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Abstract 

Sleep plays a crucial role in memory consolidation and has been shown to benefit various types of 
memory. These beneficial effects, once believed to originate from sleep’s protection from external and 
internal interference, are now thought to stem primarily from reactivation of previously acquired 
memories during sleep. Sleep-based alterations in memory storage involve temporally synchronized 
brain waves: hippocampal sharp-wave ripple complexes, thalamocortical sleep spindles, and cortical 
slow waves. Mechanisms of memory reactivation differ across the classic stages of sleep, such as slow-
wave sleep and rapid-eye-movement sleep. The unique contributions of each sleep stage are not fully 
understood, although slow-wave sleep appears to be particularly critical for the neocortical-based 
consolidation of declarative memories, facilitating the recall and recognition of facts and events. During 
sleep, a dynamic interaction between the hippocampus and neocortex can serve to gradually reinforce 
and transform cortical memory traces. Sleep can thus support stabilization of new memories, 
integration of new knowledge with existing knowledge, selective strengthening of aspects of some 
memories, and extraction of gist or discovery of rules within complex collections of memories. This 
chapter surveys the leading approaches to studying sleep’s role in memory, and also examines the 
future potential of sleep-based applications and technologies that might prove useful for treating 
certain neurological and psychiatric disorders, or for general memory enhancement in healthy 
populations. 
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1 Introduction 

Although humans spend about a third of their lives asleep, comprehensively understanding the 
functions of sleep is a supreme challenge. Sleep has been linked to neural development (Kurth 
et al., 2016; Mirmiran et al., 1983), immune function (Besedovsky, Lange, & Born, 2012), 
endocrine function (Spiegel, Knutson, Leproult, Tasali, & Van Cauter, 2005), clearance of 
Alzheimer-related proteins from the cerebrospinal fluid (Mander, Winer, & Walker, 2017; Xie et 
al., 2013), and emotion regulation (Yoo, Gujar, Hu, Jolesz, & Walker, 2007). Yet, memory 
consolidation is arguably one of the most extensively studied function of sleep. In this chapter, 
we introduce relevant characteristics of sleep and review the literature on sleep’s role in 
stabilizing and transforming different types of memory. Whereas sleep benefits both post-sleep 
memory encoding and the processing of previously acquired information, we focus on the latter 
in this chapter, emphasizing slow-wave sleep. We rely mostly on human studies but include 
some notable findings from the animal literature. A more comprehensive review of sleep and 
memory was published by Rasch and Born (2013).  

1.1 Introduction to sleep 

By convention, human sleep is divided into the stage of rapid eye movement (REM) 
sleep and three distinct stages of non-REM sleep: stages N1, N2 and N3. Although all 
three of these non-REM stages are different from REM sleep, the term non-REM or 
NREM commonly refers only to N2 and N3. Stage N1 is the shallowest stage of sleep, 
normally occurring immediately after sleep onset or following brief arousals, and lasting 
only a few minutes on each occasion. Stage N2 is the most dominant stage of sleep, 
typically occupying about 50% of total sleep time in adults. Stage N3, also termed slow-
wave sleep (SWS), is the deepest stage of sleep and occupies about 20% of total sleep in 
young adults. REM sleep occupies a similar amount of time. Although all stages of sleep 
occur throughout the night, REM sleep is more prevalent in the second half of the night, 
whereas SWS is more prevalent in the first half. A night of sleep typically includes a 
series of REM/NREM cycles that each last 90-120 minutes (Figure 1). 

 

 

Figure 1: Stages of sleep over the course of a typical night. 

Sleep stages are commonly characterized based on the electrical activity recorded using 
scalp electroencephalography (EEG), supported by electrooculography (EOG) and 
electromyography (EMG). The combined recording of these three forms of electrical 
activity during sleep is termed polysomnography (PSG). 
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Each stage of sleep is characterized by certain EEG waveforms (Figure 2). NREM sleep 
includes two characteristic EEG waveforms: K-complexes, which last about 1 second and 
include a sharp negative voltage peak; and sleep spindles, 11-16 Hz waveforms typically 
lasting 0.5-1 seconds. As its name suggests, SWS is characterized by slow (0.5-4 Hz), 
high-amplitude waves that dominate the EEG signal. The slowest of these waves, lasting 
1-2 seconds (0.5-1 Hz), are often termed slow oscillations. During REM sleep, the EEG 
signal consists of mixed-frequency wake-like waveforms accompanied by intermittent 
bursts of rapid eye movements (Figure 2d) and a substantial decrease in muscle tone.  

Another electrophysiological waveform of importance for our discussion is the 
hippocampal sharp-wave ripple complex (SWR; Figure 2e), although it is not specific to 
sleep and cannot be detected from the scalp EEG. SWRs are correlated with elevated 
hippocampal firing. During sleep, these 80-300 Hz waveforms are nested within spindle 
troughs (Clemens et al., 2011; Siapas & Wilson, 1998; Sirota, Csicsvari, Buhl, & Buzsaki, 
2003). Spindles, in turn, are often nested in slow oscillations (Battaglia, Sutherland, & 
McNaughton, 2004; Clemens et al., 2007; Diekelmann & Born, 2010; Helfrich et al., 
2019; Staresina et al., 2015). Slow oscillations can be divided into two parts, the positive 
half cycle or up-state, when neuronal firing in the cortex is high, and the negative half 
cycle or down-state, which is a period of widespread neuronal quiescence. Thus, 
spindles are phase-amplitude coupled with slow oscillations in that fast spindles (>13 
Hz) occur mostly in the up-state and slow spindles (≤13 Hz) mostly in the hyperpolarizing 
down-state (Cox, van Driel, de Boer, & Talamini, 2014; Klinzing et al., 2016; Molle, 
Bergmann, Marshall, & Born, 2011). As discussed below, this temporal pattern of cross-
frequency coupling has been associated with memory consolidation during NREM sleep. 

