

Participants in the Full Attention conditionwere instructed

to attend to the auditory speech streamand to simply view the

images passively. In contrast, participants in the Divided

Attention condition were required to perform an attention-

demanding 3-back task on the sequence of images, which

involved indicating whether the current stimulus matched

the image presented 3 steps earlier in the sequence (Fig. 1).

They were advised that there would be a nonsense language

playing in the background, but that they should ignore the

language and concentrate on the visual task. They received

feedback on their performance after every trial. If they

responded correctly within 2 sec of the image onset, a

thumbs-up icon appeared below the kaleidoscope image. If

they responded incorrectly, or failed to respondwithin 2 sec of

the image onset, a thumbs-down icon appeared below the

kaleidoscope. Participants in both conditions were instructed

to keep their eyes focused on the center of the computer

monitor at the kaleidoscope images and tominimize large eye

movements.

2.3.3. Familiarity-rating task
Following exposure to the structured stream, participants

completed a familiarity-rating task designed to assess explicit

memory of the nonsense words, as we have employed previ-

ously (Batterink & Paller, 2017a, b).

On each trial, participants were presented with one of

three types of auditory stimuli: a word from the language that

had been previously presented 800 times during the Exposure

task (e.g., tafuko), a part-word that consisted of a syllable pair

from a word from the language plus an additional syllable
(e.g., rufuko), or a non-word that consisted of three syllables

from the language that were never paired together within a

word (e.g., fumeni). Without time pressure, participants were

asked to rate on a 1e4 scale how familiar the stimulus soun-

ded based on the language that they had just heard, with 1

indicating “very unfamiliar” and 4 indicating “very familiar.”A

total of 12 trials were presented, consisting of 4 words, 4 part-

words, and 4 non-words.

2.3.4. Target detection task
Finally, participants completed a speeded target detection

task (Batterink et al., 2015a; 2015b; Batterink & Paller, 2017a,

b). On each trial, participants were presented with a speech

stream containing the four words from the structured

language presented four times each in pseudorandom

order, which was shorter but otherwise similar to the

speech stream presented during the Exposure task. For

each stream, participants were required to detect a specific

target syllable. Both RT and accuracy were emphasized.

Each of the 12 syllables of the structured syllable inventory

served as the target syllable three times, for a total of 36

streams. The order of the 36 streams was randomized for

each participant. Each stream contained 4 target syllables,

providing a total of 48 trials in each of the three-syllable

conditions (word-initial, word-medial, and word-final). At

the beginning of each trial, participants pressed “Enter” to

listen to a sample of the target syllable. The stimulus

stream was then initiated. Stimulus timing parameters

were identical to those in the Exposure task. Based on our

previous findings (Batterink et al., 2015a; 2015b, Batterink &

Paller, 2017a, b), we expect graded RT effects as a function

of syllable position. Syllable targets that occur in the final

position of a word should elicit faster RTs, indexing facili-

tation due to statistical learning.

2.4. Behavioral data analysis

For participants in the Divided Attention condition, perfor-

mance on the 3-back taskwas quantified using d’, with hit rate

quantified as the proportion of 3-back matches that were

classified correctly and false alarm rate quantified as the

proportion of non-matches that were incorrectly classified as

hits. This measure was used rather than overall accuracy as

there were more non-match trials than match trials, and thus

simply responding “non-match” to all trials would lead to a

performance of 75% accuracy.

On the familiarity-rating task, ratings were analyzed using

a repeated-measures ANOVA with word category (word, part-

word, non-word) as a within-participants factor and attention

condition (full, divided) as a between-participants factor. For

correlational analyses, performance was also quantified by

subtracting the average rating to foil items (both part-words

and non-words) from the average rating to words, for each

participant. Perfect sensitivity on this “familiarity rating

score” would be a score of 3, with values above 0 providing

evidence of learning. As an additional measure of perfor-

mance on this task, RTs were analyzed using a second

repeated-measures ANOVA with the same factors as above.

Median RTs were computed within each word category and

participant to reduce the influence of outliers.

https://doi.org/10.1016/j.cortex.2019.01.013
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For the target-detection task, responses that occurred

within 1200 msec after a target were considered to be hits,

whereas responses that occurred anytime other than within

0e1200 msec of a target were considered to be false alarms;

this is the same criterion used in all our past studies (Batterink

et al., 2015a, b, Batterink & Paller, 2017a, b). Mean RTs to

detected targets (hits) were calculated for each syllable con-

dition (word-initial, word-medial, and word-final) for each

participant; mean rather than median was used as a measure

of central tendency in this analysis given that RTs longer than

1200 msec were already excluded according to our “hit” cri-

terion. RTs were analyzed using a repeated-measures ANOVA

with syllable position (initial, medial, final) as a within-

participants factor, and attention condition (full, divided) as

a between-participants factor. Planned contrasts were used to

examine whether RTs decreased linearly as a function of

syllable position. Performance was further quantified through

an “RT prediction effect,” computed as the proportion of RT

decrease to third position targets relative to initial position

targets [(RT1 e RT3)/RT1]. Because decreases in RTs are not

independent of the overall speed of response (cf. Siegelman,

Bogaerts, Kronenfeld, & Frost, 2017), this computation ad-

justs for potential differences in baseline RTs between in-

dividuals, allowing us to compare statistical learning across

individuals with different RT baselines. Larger positive values

on the RT prediction effect indicate greater facilitation.

