SOLVING THE COLLISIONLESS BOLTZMANN EQUATION IN
GENERAL RELATIVITY

F. A. Rasio, S. L. Shapiro and S. A. Teukolsky
Center for Radiophysics and Space Research, and Departments of
Physics and Astronomy, Cornell University, Ithaca, NY 14853

Abstract. We have developed a new numerical method for determining
the dynamical evolution of a collisionless system in full general relativity.
The method exploits Liouville’s theorem to determine the evolution of the
distribution function of matter in phase space directly. The distribution
function is governed by the collisionless Boltzmann equation coupled to Ein-
stein’s equations for the gravitational field. The method accurately tracks
the increasingly complicated, fine-grained structure developed by the distri-
bution function because of phase mixing. It can be used to study Newtonian
as well as fully relativistic systems. We restrict our analysis to spherically
symmetric systems in this paper, but the gravitational field can be arbitrar-
ily strong and the matter velocities arbitrarily close to the speed of light.
Applications include violent relaxation, the stability of relativistic star clus-
ters, and the collapse of unstable relativistic star clusters to black holes.
We report evidence that some relativistic star clusters with arbitrarily large
central redshifts are stable to spherical perturbations.

INTRODUCTION

Recently, Shapiro and Teukolsky (1985a, b, ¢, 1986, hereafter ST1, 2, 3, 4)
have demonstrated how to calculate numerically (at least in spherical symmetry) the
dynamical evolution of self-gravitating, collisionless systems in general relativity. Their
method yields a solution to the collisionless Boltzmann (Vlasov) equation coupled to Ein-
stein’s equations for the gravitational field.

Collisionless relativistic systems may very well exist in nature. Quasars, active galactic
nuclei (AGNs), and other intense extragalactic radio sources are believed to be powered by
supermassive black holes (see e.g. Begelman, Blandford and Rees 1984). But the formation
of these supermassive black holes remains a mystery. This is a topical issue, since there is
now solid observational evidence (see Dressler and Richstone 1988, and Kormendy 1988)
that the nuclei of some nearby galaxies do indeed contain massive (M 210°M ) black holes.
It has long been recognized (cf. Zel’dovich and Podurets 1965) that such massive black holes
can form as a consequence of the dynamical instability of a relativistic star cluster. In ST3
(see also Kochanek, Shapiro, and Teukolsky 1987, and Quinlan and Shapiro 1988 and this
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volume), recent Newtonian Fokker-Planck calculations of the gravothermal catastrophe
together with the relativistic calculations of ST1,2 were combined to make such a scenario
more than plausible.

The computational method of ST combines the techniques of numerical relativity with
those of N-body particle simulations. It is basically a relativistic generalization of the
particle-mesh methods used to study Newtonian collisionless star clusters (cf. Sellwood
1987 for an excellent review). Particle methods have the characteristic feature that all
numerical calculations are done in real space, even though they are used to solve the col-
lisionless Boltzmann equation, which expresses the evolution of a system in phase space.
It is in fact impossible with particle methods to determine the distribution function of the
system in phase space. Nevertheless it is usually assumed that the particles “naturally”
provide an adequate statistical coverage of phase space. However, it is not clear to what
extent a particle simulation (especially with small N) actually reproduces the solution of
the collisionless Boltzmann equation, which in some sense should correspond to the N — o0
limit. For any finite value of N, artificial random statistical fluctuations will be present
in all computed quantities. Recently there has been some indication that these fluctua-
tions can sometimes lead to spurious results. For example, Nishida (1986) found that the
bar instability of a thin stellar disk can be suppressed by the presence of a small bulge
component, even though previous particle simulations had led to the opposite conclusion.

Another approach to study collisionless systems is to use what we will refer to as a “phase
space method ” (Sellwood (1987) uses the term “collisionless Boltzmann code” instead).
A phase space method does not rely on any statistical representation of the system by
particles. Instead, a phase space method explicitly constructs the (smooth) distribution
function of matter in phase space. The source terms of the field equations are obtained
by numerical quadratures over velocity space. This has the great advantage of eliminating
random statistical fluctuations in the data while at the same time providing us with the
full distribution function of the system. Unfortunately, very few phase space methods
have so far been successfully developed, even in the much simpler framework of Newtonian
gravity, and all of them are still in their infancy. The reason is the extreme complexity
of working in phase space instead of real space. The large number of dimensions in phase
space (already three in spherical symmetry where real space has only one) would discourage
many attempts. In addition, distribution functions often have rather irregular structures
that can be hard to accurately represent numerically (e.g. on a grid in phase space). Such
irregular structures can be due to discontinuities in the initial data or to phase mixing.