 

Figure 2: Typical electrographic waveforms observed during sleep. (a) K-complex. (b) 
Sleep spindle. (c) Slow waves. (d) Rapid eye movements. (e) Sharp-wave ripple 
complexes (blue trace). Data from electrode Fz (a-c), the left and right EOG electrodes 
(d), and hippocampal EEG in humans. Panel (e) adapted from Zhang, Fell, and Axmacher 
(2018), use permitted under Creative Commons license: 
http://creativecommons.org/licenses/by/4.0. 
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1.2 A brief historic review of research on sleep and memory 

The oldest known statement regarding sleep’s beneficial role for memory is from the 
first century CE Roman rhetorician, Quintilian, who observed that “a single night will 
greatly increase the strength of memory.” But it was only after Ebbinghaus’ (1885) 
momentous discovery of forgetting curves that several studies explored the role of sleep 
in memory (e.g., Heine, 1914). The first systematic study backing Quintilian’s claim was 
provided by Jenkins and Dallenbach (1924), who showed that memory for a list of 
nonsense syllables was better following eight hours of nocturnal sleep than after an 
equivalent period of daytime wake. Jenkins and Dallenbach’s results were originally 
interpreted as evidence for sleep’s passive, protective role in preventing the effects of 
interference on previously acquired memories. It wasn’t until the 1960s, after the 
identification of REM sleep (Aserinsky & Kleitman, 1953), that the relationship between 
sleep and memory was more extensively studied. The idea of passive protection through 
sleep has continued to be relevant for this research, along with the intriguing idea that 
sleep actively shapes memory through yet-to-be elucidated mechanisms. 

The modern age of research in the field started in the 1990s, with the discovery of 
hippocampal replay (i.e., the reactivation of learning-related neural ensembles during 
sleep, first revealed in rodents; Pavlides & Winson, 1989; Wilson & McNaughton, 1994). 
Importantly, this finding fits with the idea of active memory processing during sleep, 
rather than sleep simply sheltering memories from interference (see Section 3 for 
further discussion). Since that seminal discovery, a series of major advances have 
shaped our understanding of memory consolidation during sleep. The focus on REM 
sleep’s importance for consolidation (e.g., Hennevin, Hars, Maho, & Bloch, 1995; Smith, 
1995; Winson, 1985) gradually shifted to an emphasis on NREM sleep. A major 
milestone in these studies was the development of targeted memory reactivation 
(TMR), a paradigm involving the unobtrusive presentation of learning-related stimuli 
during sleep, putatively triggering the reactivation of the memory trace in a manner akin 
to replay. TMR has been shown to improve memory on various tasks, demonstrating 
that memory reactivation during sleep can strengthen memory in humans (Rasch, 
Buchel, Gais, & Born, 2007; Rudoy, Voss, Westerberg, & Paller, 2009).  

1.3 The evolution of memory during sleep 

The term “memory consolidation” has been used in diverse ways to describe the off-
line, post-encoding processes by which memories are stabilized, maintained, and 
transformed. Despite its prevalence, the term is rather ambiguous. Consolidation can 
unfold differently for different types of memory and can encompass a number of 
processes that alter memory storage. 

Several considerations can help clarify the different meanings of consolidation. First, 
consolidation is classically divided into synaptic consolidation (the process by which 
synapses are shaped by long-term potentiation over a period of hours) and systems 
consolidation (the process by which memory traces are modified and shaped at the 
systems level over time scales ranging from several hours to several weeks or longer). 
For the sake of our discussion, we will emphasize the latter meaning. Second, 
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consolidation is not limited to sleep; at present, the relationship between consolidation 
during waking periods and sleeping periods is not clear (Tambini & Davachi, 2019). 
Third, different types of memory undergo consolidation processes that are qualitatively 
different and rely on different neural substrates. For example, consolidation of 
declarative memories (i.e., memories for facts and events) is thought to rely on the 
hippocampus, whereas consolidation of nondeclarative memories (e.g., motor skill 
expertise or the utilization of statistical regularities) is not. Still, there are exceptions to 
such a strict dichotomy, in that memories can be dependent on a combination of two 
memory systems (e.g., Schapiro et al., 2019). 

Finally, the term consolidation may refer to different processes that memories undergo. 
For example, a plethora of studies reviewed below have shown that sleep not only 
stabilizes memories, but can also enhance them, integrate them into networks of 
preexisting memories, and extract gist or rules from larger ensembles of newly learned 
information, fostering subsequent creative insight. In addition, sleep can selectively 
maintain or enhance some memories or even parts of memories while allowing other 
memories and parts of memories to be forgotten. The use of a single umbrella term – 
consolidation – to describe these many processes may therefore be misleading. This led 
Walker and Stickgold (2010) to suggest the term “memory evolution” to describe this 
assemblage of off-line memory processing mechanisms. For simplicity and consistency 
with previous literature, we use the term “consolidation” in this chapter to encompass 
all these diverse forms of processing, but these complexities should be kept in mind. 

2 The leading hypothesis – sleep selectively strengthens memory 

2.1 The active systems consolidation hypothesis  

The notion of an active memory consolidation process can be traced back to Ebbinghaus 
(1885) and then Müller and Pilzecker (1900), who concluded that memories can develop 
over time after initial encoding. Another four decades passed before Duncan (1949) 
demonstrated that consolidation could be interrupted by electroconvulsive shock, and 
then it was another decade before Flexner, Flexner, and Stellar (1963) showed 
consolidation to be an active process dependent on protein synthesis.  