2.5. EEG recording and analysis

During both the Exposure Task and the Target Detection task,

EEG was recorded with a sampling rate of 512 Hz from 64 Ag/

AgCl-tipped electrodes attached to an electrode cap using the

10/20 system. Recordings were made with the Active-Two

system (Biosemi, Amsterdam, The Netherlands). Additional

electrodes were placed on the left and right mastoid, at the

outer canthi of both eyes, and below both eyes. Scalp signals

were recorded relative to the Common Mode Sense (CMS)

active electrode and then re-referenced off-line to the alge-

braic average of the left and right mastoid.

2.5.1. Quantification of neural entrainment
EEG neural entrainment analyses were carried out using

EEGLAB (Delorme & Makeig, 2004) and followed the same

general procedure as in our previous study (Batterink & Paller,

2017a, b).

EEG data acquired during the Exposure task were band-pass

filtered from .1 to 30 Hz. Data from each block were timelocked

to the onset of each word and extracted into epochs of 10.8 sec,

corresponding to the duration of 12 trisyllabic words or 36 syl-

lables (with no pre-stimulus interval). This procedure yielded

epochs overlapping for 11/12 of their length. We employed an

automatic artifact rejection procedure designed to remove only

data containing large artifacts, based on threshold

amplitude values adjusted individually for each participant

(range ¼ 200e300 mV). Data containing stereotypical eye

movements were retained, as eye artifacts have a broad power

spectrum and do not affect narrow-band steady-state re-

sponses (Srinivasan & Petrovic, 2006).

As in our previous study (Batterink & Paller, 2017a, b), we

quantified neural entrainment by measuring inter-trial
coherence (ITC). ITC, also known as phase-locking value, is a

measure of event-related phase locking. ITC values range from

0, indicating purely non-phase- locked activity, to 1, indicating

strictly phase-locked activity. A significant ITC indicates that

the EEG activity in single trials is phase-locked at a given time

and frequency, rather than phase-random with respect to the

time-locking experimental event. ITC was computed using a

continuous Morlet wavelet transformation from .2 to 5.2 Hz via

the newtimef function of EEGLAB. Wavelet transformations

were computed in .0278 Hz steps with 1 cycle at the lowest

frequency (.2 Hz) and increasing by a scaling factor of .5,

reaching 11.75 cycles at the highest frequency (5.2 Hz). This

approach was selected to optimize the tradeoff between tem-

poral resolution at lower frequencies and frequency resolution

at high frequencies (Delorme & Makeig, 2004).

Consistent with our prior results (Batterink & Paller, 2017a,

b), the pattern of neural entrainment across participants was

characterized by clear peaks at the word and syllable fre-

quencies. To quantify patterns of neural entrainment for each

participant, ITC values were extracted at these “peak” fre-

quency bins, corresponding to the word and syllabic fre-

quencies (referred to as ITCword and ITCsyllable), as specified by

the syllabic presentation rate used for that individual (range

across participants ¼ 260 msece300 msec/syllable, as

described under Procedure). As in our prior study, these values

were averaged across each 10.8 sec epoch and across the 6

centro-frontal midline electrodes where ITC at the word and

syllable frequencies showed the strongest values (FC1, C1,

FCz, Cz, FC2, and C2).

To characterize the time course of learning, we used a

sliding-window analysis to provide a relatively fine-grained

measure of ITC changes at the word and syllable frequencies

across the 12-min exposure period. After artifact correction

and removal of noisy data, we grouped every 12 consecutive

epochs together into “bundles” (i.e., epochs 1e12, 13e24,

25e36, etc.). We then computed ITC at the word and syllables

frequencies within each of these bundles. This provided a

fine-grained (bundle-by-bundle) measure of neural entrain-

ment for each participant throughout the exposure period.

However, because each bundle consists of only 12 epochs, the

resulting time course data were relatively noisy. To reduce the

influence of random fluctuations, the data were smoothed by

using a moving average filter with a span of 5 data points (i.e.,

each nth datapoint was averaged with datapoints n-2, n-1,

nþ1, and nþ2). Because values for the first and final bundle for

each participant could not be smoothed, they were excluded

from further analysis. The remaining smoothed values were

used for all statistical analyses.

Robust linear mixed-effects modeling was used to test the

hypothesis that ITCword should increase and ITCsyllable should

decrease as a function of exposure. The smoothed ITCword and

ITCsyllable values were extracted for each bundle and each

participant and classified according to the following factors:

participant, attention condition (full, divided), and the word

presentation number corresponding the first word of the

bundle (i.e., 1e774). ITCword and ITCsyllable were modeled

separately, with fixed effects consisting of word presentation,

attention condition, and the interaction between word pre-

sentation and attention condition, and participant included as

a random intercept. Attention condition was modeled as a

https://doi.org/10.1016/j.cortex.2019.01.013
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categorical variable and word presentation was modeled as a

continuous predictor. We hypothesized that word presenta-

tion should positively predict ITCword and negatively predict

ITCsyllable, reflecting a relative increase in neural entrainment

to the word structure as a function of exposure to the speech

stream and replicating our previous finding (Batterink &

Paller, 2017a, b).

In addition, we also tested whether there was a significant

interaction between attention condition and word presenta-

tion for ITCword, which would provide evidence that diverting

attention away from the speech stream delays statistical

learning.