The earliest proposal for a two-stage model of memory consolidation can be ascribed to 
Marr (1971), who hypothesized that new memories are first encoded and stored using a 
so-called “fast learner” and only later are strengthened and stabilized by a slower, but 
more stable, learner. This model was later expanded to describe the manner in which 
the hippocampus and the neocortex interact in encoding and storing declarative 
memories (McClelland, McNaughton, & O'Reilly, 1995; Squire & Alvarez, 1995; Norman, 
Newman, & Perotte, 2005). The two separate stores of information, in the hippocampus 
and neocortex, enable the system to keep forming new memories without overwriting 
previously learned ones. A major pillar of this hypothesis is that memories that are 
indexed by the hippocampus are repeatedly reactivated over time and that these 
reactivations create the cortical infrastructure supporting enduring storage of a memory 
that is no longer dependent on the hippocampus for recall. This basic model remains 
highly influential, despite being challenged by evidence of a more sustained role for the 
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hippocampus for certain highly recollective memories (Nadel & Moscovitch, 1997; but 
see Barry & Maguire, 2019; Gilmore et al., 2020). 

One of the most important achievements of the last 25 years of research on sleep and 
memory was the elaboration of the active systems consolidation hypothesis (Rasch & 
Born, 2007, 2013). Building on Marr’s two-stage model (Marr, 1971), the active systems 
consolidation hypothesis asserts that the shaping of cortical memory traces based on 
hippocampal traces takes place predominantly during SWS, when hippocampal-cortical 
communication is engaged through interactions among slow waves, spindles, and SWRs. 
Hippocampal reactivations coincide with SWRs in the hippocampus, which occur during 
the troughs of thalamocortical spindles (Coon et al., 2019; Siapas & Wilson, 1998; 
Wilson & McNaughton, 1994), which in turn occur during the up-state of cortical slow 
waves (Helfrich et al., 2019; Latchoumane, Ngo, Born, & Shin, 2017). Over time, the 
neocortical memories become more stable and can lose their reliance on the 
hippocampus for successful recall. A similar idea was put forward by Paller and Voss 
(2004), without an emphasis on the physiology of SWS, but with the idea that 
declarative memories change by virtue of reactivation during sleep that engages 
neocortical-hippocampal interaction. They postulated that “memories may not lie 
dormant during sleep, but rather may be receiving regular exercise… sleep is essentially 
a nightly session of psychotherapy… the many hours we spend sleeping may actually 
serve to boost the usefulness of memory change” (Paller & Voss, 2004, p. 667, 669). 

According to the active systems consolidation hypothesis, memories benefit from sleep 
through a selective, active mechanism, such that some memories benefit and others do 
not. Factors found to increase the probability for a sleep-related benefit include: (a) 
memory strength (i.e., memories must not be over-trained, but need to be sufficiently 
encoded to support reactivation; Cairney, Lindsay, Sobczak, Paller, & Gaskell, 2016; 
Creery, Oudiette, Antony, & Paller, 2015; Schapiro, McDevitt, Rogers, Mednick, & 
Norman, 2018; Stickgold, 2009); (b) the emotional intensity associated with the memory 
(Lipinska, Stuart, Thomas, Baldwin, & Bolinger, 2019; Schoch, Cordi, & Rasch, 2017); and 
(c) the perceived relevance of the memory for future behavior (Fischer & Born, 2009; 
Wilhelm et al., 2011; van Dongen et al., 2012). 

2.2 SWS and memory consolidation 

The first studies examining the different roles of REM sleep and SWS in humans used a 
half-night design (also called a split-night design), in which participants acquire new 
memories before either the first or second half of the night and are subsequently tested 
after sleeping for half the night. Memory retrieval performance for these two groups is 
commonly compared with performance of participants in two control groups, who 
learned and were tested in a similar way but spent the intermediate time period awake. 
This design takes advantage of the higher prevalence of SWS sleep in the first half of the 
night and of REM in the second half (whereas N2 is equivalent across both halves and 
therefore has relatively little effect on the comparison). Using this design, Yaroush, 
Sullivan, and Ekstrand (1971) showed that participants improve more in a declarative, 
word-pairs task after SWS-rich sleep than after REM sleep or wake. This dependency of 
declarative memories on SWS has been repeatedly and consistently shown in half-night 
studies (e.g., Daurat, Terrier, Foret, & Tiberge, 2007; Plihal & Born, 1997, 1999).  
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Another approach for studying the significance of SWS for declarative memory is to 
allow a full night of sleep and correlate memory benefit with duration of SWS or amount 
of slow-wave activity (defined as EEG spectral power in the 0.5-4 Hz range). Consonant 
with half-night studies, these studies consistently found positive correlations between 
memory benefits and these SWS measures (e.g., Atherton et al., 2016; Backhaus et al., 
2007; Lau, Tucker, & Fishbein, 2010; Figure 3). Finally, electrical or sensory stimulation 
used to boost slow-wave activity during SWS has concurrently strengthened declarative 
memory (Marshall, Helgadottir, Molle, & Born, 2006; Ngo et al., 2015; Papalambros et 
al., 2017). This result shows that not only is this stage of sleep important for memory 
consolidation, but also the waveforms themselves are of importance. 

 

 

Figure 3: Memory retention over sleep is correlated with the percentage of time spent 
in slow-wave sleep during a night of sleep (adapted from Backhaus et al., 2007; 
copyright 2021 by Cold Spring Harbor Laboratory Press). 

 

Taken together, these findings provide strong evidence for the causal role of SWS in 
sleep-dependent declarative memory consolidation. In addition to these associations 
with memory benefits, SWS has also been associated in some studies with improved gist 
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extraction and generalization (Lewis & Durrant, 2011), as well as the development of 
explicit knowledge regarding hidden rules and patterns embedded in motor tasks 
(Verleger, Rose, Wagner, Yordanova, & Kolev, 2013), although these have also been 
associated with REM sleep (Barsky, Tucker, & Stickgold, 2015) or even inversely with 
SWS (Payne et al., 2009). 

Evidence linking SWS with nondeclarative memory consolidation is not as consistent. 
Nondeclarative learning is not hippocampus-dependent (Cohen & Squire, 1980), but 
may nevertheless depend on reactivation-based mechanisms of consolidation that are 
similar to the mechanism described in the active systems consolidation hypothesis. 
Some studies have found evidence for a beneficial role for SWS in procedural tasks 
(Huber, Ghilardi, Massimini, & Tononi, 2004; Landsness et al., 2009; Stickgold, Whidbee, 
Schirmer, Patel, & Hobson, 2000b), and specifically for spindles occurring during both 
SWS and N2 (Astill et al., 2014; Nishida & Walker, 2007; Rasch, Pommer, Diekelmann, & 
Born, 2009; Wilhelm, Metzkow-Meszaros, Knapp, & Born, 2012). Several studies 
suggest, however, that stage N2 plays a more significant role in procedural learning of 
motor skills relative to SWS (Laventure et al., 2016; Peters, Ray, Smith, & Smith, 2008; 
Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002a). Also, as noted above, REM 
sleep appears to play a major role in the consolidation of what Carlyle Smith has called 
“complex cognitive procedural” learning, such as for the Tower of Hanoi task (Smith & 
Smith, 2003). A major challenge for studies of nondeclarative memory is to avoid 
contamination from explicit learning that may produce declarative memories that 
interact with the nondeclarative ones. One recent study used a nondeclarative motor-
sequence task and found that, unlike healthy controls, hippocampal amnesic patients 
showed no evidence of sleep-dependent memory enhancement (Schapiro et al., 2019), 
suggesting that hippocampal function normally contributes to consolidation during 
sleep even when not needed for initial learning (Sawangjit et al., 2018). 

2.3 Memory reactivation during sleep 

As noted above, the discovery of offline replay in rodents marked the beginning of a 
new age of sleep and memory research. Initially, replay was found to involve the 
reactivation of previously activated hippocampal place cells (i.e., neurons sensitive to 
specific locations) during SWS in rodents (Pavlides & Winson, 1989; Wilson & 
McNaughton, 1994). Since that discovery, however, sequential replay of patterns of 
place cell activation has been observed during waking rest (Karlsson & Frank, 2009; 
Kudrimoti, Barnes, & McNaughton, 1999) and REM sleep (Louie & Wilson, 2001); in 
other areas of the brain, including the cortex (Ji & Wilson, 2007; Olafsdottir, Carpenter, 
& Barry, 2016); and in other species, including songbirds (Dave & Margoliash, 2000) and 
macaques (Hoffman & McNaughton, 2002). Replay, at least in nonhuman animals, is 
involved not only in memory but also in planning and decision making (Olafsdottir, Bush, 
& Barry, 2018; Vikbladh et al., 2019). 

Direct evidence for replay on the cellular level in humans is lacking. However, recordings 
from the human hippocampus during sleep (Helfrich et al., 2019; Staba, Wilson, Bragin, 
Fried, & Engel, 2002; Zhang et al., 2018) have exhibited SWRs, similar to replay on the 
cellular level in nonhuman animals (Wilson & McNaughton, 1994). A recent study in 
humans found that hippocampal SWRs during NREM sleep triggered the reactivation of 
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stimulus-specific neural activity for subsequently remembered items (Zhang et al., 
2018), suggesting that SWRs play a similar role in consolidation for humans as in 
nonhuman animals. 

Adopting a different approach to examining memory reactivation in humans, studies 
using multivariate pattern classification analyses in functional MRI (fMRI), 
magnetoencephalography, and positron emission tomography have produced evidence 
for reactivation of memory-related patterns in both the hippocampus and cortex during 
sleep and awake rest (Alm, Ngo, & Olson, 2019; Deuker et al., 2013; Liu, Dolan, Kurth-
Nelson, & Behrens, 2019; Peigneux et al., 2004; Schapiro et al., 2018; Schuck & Niv, 
2019; Tambini & Davachi, 2013; see Tambini & Davachi, 2019 for review of wake 
reactivation studies). These findings suggest that memory reactivation occurs in 
humans, but the neural substrates and mechanism supporting this process are still being 
explored. Whether these activations occur predominantly during SWS (see Peigneux et 
al., 2003 for reactivation during REM) and whether these neural events are causally 
linked to sleep-based memory consolidation remain open questions. 

A different line of inquiry regarding reactivation in humans postulates that if memory-
reactivation occurs during sleep, these memories may be incorporated into dreams. 
Dreams occur during both REM and NREM sleep, with the former being generally more 
vivid and bizarre (Foulkes, 1962). Several studies have shown that recent memories are 
incorporated into dreams, especially in reports collected from sleep onset (Kusse, 
Shaffii, Schrouff, Matarazzo, & Maquet, 2012; Stickgold, Malia, Maguire, Roddenberry, 
& O'Connor, 2000a). A recent study found evidence for memory-related content during 
all stages of sleep, and these putative reactivations were correlated with subsequent 
post-sleep memory improvements (Wamsley, Perry, Djonlagic, Reaven, & Stickgold, 
2010; Wamsley & Stickgold, 2019). The extant evidence thus suggests that dreams may 
reflect memory reactivation as part of consolidation in the broadest sense.  