2.5.2. Predicting behavioral outcome measures of statistical
learning through neural entrainment measures
As in our previous study (Batterink & Paller, 2017a, b), we

quantified relative neural entrainment to the underlying

words in the speech stream by computing the Word Learning

Index (WLI), defined as the ratio of ITC at the word frequency

relative to ITC at the syllable frequency (i.e., ITCword/

ITCsyllable). Higher WLI values indicated greater neural

entrainment to the word frequency relative to the raw syllable

frequency, indicative of better statistical learning. For each

participant, we computed average ITCword and ITCsyllable for

the entire exposure period by averaging across individual

bundle values. These averaged ITCword and ITCsyllable values

were then used to compute each participant's WLI.

We examined whether neural entrainment to the under-

lying component words of the speech stream, as indexed by

theWLI, predicted behavioral performance on the familiarity-

rating and target detection tasks. Our main behavioral mea-

sure of interest was the RT prediction effect on the target

detection task, as we previously found this measure to be the

most sensitive to statistical learning and to show the stron-

gest associations with patterns of neural entrainment

(Batterink & Paller, 2017a, b). However, we also examined

whether neural entrainment patterns predicted the familiar-

ity rating score on the recognition task. For both of these

dependent variables, we tested a linear regression model that

included WLI and Group as independent predictors. In addi-

tion to WLI, which represents our measure of online word

segmentation, Group was also included as a predictor in order

to examine whether the attentional manipulation per se

predicted the RT learning effect, above and beyond effects of

neural entrainment to the underlying word structure.

2.5.3. ERP analyses
As checks of our experimental manipulation of attention, we

computed ERPs to the kaleidoscope images from the 3-back

task and to the individual syllables in the speech stream.

First, we computed ERPs to the images from the 3-back task,

using P300 amplitude as an index of attentional allocation to

the visual task (cf. Polich, 2007; Soltani & Knight, 2000). We

expected that participants in the Divided Attention group

should show a robust P300 response to these images, indicating

that they were attending and processing them deeply in order

to perform the 3-back task. In contrast, we expected that par-

ticipants in the Full Attention group should show little to no

P300 response to these images, indicating that they were not

attending to them as fully. After band-pass filtering from .1 to
30 Hz, epochs time-locked to each image onset were extracted

from �200 to 1200msec. Independent component analysis was

used to remove eye artifacts, using the same procedure as in

our previously published studies (e.g., Batterink et al., 2015a;

2015b). Using a 200-msec prestimulus baseline, mean ampli-

tudes from 300 to 600msec post-stimuluswere computed. This

time-windowwas selected on the basis of previous studies and

on visual inspection of the data (Polich, 2007).

We also computed ERPs to the individual syllables in the

speech stream, using the N100 response as an index of se-

lective attention to the speech signal (e.g., Hillyard, Vogel, &

Luck, 1998; Sanders et al., 2002). We hypothesized that

learners in the Full Attention group should show a larger N100

response to individual syllables relative to participants in the

Divided Attention group, reflecting an enhanced early sensory

response to the input. For this analysis, we extracted epochs

time-locked to each syllable onset from 0 to 300msec from the

same artifact-rejected data that was used in our neural

entrainment analyses. Using a 0e10 msec baseline, mean

amplitudes from 20 to 80 msec post-stimulus were computed,

capturing the early sensory response to each syllable.

Although the continuous nature of the speech task makes it

impossible to compute a completely non-biased baseline, we

selected the time interval from 0 to 10 msec as the most

appropriate choice to visualize the early sensory ERP response

to each individual syllable.

ERP analyses followed our usual procedures (e.g., Batterink

et al., 2015a; 2015b) as follows. Amplitudes were averaged

across neighboring electrodes to form nine electrode regions

of interest (left anterior region: AF7, AF3, F7, F5, F3; left central

region: FT7, FC5, FC3, T7, C5, C3; left posterior region: TP7, CP5,

CP3, P7, P5, P3, PO7, PO3; midline anterior region: AFZ, F1, FZ,

F2; midline central region: FC1, FCZ, FC2, C1, CZ, C2; midline

posterior region: CP1, CPZ, CP2, P1, PZ, P2, POZ; right anterior

region: AF4, AF8, F4, F6, F8; Right central region: FC4, FC6, FT8,

C4, C6, T8; right posterior region: CP4, CP6, TP8, P4, P6, P8, PO4,

PO8). For analysis of the P300, which showed a widespread

distribution, mean amplitude values of these nine electrode

regions were submitted to a repeated-measures ANOVA, with

anterioreposterior axis (anterior, central, posterior) and left/

right (left, midline, right) as within-participants factors, and

with group (full, divided) as a between-participants factor. For

analysis of the N100, which is typically maximal over fronto-

central regions of the scalp, only anterior and central re-

gions were included in the analysis. To examine whether the

N100 amplitude was modulated by segmentation, we also

directly compared N100 amplitude to first versus third sylla-

bles, by including syllable position (1, 3) as an additional

within-subjects factor. GreenhouseeGeisser corrections were

applied for factors with more than two levels.
3. Results

3.1. Behavioral results

3.1.1. Three-back task (divided attention group only)
Consistent with the expected difficulty level of the 3-back

task, participants detected 48.3% (SD ¼ 18.1%) of 3-back

match trials. The false alarm rate was 28.7% (16.0%)

https://doi.org/10.1016/j.cortex.2019.01.013
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Fig. 2 e Behavioral results reflecting statistical learning, by

group. Error bars represent SEM. (A) Performance on the

familiarity-rating task. Participants' ratings did not differ

significantly between the two groups. (B) Performance on

the target detection task. Participants in the Divided

Attention group responded more slowly (top panel) and

showed a smaller RT prediction effect (bottom panel),

relative to participants in the Full Attention group.
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3.1.2. Familiarity-rating task
The average ratings provided for words, part-words, and

nonwords are shown in Fig. 2A.