2.4 Targeted memory reactivation 

Although many studies in humans and rodents have shown a correlation between 
reactivation and memory enhancement, this evidence does not necessarily mean that 
the relationship is causal — that memory improvement is a consequence of 
reactivation. With targeted memory reactivation (TMR; Oudiette & Paller, 2013), 
learning-associated stimuli are used to induce reactivation during sleep. In their seminal 
study, Rasch and colleagues (2007) incorporated a specific odor during spatial learning 
and exposed participants to the same odor during subsequent SWS to reactivate the 
odor-related memories. They found an increase in spatial memory performance under 
these conditions, but not in control groups. Rudoy and colleagues (2009) extended 
these findings to the auditory modality by pairing related sounds with each of 50 objects 
displayed on a two-dimensional grid. Subjects were trained on object locations and then 
unobtrusively presented with half of these sound cues during N2 and N3 (Figure 4). 
Post-sleep testing revealed a relative increase in spatial memory performance for the 
subset of objects that had been cued during sleep compared to the non-cued objects. 
These findings showed that the TMR method can selectively reactivate individual 
memories, not just sets of memories, and that auditory stimuli can be effective, not just 
olfactory cues. 
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In the decade since these initial studies, TMR has been shown to improve not only 
spatial memory, but also vocabulary learning (Schreiner & Rasch, 2015), skill learning 
(Antony, Gobel, O'Hare, Reber, & Paller, 2012; Schönauer, Geisler, & Gais, 2014) and 
even to reduce social biases (Hu et al., 2015; but see Humiston & Wamsley, 2019; Xia, 
Antony, Paller, & Hu, Under review). TMR is thought to function by activating specific 
memory traces during sleep and selectively promoting their consolidation. In a recent 
fMRI-TMR study using olfactory stimulation during sleep (Shanahan, Gjorgieva, Paller, 
Kahnt, & Gottfried, 2018), odor presentation provoked learning-related patterns of 
cortical activity, lending support to the hypothesis that TMR activates cortical memory 
traces. 

 

 

Figure 4: Targeted memory reactivation paradigm applied with spatial learning. 
Participants learned the locations of object images on a screen (top). The objects were 
accompanied by sounds and half of these sounds were later unobtrusively presented 
during sleep. The locations of cued objects were subsequently better remembered 
(bottom). Adapted from Rudoy et al. (2009) with permission. 

 

2.5 Physiological correlates of sleep-based consolidation  

The active systems consolidation hypothesis proposes that the interactions between 
SWRs, spindles, and slow waves are crucial for declarative memory consolidation. SWRs, 
which are causally related to memory consolidation in rodent models (Girardeau, 
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Benchenane, Wiener, Buzsaki, & Zugaro, 2009), play an important role in the memory-
enhancing interplay between the hippocampus and the neocortex both in humans 
(Helfrich et al., 2019) and in nonhuman animals (Girardeau & Zugaro, 2011; Rothschild, 
Eban, & Frank, 2017). 

In humans, SWRs can only be detected using invasive recordings and their contribution 
to memory is therefore relatively poorly understood. In contrast, sleep spindles are 
easily detectible in scalp EEG and their role in human memory consolidation has been 
studied extensively. Spindles, which originate in the thalamic reticular nucleus, have 
been associated with subsequent memory benefits for declarative memory (Antony et 
al., 2018; Eschenko, Molle, Born, & Sara, 2006; Schreiner, Lehmann, & Rasch, 2015) and 
nondeclarative memory (Antony et al., 2012; Astill et al., 2014; Lustenberger et al., 
2016; Nishida & Walker, 2007; Rasch et al., 2009; Wilhelm et al., 2012). Higher spindle 
density (number per minute) following learning has been associated with better 
memory performance on various tasks, such as word pair learning (Gais, Molle, Helms, 
& Born, 2002), visuospatial learning (Clemens, Fabo, & Halasz, 2006) and procedural 
learning (Milner, Fogel, & Cote, 2006; Nishida & Walker, 2007). 

The role of spindles in the consolidation process appears to be to reactivate previously 
encoded memories, which are thereby strengthened and updated (Antony, Schönauer, 
Staresina, & Cairney, 2019). The causal role of spindles for the enhancement of 
declarative memories in humans has been established using pharmacological 
approaches (Kaestner, Wixted, & Mednick, 2013; Mednick et al., 2013) and transcranial 
stimulation (Barham, Enticott, Conduit, & Lum, 2016; Marshall et al., 2006) to alter 
spindle activity and, consequently, memory. Neuroimaging studies using both fMRI and 
EEG have recently shown that neural activity occurring in conjunction with spindles 
carries information regarding previously acquired memories (Cairney, Guttesen, El Marj, 
& Staresina, 2018; Jegou et al., 2019; Schonauer et al., 2017), supporting the idea that 
spindles play a role in consolidation. Spindles were also shown in an fMRI study to 
coincide with regional activations in the neocortex and hippocampus, further solidifying 
their role in active systems consolidation (Bergmann, Molle, Diedrichs, Born, & Siebner, 
2012). 

Multiple studies have revealed the interplay between spindles and slow waves (Battaglia 
et al., 2004; Clemens et al., 2007; Goldi, van Poppel, Rasch, & Schreiner, 2019; Klinzing 
et al., 2016; Sirota et al., 2003). Helfrich et al. (2019) recently reported cortical spindles 
were coupled with slow waves near the slow wave peak, with maximal SWR activity 
nested in cortical spindle troughs. The amplitude of this coupled ripple activity was 
maximal when the spindle peaked during the slow wave up-state. In schizophrenia 
patients, the later in the slow-wave upstate that spindles peaked and the more reliable 
this phase relationship, the greater the overnight improvement on a procedural motor 
sequence task (Demanuele et al., 2017). Together, these findings suggest that the 
benefits of spindles on memory are dependent on their precise timing relative to slow 
waves. 

As reviewed above, slow waves have been linked to memory benefits both in 
correlational studies and, causally, in studies using direct manipulations to enhance 
them (Backhaus et al., 2007; Marshall et al., 2006; Molle et al., 2011; Ngo et al., 2015; 
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Papalambros et al., 2017). Delivering unobtrusive auditory stimuli phase-locked to slow 
waves can entrain slow-wave activity and improve verbal, declarative memory (Ngo, 
Martinetz, Born, & Molle, 2013; Ong et al., 2016; Papalambros et al., 2017; but see 
Henin et al., 2019; Harrington et al., 2021). Such studies provide evidence for the causal 
role of slow-wave activity in memory consolidation and may pave the way towards 
interventions to improve the memory benefits of sleep. 

2.6 REM sleep and memory consolidation 

In the first decades after its discovery (Aserinsky & Kleitman, 1953), REM sleep was 
believed to be crucial for memory consolidation. This hypothesis gained support from 
rodent studies, with evidence of a crucial role for REM in both conditioning and 
contextual memory (Boyce, Glasgow, Williams, & Adamantidis, 2016; Fishbein & 
Gutwein, 1977; Smith, 1985; Smith & Rose, 1996). In humans, however, the link 
between REM and consolidation remains unclear. REM has not been consistently 
associated with consolidation of declarative memories, except in a few studies 
investigating emotional declarative memory (Nishida, Pearsall, Buckner, & Walker, 2009; 
Wagner, Gais, & Born, 2001). Research exploring the role of REM sleep in emotional 
memories has led to the development of the “sleep to forget and sleep to remember” 
hypothesis (Walker & van der Helm, 2009), which suggests that REM sleep has a dual 
role in emotional memory processing: it strengthens emotionally charged memories 
(Kleinsmith & Kaplan, 1963; LaBar & Phelps, 1998; Nishida et al., 2009), but decreases 
the physiological reactivity to these memory and helps with emotional regulation. 

Various other memory-related roles for REM have also been suggested over the years, 
including in problem solving (Cai, Mednick, Harrison, Kanady, & Mednick, 2009; Walker, 
Liston, Hobson, & Stickgold, 2002b), statistical learning (Barsky et al., 2015), and 
complex cognitive learning (Smith & Smith, 2003). REM has also been linked with other 
forms of nondeclarative memory, including priming (Plihal & Born, 1999), skill learning 
(Plihal & Born, 1997), and perceptual learning (Karni, Tanne, Rubenstein, Askenasy, & 
Sagi, 1994). Evidence from studies that examined both SWS and REM suggest that these 
two stages may operate in a complementary fashion in promoting consolidation 
(Batterink, Westerberg, & Paller, 2017; Diekelmann, Buchel, Born, & Rasch, 2011; 
Mednick, Nakayama, & Stickgold, 2003; Stickgold et al., 2000b). 

Despite this wealth of intriguing ideas, the role of REM in memory consolidation remains 
poorly understood in comparison to that of NREM sleep. There is currently no 
consensus regarding the mechanisms by which memories are consolidated during REM. 
The neural architecture for consolidation may parallel that proposed by the active 
systems consolidation model, it may be similar in only some respects, or it may be 
something else altogether. Future studies should utilize the tools successfully used to 
investigate NREM memory contributions (e.g., cross frequency coupling to reveal nested 
oscillations; examination of cortical reactivation) to improve our understanding of REM-
related memory processes (Peigneux et al., 2003).  Additionally, the complementary 
roles of NREM and REM sleep should be fully explored in tasks involving different types 
of memory to reveal how within-sleep dynamics serves to consolidate memories. 

3 Other hypotheses proposing to explain sleep’s effect on memory 
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3.1 Sleep shelters memories from interference 

For decades, forgetting was hypothesized to occur as a result of retroactive interference 
(i.e., newly learned memories would interfere with previously learned memories; 
McGeoch, 1932). In this context, sleep’s beneficial influence on memory was attributed 
to the lack of new information that could otherwise interfere with prior memories 
(Jenkins & Dallenbach, 1924). Not only would sleep shelter against potentially disruptive 
effects of external stimuli, it would also limit internal, endogenous interference (e.g., as 
a result of mind wandering or self-generated thoughts and ideas). Additionally, since 
memory retrieval is dependent on the similarity between the encoding and retrieval 
contexts (McGeoch, 1942), sleep may make memories more accessible upon waking up 
by limiting contextual changes. Proponents of this view argued that sleep generally 
doesn’t improve declarative memories, it merely decreases forgetting (Fenn & 
Hambrick, 2013; Mednick, Cai, Shuman, Anagnostaras, & Wixted, 2011; Schönauer & 
Born, 2017). Similarly, sleep has recently been hypothesized to preserve memories by 
minimizing contextual interference after encoding, thus protecting memories from the 
interfering effects of other events occurring in the same context (Yonelinas, Ranganath, 
Ekstrom, & Wiltgen, 2019). 

However, several lines of converging evidence argue against the sheltering hypothesis 
and instead support the active systems consolidation hypothesis. (1) Several forms of 
nondeclarative learning, ranging from visual (Karni et al., 1994) and motor (Walker et al., 
2002a) skill learning to complex cognitive procedural tasks such as the Tower of Hanoi 
(Ashworth, Hill, Karmiloff-Smith, & Dimitriou, 2014; Smith, 1995) and probabilistic 
learning (Barsky et al., 2015) have shown absolute improvement after a period of sleep 
that is not seen after equivalent periods of wake; (2) for declarative learning, sleep is 
more beneficial immediately after learning than at a later point, even when testing 
occurs after equal amounts of wake, which should match interference in the two 
conditions (Gais, Lucas, & Born, 2006; Talamini, Nieuwenhuis, Takashima, & Jensen, 
2008); (3) periods of sleep not only reduce forgetting but also increase resistance to 
interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006); (4) 
declarative memory benefits from sleep even when the total wake time between 
encoding and recall is equivalent to that of the control wake group (Ellenbogen et al., 
2006; Gais et al., 2006); (5) SWS, N2, and REM provide differential benefits across a 
range of memory tasks, indicating that sleep is not uniform in its benefits across 
different memory systems; and (6) similarly, the importance of specific electrographic 
waveforms, such as sleep spindles and slow waves, to memory consolidation would not 
be predicted by the sheltering hypothesis. Together, these finding overwhelmingly 
support the active systems consolidation hypothesis over the sheltering hypothesis. 