Across participants, words were rated as themost familiar,

part-words intermediate, and nonwords as the least familiar,

providing behavioral evidence of statistical learning [Word

Category: F (2,88) ¼ 31.4, p < .001; linear effect of category: F

(1,44) ¼ 66.3, p < .001]. In contrast to our prediction that

reducing learners’ attention to the speech stream would

reduce explicit knowledge of the component words of the

speech stream, the profile of familiarity ratings across the

three word categories did not significantly differ between the

Full Attention and Divided Attention groups [Attention

Group x Word Category: F (2,88) ¼ .90, p ¼ .41]. The familiarity

rating score was numerically higher in Full Attention than

Divided Attention participants, but this group difference was

not significant [Full Attention: mean ¼ .79, SEM ¼ .56; Divided

Attention: mean ¼ .55, SEM ¼ .60; t (44) ¼ 1.38, p ¼ .18].

Follow-up analyses confirmed that both groups showed

significant above-chance performance on this measure [Full

Attention group:Word Category: F (2,40)¼ 20.2, p < .001; linear

effect of category: F (1,20) ¼ 32.6, p < .001; Divided Attention

group: Word Category: F (2,48) ¼ 11.7, p < .001; linear effect of

category: F (1,24) ¼ 32.7, p < .001]. Thus, both groups acquired

significant explicit knowledge of the statistical structure of the

speech stream. However, contrary to our hypothesis, there

was no significant evidence that learners in the Divided

attention group showed reduced explicit knowledge of the

component words, a null finding that we consider further in

the Discussion section.

3.1.3. Target detection task
RTs are plotted in Fig. 2B. Across all participants, RTs showed

the expected decrease for later syllable positions [Position

effect: F (2,88) ¼ 44.8, p < .001; linear effect: F (1,44) ¼ 75.2,

p < .001; Position (linear effect) x Group effect: F (1,44) ¼ 4.03,

p ¼ .051; h2 ¼ .084; BF10 ¼ 1.31; Fig. 2B, top panel]. Across all

syllable positions, participants in the Full Attention condition

responded significantly more quickly than participants in the

Divided Attention condition [Group effect: F (1, 44) ¼ 4.86,

p ¼ .033]. Adjusting for baseline differences in RTs, the Full

Attention group showed a significantly larger RT prediction

effect compared to the Divided Attention group, indicative of

stronger statistical learning [t (44) ¼ �2.16, p ¼ .038; Full

Attention group: 18.3% decrease in RT from Position 1 to 3;

Divided Attention group: 10.9% decrease; Fig. 2B, bottom

panel].

Overall, participants detected 83.0% (SE ¼ 2.6%) of targets

and made an average of 18.9 (SE ¼ 2.1) false alarms. This

represents adequate performance for a task of moderate dif-

ficulty. Accuracy did not differ as a function of syllable posi-

tion (p > .7).

3.1.4. Correlation between familiarity-rating and target
detection tasks
The familiarity rating score and the RT prediction effect

showed a significant across-participant correlation (r ¼ .43,

p ¼ .003).

https://doi.org/10.1016/j.cortex.2019.01.013
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c o r t e x 1 1 5 ( 2 0 1 9 ) 5 6e7 1 65
3.2. Neural entrainment results

3.2.1. Effect of attentional manipulation on neural
entrainment
ITC as a function of frequency and group, computed across the

entire exposure period, is shown in Fig. 3. Consistent with our

prior results (Batterink & Paller, 2017a, b), there were clear

peaks at the word and syllable frequencies, as well as the

frequency corresponding to the second harmonic of the word.

ITCword was not significantly different between the two groups

[Word: F (1,72) ¼ .067, p ¼ .80]. In contrast, ITCsyllable was

significantly larger in the Full Attention group [F (1,54) ¼ 5.96,

p ¼ .018], suggesting that neural sensory responses to the in-

dividual syllables in the stream were enhanced with greater

attention.

3.2.2. Time course of learning
Our time-course analysis replicated our previous findings

(Batterink & Paller, 2017a, b), revealing a significant linear in-

crease in neural entrainment at the word frequency and a

significant linear decrease in neural entrainment at the syl-

lable frequency as exposure progressed [Word Presentation:

ITCword: F (1,2481) ¼ 9.89, p ¼ .002; ITCsyllable: F (1,2478) ¼ 6.74,

p ¼ .009]. This relative shift in entrainment towards the word

frequency and away from the syllable frequency reflects the

progression of learning over time. Although these effects were

significant when computed across the entire exposure period,

a closer examination of the data revealed that changes in

neural entrainment as a function of word repetition primarily

occurred during the first half of exposure [ITCword: F

(1,1282) ¼ 21.5, p < .001; ITCsyllable: F (1,1278) ¼ 32.8, p < .001;

Fig. 4], with no further changes occurring in the second half of

exposure [ITCword: F (1,1154) ¼ 1.83, p ¼ .18; ITCsyllable: F
Fig. 3 e ITC as a function of frequency and group,

computed across the entire exposure period. Shaded

regions represent the mean ± SEM. Slightly different

stimulus presentation rates were used across participants

(see text), and thus the frequencies depicted on the x-axis

are expressed relative to the word, second harmonic, and

syllabic frequencies used for each individual participant,

rather than in numerical terms.
(1,1153) ¼ .19, p ¼ .67]. Thus, learning progressed in the first

half of exposure only, and was followed by a plateau in the

second half of exposure, with ITC values in the second half

reflecting final levels of attainment.