A fallback position for those supporting the sheltering hypothesis has been offered by 
Mednick et al. (2011), who proposed that sleep acts to shelter memories from 
interference and allow for uninterrupted, “opportunistic” consolidation (Mednick et al., 
2011). Specifically, the proposal is that the consolidation of “hippocampal-dependent 
memories might not depend on SWS per se,” instead occurring “opportunistically … 
whenever the hippocampus is not otherwise occupied by the task of encoding new 
memories” (p 504). Supporting this argument, a recent study in drosophila has shown 
that circuits involved in active forgetting are suppressed in sleep, hypothetically 
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“guarding” these memories from wake-related forgetting that is associated with 
retroactive interference (Berry, Cervantes-Sandoval, Chakraborty, & Davis, 2015).  

However, the model suggested by Mednick et al. (2011) does not fare much better than 
the classic sheltering hypothesis. Several studies have tried to minimize wake 
interference in various ways, and have consistently found that sleep is more beneficial 
than wake, even when interference is at minimum (Mednick et al., 2002; Schonauer, 
Pawlizki, Kock, & Gais, 2014; Walker et al., 2002a). On the other hand, it may not be 
feasible to create an entirely interference-free waking environment, on par with SWS, 
which would be necessary to fully dissociate the effects of sleep and sheltering from 
interference. Another difficulty for the model is in explaining why benefits vary with 
sleep stage—such as when declarative memory consolidation is preferentially 
associated with SWS, or when emotional memory consolidation benefits particularly 
from REM rather than NREM sleep. The apparent participation of sleep spindles, 
coupled both with hippocampal SWRs and with cortical slow oscillations, in memory 
consolidation during sleep, argues that more than the simple absence of encoding of 
new memories is required for this sleep-dependent memory processing. Finally, the 
enhancement of specific memories through TMR cannot be explained by such a model. 
Nevertheless, there is merit to the notion that sleep can minimize new encoding and 
internal interference, and therefore these factors should be considered as part of any 
explanation for why sleep is beneficial for memory. 

3.2 Sleep selectively weakens certain memories 

Whereas the hypotheses discussed thus far have focused on memory strengthening, a 
different line of research has focused primarily on forgetting. Crick and Mitchison (1983) 
suggested that REM sleep, and dreaming in particular, may act to eliminate irrelevant 
memories. Although this theory has not gathered much support, some results indicate 
that, at least in animals, sleep-induced forgetting during REM sleep may play a role in 
creating gist-like schemas by diminishing item-specific memories (see Poe, 2017, for 
review). Additionally, some human studies have used TMR with forgetting-related cues 
(sounds associated with the instruction to forget) to weaken memories during sleep 
(Simon, Gomez, & Nadel, 2018; Schechtman et al., 2020). 

A different perspective on sleep’s role in weakening memories is that such degradation 
is necessary to maintain synaptic homeostasis (Tononi & Cirelli, 2003; Tononi & Cirelli, 
2014). The synaptic homeostasis hypothesis (SHY) is premised on the claim that learning 
during wake involves the enhancement of synapses across the neocortex (Bushey, 
Tononi, & Cirelli, 2011). To avoid reaching a state of saturation, potentially causing 
“catastrophic interference” (French, 1999), a SWS-specific compensatory process is 
initiated, during which synapse strength is downscaled in a quasi-proportional manner, 
so that cortex-wide summed synaptic weights return to the baseline levels of the 
morning before (de Vivo et al., 2017; Diering et al., 2017; Tononi & Cirelli, 2003; 
Vyazovskiy, Cirelli, Pfister-Genskow, Faraguna, & Tononi, 2008). More recent versions of 
SHY acknowledge that certain memory traces could be reactivated so as to be preserved 
and perhaps even enhanced to some degree (Tononi & Cirelli, 2014; Tononi & Cirelli, 
2019). Importantly, slow waves are thought to be causally involved in the downscaling 
process, with averaged synaptic strength indexed by slow-wave amplitudes (Vyazovskiy 
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et al., 2008). Moreover, slow waves in brain regions that were previously employed in 
demanding learning tasks could increase locally in the service of downscaling in those 
regions (Geva-Sagiv & Nir, 2019; Hanlon, Faraguna, Vyazovskiy, Tononi, & Cirelli, 2009; 
Huber et al., 2004). Accordingly, SHY explains the benefits of sleep to memory as a 
consequence of increased signal-to-noise ratios due to selective downscaling of synaptic 
strength (Nere, Hashmi, Cirelli, & Tononi, 2013). 

A major challenge for SHY is to connect downscaling with mounting evidence linking 
memory benefits with memory reactivation during sleep and awake rest. Although the 
idea of renormalization of synaptic weights is gaining attention, the details of SHY are 
still hotly debated. One controversial issue concerns the sleep stage in which 
downscaling occurs, with recent evidence linking REM and not SWS to synapse pruning 
and firing rate renormalization (Grosmark, Mizuseki, Pastalkova, Diba, & Buzsaki, 2012; 
Li, Ma, Yang, & Gan, 2017). Other major issues that are discussed in this context are 
which cortical and subcortical areas show downscaling, what the role of cortical slow 
waves is in this downscaling, what determines which synapses are downscaled and 
which are spared, and whether this spared set is strengthened or simply preserved 
(Niethard & Born, 2019). 

 

4 Sleep and memory in psychiatric and neurological disorders 

Many neurological disorders, and most psychiatric disorders, are associated with disturbances in 
sleep patterns. In some cases, these disturbances are believed to disrupt the memory function 
of sleep and thereby contribute to the symptoms of the disorder. For example, patients 
suffering from schizophrenia typically display sleep-related symptoms, most commonly 
insomnia. Patients with schizophrenia also manifest spindle deficits that correlate with 
impairments in sleep’s benefit for both declarative memory (Goder et al., 2015) and 
nondeclarative memory (Wamsley et al., 2012), thereby contributing to cognitive symptoms of 
the disorder (Manoach & Stickgold, 2019). Both thalamocortical hyperconnectivity (Avram, 
Brandl, Bauml, & Sorg, 2018; Ferri et al., 2018) and spindle deficits (Ferrarelli et al., 2010; 
Manoach et al., 2014; Wamsley et al., 2012) have been shown to correlate with positive 
symptoms in schizophrenia, which include hallucinations, delusions, and confused thinking, 
suggesting a wide impact of the spindle deficit in schizophrenia symptomatology. 

Another psychiatric condition characterized by sleep disturbances, possibly in relation to 
memory processing, is post-traumatic stress disorder (PTSD). Sleep disturbances after a 
traumatic event, such as insomnia and fragmented REM sleep, can predict the future 
progression of the disorder, though not every traumatic event results in PTSD (Pace-Schott, 
Germain, & Milad, 2015). One model of sleep’s contribution to PTSD suggests that these 
disturbances disrupt extinction learning, a memory function deemed critical for successfully 
coping with the traumatic memory (Pace-Schott et al., 2015). Another suggests more pervasive 
interruptions of REM-sleep-dependent memory processing, including integration of the trauma 
memory with older memories, reduction of associated affect, and selective forgetting of 
inessential trauma details (Stickgold, 2008). 
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The relevance of sleep-related memory impairments in other psychiatric disorders is yet to be 
clarified, although there are some intriguing hints. Patients suffering from major depressive 
disorder exhibit shorter REM latencies, more overall REM, and less SWS (Pillai, Kalmbach, & 
Ciesla, 2011). Patients with depression also tend to exhibit a tendency for over-general episodic 
memory recall, and effective therapies often change sleep and/or memory. Yet, evidence is 
lacking to link their sleep differences to any memory abnormality (Harrington, Johnson, Croom, 
Pennington, & Durrant, 2018). 

Several neurological conditions are also characterized by sleep deficits. Alzheimer’s Disease and 
its prodromal syndrome, Mild Cognitive Impairment, for example, are associated with insomnia, 
reduced slow-wave power, and fragmented sleep (Peter-Derex, Yammine, Bastuji, & Croisile, 
2015; Westerberg et al., 2012). Of importance, Alzheimer’s patients have fewer fast sleep 
spindles and this deficit predicts their poorer declarative memory (Rauchs et al., 2008). The 
potential causal involvement of sleep alterations in the etiology of the disorder is under active 
investigation (Lucey et al., 2019). Patients suffering from amnesia due to focal bilateral 
hippocampal lesions also show abnormal sleep patterns, including less SWS, and less slow-wave 
activity during N2 relative to matched controls (Spanò et al., 2020). Sleep deficiencies 
manifested in neurological disorders are mirrored by memory deficiencies manifested in sleep 
disorders. For example, sleep apnea is associated with poorer sleep-dependent memory 
consolidation (Djonlagic, Saboisky, Carusona, Stickgold, & Malhotra, 2012). 

Most studies exploring the relationship between sleep and neurological or psychiatric disease 
are correlational by nature. However, the idea that non-optimal sleep patterns may contribute 
to such disorders has recently been supported by studies directly manipulating sleep (Freeman 
et al., 2017; Papalambros et al., 2019). Together with non-invasive manipulations designed to 
improve sleep efficiency, interventions designed to specifically enhance memory-related 
characteristics of sleep (e.g., slow waves) could pave the way for developing new treatments for 
neurological and psychiatric illnesses.  

5 Technologies for increasing sleep’s memory benefits 

The growing appreciation of sleep’s beneficial role for memory consolidation, along with the 
evolving mechanistic understanding of the neurophysiological processes behind these benefits, 
have resulted in multiple lines of research on sleep interventions to improve sleep-dependent 
memory consolidation. Non-invasive procedures for slow-wave entrainment using transcortical 
electrical stimulation (Barham et al., 2016; Marshall et al., 2006; Marshall, Molle, Hallschmid, & 
Born, 2004) and auditory stimulation (Ngo et al., 2013) have shown post-sleep declarative 
memory benefits in the laboratory, and attempts to adapt them for home use are underway 
(Debellemaniere et al., 2018; McConnell et al., 2019). TMR, which has been used to selectively 
enhance specific memories in the laboratory, is also being considered for use at home (Cellini & 
Mednick, 2019; Goldi & Rasch, 2019; Paller, 2017). 

A major challenge for home-based sleep interventions has been the identification of the 
appropriate sleep stage without the use of polysomnography equipment, which people can find 
obtrusive or uncomfortable. Additionally, the equipment traditionally needed for high-quality 
recordings is prohibitively expensive. However, newly developed technologies may reduce both 
the cost and discomfort involved in polysomnographic recordings without significantly 
sacrificing sleep-staging quality by using measures such as actigraphy, EKG, and dry EEG 
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electrodes. If this endeavor proves successful, these non-invasive methods may be able to 
selectively enhance memory not only in clinical populations, but in healthy populations as well 
(e.g., older adults; Papalambros et al., 2017).  

6 Conclusions 

Almost a century has passed since sleep’s role in memory was first systematically examined. 
Over the years, the focus of research has shifted dramatically — from conceptualizing sleep as 
merely protecting memories passively to appreciating its active role; and from singling out REM 
sleep, to emphasizing NREM sleep, to seeking a more nuanced view of the distinct physiological 
contributions made during each stage of sleep. The discovery of neuronal replay within the 
hippocampus was a major impetus for the development of the active systems consolidation 
hypothesis, which states that declarative memory reactivation during slow-wave sleep shapes 
cortical memory traces based on hippocampal associations. The documentation of absolute 
improvements in nondeclarative learning following periods of sleep also had a major impact on 
the field. Whereas it is now widely agreed that sleep benefits many types of learning, the 
putative roles of each sleep stage are actively debated. Recent years have shown major 
advances both in understanding the forms of memory processing engaged during sleep and in 
thinking about how we might optimize these memory functions. Although largely hidden from 
view, covert alterations of memory traces during sleep can and should be investigated to shed 
light on the fundamental operation of the sleeping brain as well as on how memories are 
maintained and ultimately utilized. 
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