To examine whether learning showed a different progres-

sion over time as a function of our attentional manipulation,

we compared the time course of learning between the two

groups within the first half of exposure, when there was evi-

dence of a learning progression across participants. Change in

ITCword over the first half of exposure did not significantly

differ between the two groups [Attention condition x Word

Presentation: F (1,1282) ¼ .30, p ¼ .59]. Final ITCword values,

computed over the second half of exposure, also did not differ

between the two groups [Attention condition: F (1,543) ¼ .89,

p ¼ .35]. In contrast, ITCsyllable showed a more rapid decline

over the first half of exposure in the Full Attention condition

compared to the Divided Attention condition [Attention

condition x Word Presentation: F (1,1153) ¼ 14.6, p < .001].

However, this finding is somewhat difficult to interpret, as the

Full Attention group had higher overall ITCsyllable values.

Although ITCsyllable declinedmore rapidly in the Full Attention

group in the first half of exposure, these values remained

higher in the Full Attention group compared to the Divided

Attention group in the second half of exposure [Attention

condition: F (1,255) ¼ 11.4, p ¼ .001].

In summary, no significant differences were found in the

time course of online word perception between the two

groups, as reflected by neural entrainment at the word fre-

quency. That is, both groups appear to have extracted the

word structure from the speech stream at similar rates.

Interestingly, we also found evidence that learning progressed

primarily in the first half of the exposure period (~6 min) for

both groups, reaching a plateau by the second half of

exposure.

https://doi.org/10.1016/j.cortex.2019.01.013
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3.2.3. Relationship between neural entrainment and
behavioral measures of statistical learning
Relative neural entrainment to the word frequency across the

Exposure period significantly predicted the RT prediction ef-

fect on the target detection task, our main measure of statis-

tical learning. A regression model with WLI and Group as

predictors significantly predicted the RT prediction effect [F

(2,43) ¼ 5.40, p ¼ .008]. Both variables made significant inde-

pendent contributions to the model [Group: t (43) ¼ 2.84,

p¼ .007;WLI: t (43)¼ 2.31, p¼ .026]. These results indicate that

the Full Attention group showed a larger RT prediction effect

than the Divided Attention group. In addition, independently

of this group effect, learners who showed relatively greater

neural entrainment at the word frequency compared to the

syllable frequency, as reflected by a larger WLI, showed a

larger RT prediction effect, indicative of better statistical

learning (Fig. 5).

In contrast to performance on the target detection task, the

regression model with WLI and Group did not predict the fa-

miliarity rating score [F (2,43)¼ 1.22, p¼ .31]. Neither predictor

in themodel was significant (both p values > .14). Performance

on the target detection task may be a more sensitive measure

of statistical learning compared to performance on the

familiarity-rating task. This finding is consistent with results

fromour previous study, in whichwe also found no significant

relationship between neural entrainment patterns and

explicit familiarity rating scores (Batterink & Paller, 2017a, b).

3.3. ERP manipulation checks

3.3.1. P300 response to images from 3-back task
Participants in the Full attention condition were asked to

attend fully to the speech stream, whereas participants in the

Divided Attention condition were asked to concentrate on the

kaleidoscope images and ignore the speech stream. Reflecting

this experimental manipulation, the P300 response to visual
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Fig. 5 e Partial correlation between the online Word

Learning Index (WLI) and the RT prediction effect on the

target detection task, controlling for the effect of group (Full

vs Divided Attention). The adjusted values shown in this

graph represent the residual values for the WLI and RT

effect variables after adjusting for the effect of attention

group. Greater neural entrainment at the word level

relative to the syllable level predicts a larger RT prediction

effect.
images for participants in the DividedAttention conditionwas

much larger than for participants in the Full Attention con-

dition [Group effect: F (1,44)¼ 61.74, p < .001; Fig. 6A]. Across all

participants, the P300 was maximal over midline and poste-

rior electrodes [Anterior/Posterior: F (2,88)¼ 23.4, p < .001; Left/

Midline/Right: F (2,88) ¼ 11.2, p < .001], consistent with the

expected distribution of a P3b. These results serve as a

manipulation check and confirm that participants in the

Divided Attention condition allocated more attention to the

visual images than participants in the Full Attention

condition.

3.3.2. Early N1 sensory response to individual syllables
As shown in Fig. 6B, participants in the Divided Attention

condition showed a reduced early negativity/N100 response to

individual syllables in the speech stream, relative to partici-

pants in the Full Attention condition [Group effect: F

(1,44) ¼ 4.27, p ¼ .045]. This group difference was marginally

larger over frontal sites compared to central sites [Group

effect x Anterior/Posterior: F (1,44) ¼ 3.25, p ¼ .078]. These re-

sults provide additional verification that participants in the

Divided Attention condition allocated less attention to the

auditory speech stream than did participants in the Full

Attention condition. Although N100 amplitude was numeri-

cally larger to first syllables compared to third syllables, this

difference was very small and not statistically significant

[Position effect: F (1,44) ¼ .57, p ¼ .45; all interactions ns, p > .2;

Fig. 6C].
 7.5 µV

P300

AFz

-1 µV

 1 µV

300 ms

N100

AFz

-1 µV

 1 µV

300 ms

N100

Fig. 6 e ERP results to visual and auditory stimuli, by group.

(A) ERP grand averages to images from visual 3-back task.

(B) ERP grand averages to individual syllables in the speech

stream. (C) ERP grand averages to individual syllables in

the speech stream as a function of syllable position, across

all participants.
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4. Discussion

We designed this experiment to test whether concentration of

voluntary, top-down attentional resources influences two

dissociable components of statistical learning, namely the

perceptual binding of neighboring syllables into component

words, and subsequent memory storage and retrieval of the

acquired word representations. Both of these components are

expected to critically influence performance on offline tests of

statistical learning. Focused attention to the speech stream

influenced the sensory processing of stimuli as expected, but

interestingly did not impact the online perceptual binding of

syllables. Learners in both the Divided and Full Attention

groups showed similar overall levels of neural entrainment to

the underlying words, and also showed similar learning pro-

gressions, as reflected by time-course analyses. In contrast,

attention did impact the acquiredmemory representations, at

least as assessed by performance on one of the two offline

tasks. Specifically, reducing attention to the speech stream

resulted in smaller RT prediction effects on the target detec-

tion task, potentially reflecting weaker representations of the

words in memory. However, contrary to our hypothesis, no

effect of our attentional manipulation on offline familiarity

ratings was found. In addition, learners in the Divided

Attention group still showed evidence of robust statistical

knowledge on both the familiarity-rating and target detection

tasks. Taken together, these findings suggest that (1) con-

centration of attention during training does not strongly in-

fluence the perceptual component of statistical learning, but

plays some role in subsequentmemory-related processes, and

(2) both the perceptual and memory-related components of

statistical learning can occur “in the background,” while

learners are engaged in a demanding concurrent task, at least

to some degree.

We confirmed using neural measures that our attentional

manipulation was successful and that sensory responses to

the individual syllables in the stream were enhanced with

greater attention. One group of learners was allowed to focus

fully on the speech stream (Full Attention group), whereas the

other group was required to perform a demanding visual N-

back task with the auditory speech stream presented outside

their primary focus of attention (Divided Attention group).

Neural entrainment to the raw syllable frequency was

significantly larger in the Full Attention group, reflecting

enhanced sensory processing of individual syllables. In addi-

tion, ERP measures demonstrated that participants in the

Divided Attention group allocated greater attention/limited-

capacity processing resources to the visual images, and

correspondingly less of these resources to the auditory speech

stream, relative to participants in the Full Attention group.

First, P300 to the visual imageswasmuch larger in the Divided

Attention group compared to the Full Attention group. Given

that posterior P300 is associated with voluntary attention,

task-relevant processing, context updating, and memory

storage (Polich, 2007; Soltani & Knight, 2000), this finding in-

dicates that Divided Attention participants allocated more

attentional resources to the visual task relative to the Full

Attention participants. In addition, participants in the Full

Attention group showed an enhanced early N1 response to the
individual syllables. In light of previous ERP studies showing

modulations by selective auditory attention (e.g., Hillyard,

Hink, Schwent, & Picton, 1973), this N1 result demonstrates

that Full Attention participants allocated greater processing

resources to the speech stream relative to Divided Attention

participants, and converges with the observed neural

entrainment effect at the syllable frequency.

Overall, across both groups, our results replicated our

previous findings on the time course of neural entrainment

and the relation of neural entrainment to other measures of

statistical learning (Batterink & Paller, 2017a, b). We again

demonstrated that neural entrainment simultaneously in-

creases at the word level and decreases at the syllable level as

a function of exposure, tracking the progression of learning.

This frequency shift in entrainment over time points to a

gradual perceptual transformation that accompanies statis-

tical learning, whereby processing is initially dominated by

low-level, bottom-up sensory input at the single syllable level

but is increasingly driven by the perception of larger inte-

grated words. That is, as syllables are bound together into the

most relevant units (in this case, trisyllabic words), entrain-

ment is reduced at nontarget or irrelevant frequencies while

enhanced at the most relevant item frequency. Interestingly,

by using a fine-grained analysis of the online measure to

characterize the time course of learning, we found that

learning progressed only in the first half of the exposure

period (~6 min), with a plateau occurring in the second half.

This result is consistent with recent RT evidence mapping the

trajectory of statistical learning, which points to a relatively

fast increase in learning early in exposure, followed by a

period of no further learning that consists of only random

fluctuations around a fixed value (Siegelman et al., 2017).

These time course data also mirror ERP effects indexing sta-

tistical learning, such as theN400 effect, which emerge rapidly

after only a short period of exposure to structured input and

then stabilize (Cunillera et al., 2009) or even disappear (Abla,

Katahira, & Okanoya, 2008). We also replicated our finding

that overall level of neural entrainment to words relative to

syllables predicts performance on the target detection task.

Learners who showed a greater tendency to bind neighboring

syllables into coherent word units, as measured through

neural entrainment, also showed a larger RT effect, reflecting

greater facilitation in processing from knowledge acquired

through statistical learning. Taken together with our prior

report (Batterink & Paller, 2017a, b), these findings further

validate our neural entrainment measure of statistical

learning.

4.1. Effects of attention on dissociable components of
statistical learning

As described in the Introduction, the goal of our study was to

investigate whether attention and associated limited-capacity

resources play a role in two conceptually dissociable aspects

of statistical learning: online perceptual binding of underlying

words and subsequent memory storage/retrieval processes.

Our results suggest that focused attention does not play a

major role in the online perceptual component of statistical

learning as assessed through our neural entrainment mea-

sure. Although entrainment at the syllable level was
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enhanced with greater attentiondpresumably reflecting a

gain in sensory processing of the individual syllablesdno

group differences were observed at theword level. In addition,

we found no evidence that the two groups differed in the

progression of neural entrainment to words, even using a fine-

grained approach to characterize the time course of learning.

These results suggest that reducing attentional processes to

the speech stream does not greatly impact learners’ ability to

extract relevant statistical probabilities from speech and

perceptually group individual syllables into component

words.

In contrast to our finding that attentional resources do not

impact neural entrainment to underlying component words,

the two groups showed significant differences on one of our

two offlinememory tasks, the target detection task. Even after

accounting for baseline differences in RT, learners in the Full

Attention condition showed a larger RT prediction effect, as

assessed by the relative speed-up to predictable compared to

unpredictable syllables. This result indicates that allocating

greater attention to the speech stream resulted in stronger

memory representations of the component words, allowing

Full Attention learners to more efficiently process and predict

syllables that occurred in later, more predictable positions. In

addition, learners in the Full Attention condition responded

significantly faster to all target syllables (across the three

syllable positions) compared to learners in the Divided

Attention condition. One possibility is that stronger acquired

memory representations of the component words may have

allowed Full Attention learners to better predict later syllable

targets as well as initial syllable targets, which are still highly

predictable given the limited word inventory of the speech

stream (consisting of a .33 transitional probability, given that

no word was repeated immediately within the stream).

Another possibility is that this overall RT difference between

the groups may reflect a difference in perceptual sharpening

or perceptual tuning produced by the attentional manipula-

tion. By attending more fully to the speech stream, learners in

the Full Attention condition may have developed clearer and

sharper perceptual representations of the individual syllables,

which may then have allowed them to respond more quickly

to all syllables, regardless of their position within the

component words.

However, on the familiarity-rating task, we found no sig-

nificant differences in accuracy between the two groups, with

both groups showing evidence of learning. Although learners

in the Full attention group showed better accuracy numeri-

cally on this task than learners in the Divided attention group,

this difference was small and did not reach significance

(p¼ .18). This finding is counter to our original hypothesis that

the Divided attention group would show impaired familiarity-

rating accuracy, consistent with the well-established finding

that explicit memory is impaired when attention is divided

between two tasks at encoding (e.g., Craik, Govoni, Naveh-

Benjamin, & Anderson, 1996). One possible reason for this

null group effect may be a lack of sensitivity of the familiarity-

rating task. We and others have shown in prior work that

direct memory tasks, such as recognition tests and explicit

familiarity ratings, may be less sensitive indices of statistical

learning compared to indirect memory tasks such as the

target detection task (Batterink et al., 2015a, b; Siegelman
et al., 2016; Siegelman et al., 2017). In particular, direct mea-

sures may underestimate the total amount of knowledge

produced by statistical learning and can be contaminated by

other cognitive processes not of direct interest, such as indi-

vidual differences inmemory retrieval or strategic processing.

Consistent with this idea, participants’ performance on this

task across both groups was relatively poor, with the average

familiarity rating for words versus nonwords differing by only

.78 out of a maximum possible difference of 3 (see Fig. 2A).

Thus, although the task was sufficiently sensitive to reveal

evidence of statistical learning across learners, it may not

have been sensitive enough to demonstrate group differences

in memory, at least with the current sample size. We specu-

late that a more sensitive measure of explicit memory may

have successfully revealed explicit memory differences be-

tween the two groups, though testing this idea awaits further

methodological refinement.

The present study hasmany parallels in design and aims to

a recent study of rule learning (L�opez-Barroso, Cucurell,

Rodrı́guez-Fornells, & de Diego-Balaguer, 2016). This study

examined the role of attention in the learning of nonadjacent

AXC rule dependencies, in which the third syllable of a

nonsense word is predicted by the first syllable. Attention was

manipulated through a word monitoring task in which par-

ticipants were asked to detect C targets contained within only

one of three AXC structures; in other words, A1XC1 was

attended, while A2XC2 and A3XC3 rules were unattended.

Learning was assessed using both an indirect target detection

task aswell as a direct test requiring explicit judgments of rule

violations. Similar to the present study, attention resulted in

faster overall responses on the target detection task, with

participants responding faster to previously attended targets

(i.e., C1) compared to previously unattended targets (i.e., C2

and C3). Nonetheless, evidence of learning on this target

detection task was also found for unattended rules, as

assessed by faster responses to rules (e.g., A2XC2) compared to

non-rules (e.g., XXC2). Consistent with our findings, this sug-

gest that increased attention enhances memory-related pro-

cesses and facilitates performance on subsequent indirect

tests of memory, but that some learning can also occur even

with minimal focused attention.

To summarize, we found evidence that our attentional

manipulation influenced performance on the target detection

task, an indirect measure of memory, but not our online

neural entrainment measure or on familiarity ratings. Given

our assumption that the post-exposure target detection task is

sensitive to both the perceptual binding and subsequent

memory storage components of statistical learning, whereas

neural entrainment is sensitive to only perceptual binding,

these findings suggest that attention impacts only the mem-

ory storage component of statistical learning. We found no

evidence that focused attention modulates perceptual

binding.

4.2. Statistical learning can proceed outside the focus of
attention

Our study also sheds light on the extent to which statistical

learning can proceed outside the focus of attention. Interest-

ingly, learners in the Divided Attention condition showed
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robust evidence of learning on all measures of statistical

learning, including theWLI, offline familiarity ratings, and RTs

on the target detection task. Taken together, these results

indicate that both components of statistical lear-

ningdperceptual binding of underlying words and subse-

quentmemory-related processesdcan proceedwhile learners

are performing an attention-demanding visual task. At the

same time, we cannot rule out the possibility that some

amount of voluntary attention and working memory re-

sources are necessary for both components of statistical

learning. Although they had no reason to do so intentionally,

learners in the Divided Attention condition may have alter-

nated their focus of attention and associated processing re-

sources from the visual task to the auditory speech stream.

These residual levels of attention and working memory re-

sources may have been sufficient to support learning. Thus,

our study is constrained by the same limitation facing virtu-

ally all studies of selective attentiondwe can experimentally

reduce attentional resources to a given process of interest, but

cannot completely abolish it. Nonetheless, our converging

results from all measures conclusively demonstrate that sta-

tistical learning can occur with stimuli that learners have

been instructed to ignore, outside of the direct focus of

attention.

The current findings are consistent with several previous

studies that indicate that learners can carry out attention-

demanding tasks while simultaneously acquiring the statis-

tics of sensory input that lies outside their primary focus of

attention (Fernandes et al., 2010; Musz et al., 2015; Saffran

et al., 1997), at least for salient statistical units (Fernandes

et al., 2010). However, on the surface they are inconsistent

with work conducted by Toro et al. (2005) and Palmer and

Mattys (2016), which both involved visual N-back tasks to

divert learners’ attention away from the speech stream,

similar to our experimental manipulation. In contrast to the

current findings, both these studies found that reducing

attention to the speech stream negatively impacted perfor-

mance on a forced-choice recognition task. One critical

feature that may distinguish our study from these prior

studies is the stimulus presentation rate used in the visual

distractor task, which may have placed heavier demands on

selective attention and weaker demands on working memory

relative to the present study. In the Toro study (Experiment 2),

participants performed a 1-back task on a stream of pictures,

presented at a rate of either 500 or 750 msec per item. Palmer

and Mattys (2016) used a 2-back task on unnameable visual

shapes presented at a rate of 750 msec. In contrast, we used a

3-back task, with each visual stimulus presented for relatively

long durations (2400e5000 msec). Thus, relative to the dis-

tractor tasks used by these previous studies, our task was less

taxing at the perceptual level of attentional selection, but

placed higher loads on working memory, requiring partici-

pants to actively maintain multiple visual stimuli for long

periods of time.

Taken together, these results suggest that statistical

learning may critically depend on the attentional selection of

input at the early perceptual stage, but to a lesser extent on

later, post-perceptual resources, including working memory.

In other words, as long as initial perceptual encoding of the

incoming stimuli occurs without impairment, statistical
learning may occur even when central executive functions

and limited-capacity resources are occupied through a

demanding secondary task.

4.3. Potential implications for language acquisition

One of the major findings of this studydthat statistical

learning can occur even when attentional and limited-

capacity central resources are being actively consumed by

a concurrent taskdhas important implications for language

acquisition. This result suggests that learners may benefit

from exposure to a novel spoken language even when their

attentional focus is engaged by a competing task, such that

expertise with statistical regularities of the input could be

acquired without specific intention or mental effort. That is,

acquiring the statistics of linguistic input may occur not

only when learners have the opportunity to actively focus

on the target language, but also “in the background.” By

capitalizing on this feature of statistical learning, learners

may be able to speed up the process of speech segmentation

of an unfamiliar language. For example, immigrants to a

new country may facilitate their language acquisition by

regularly having the radio or TV on in their home while they

go about everyday tasks. By extension, exposure to the

statistics of a new language may even be helpful when

presented during sleep (Batterink & Paller, 2017b; Schreiner

& Rasch, 2017). Although it will be important to determine

whether the artificial speech segmentation paradigm used

in this study scales up to language learning outside the

laboratory, the finding that statistical learning can occur

without focused attention may potentially allow for novel,

low-cost, and low-effort interventions to enhance some

aspects of language acquisition, particularly in adult

learners for whom acquiring a new language can be partic-

ularly challenging.

4.4. Future directions and conclusions

A number of questions concerning the role of attention and

limited-capacity resources in statistical learning remain.

Although the perceptual component of statistical learning

was not impacted by our attentional manipulation using a

cross-modality distractor task, attentional costs may be

demonstrated under other circumstances, as we have noted

previously. For example, given that effects of attention are

typically more robust within modalities than across modal-

ities (i.e., Duncan, Martens, & Ward, 1997; Soto-Faraco &

Spence, 2002; Treisman & Davies, 1973; Wickens, 1984), a

question for future research iswhether learning compromised

when attention is diverted to a competing auditory task (e.g.,

detecting auditory targets in a competing auditory stream).

Another question is the extent to which competing linguistic

tasks, such as silent reading, may compromise this type of

learning.

Taken together, the present results suggest that focused,

directed attention to input plays a limited and non-essential

role in a critical component of statistical learning, the online

perceptual binding of syllable forming component words. In

contrast, reduced attention significantly impacts the mem-

ory storage component of statistical learning. Nonetheless,
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evidence of robust learning was found at both levels of

attention, across all experimental measures, indicating that

both components of statistical learning can occur even when

speech input is outside of learners’ targeted focus of atten-

tion. In addition to providing insight into the necessary and

sufficient conditions for statistical learning, these results

also have important implications for language acquisition,

potentially opening up previously overlooked opportunities

for learning.
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