Given these difficulties it is not surprising that no one has attempted to develop a phase
space method in the framework of general relativity, where further important complications
are introduced by the need to integrate forward in time Einstein’s equations for the gravi-
tational field. The new method we have developed allows us to obtain for the first time the
complete evolution of the distribution function for relativistic collisionless systems. These
first results are restricted to spherical symmetry, but the matter velocity can approach
the speed of light and the gravitational field can become arbitrarily strong. In particular,
several cases include catastrophic collapse of the system to a black hole.

Here, we will restrict ourselves to a very brief description of the numerical method, followed
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by two applications. The first application presents the time evolution of the distribution
function for an unstable relativistic star cluster undergoing catastrophic collapse to a black
hole. The second application demonstrates the existence of stable relativistic star clusters
with arbitrarily large central redshifts. A detailed description of our method, together
with a more extensive list of applications, will be published elsewhere (Rasio, Shapiro, and
Teukolsky 1988a, b).

MATHEMATICAL FORMULATION AND METHOD

We adopt the notations of Misner, Thorne and Wheeler (1973; hereafter
MTW) and set ¢ = G = 1 throughout. The metric is written in the ADM form, with
isotropic radial coordinate,

ds® = — (a® — A?B%)dt? + 2A%Bdrdt
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Here o and § are the lapse and shift functions of ADM; see also Smarr and York (1978a,
b). As coordinates in phase space, we use the radial velocity u,, the “angular momentum
" at infinity” 7, defined by
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measuring the orientation of the transverse velocity. In spherical symmetry, the distribution

function f cannot depend on t, and 7 is a conserved quantity, so that the collisionless
Boltzmann equation can be simply written
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Equation (6) is simply the geodesic equation corresponding to the metric (1), while equation
(7) is obtained from the normalization condition u,u* = —1.
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The four basic steps for propagating the distribution function f from time t; to t3 > t;
are: (1) Compute the matter source terms of the Einstein field equations (e.g. the mass-
energy density p), by integrating f at t; over velocity space (u,,7), (2) Integrate the field
equations, thereby determining the new metric coefficients A, a, and 8 at time ty, (3)
Extrapolate to determine (guess) the value of these quantities over the interval (t,,2;), and
finally (4) Compute f at time ¢, using equations (4)-(7). The key idea in our method is
to use Liouville’s theorem for step (4), which we write as

f(ra,ug,t3) = f(r1,u1,t1), (8)

where (ry,u;) is the position in phase space at time t; of a test particle that will reach
the position (rz,uz) at time t,. Since dr/dt and du,/dt can be evaluated for all t < ¢,
one can actually construct the trajectory of such a test particle. Since f is also known at
all times t < t; one can therefore determine f(rz,usz,t;) for all (rz,u;). In the Newtonian
regime, this idea was first implemented in a numerical scheme by Fujiwara (1981, 1983).
In this scheme, the distribution function is constructed on a grid of points in phase space.
Equation (8) is used, with t; = t; — At, where At is the timestep. If (r2,u;) is a grid point
at time tg, then (ry,u;) is in general not a grid point at time ¢, and it is necessary to
interpolate on the grid at ¢; to determine f(ry,uq,t;).

We first tried to develop a relativistic generalization of Fujiwara’s method, but found that
in many cases (even Newtonian) it develops numerical instabilities and leads to grossly
inaccurate results (Inagaki et al., 1984, and White, 1986, have reported similar problems).
The inaccuracy is entirely due to the use of interpolation on a multidimensional grid. One
very simple way of not having to use any interpolation, is to extend the value of ¢; in
equation (8) to t = 0. Indeed, at t = O the distribution function f is known to arbitrary
accuracy, since it must be given as an initial condition. Moreover, there is no need in this
case to introduce any grid at all in phase space, since intermediate values of f are never
used and therefore need not be stored. One can directly compute all quadratures over
velocity space at any time by using a self-adaptive quadrature routine. When the routine
asks for the value of f at some point in phase space, this point is simply tracked along a
dynamical path all the way back to t = 0, where f can be accurately evaluated from the
initial data. Moreover, such a self-adaptive quadrature routine is ideally suited to problems
involving discontinuous distribution functions or large degrees of phase mixing: more points
can be added in phase space to maintain high accuracy whenever and wherever required
by the structure of the distribution function. The only disadvantage of this scheme is its
obviously large computational cost. Indeed, the computation time per iteration increases
with time, since longer and longer trajectories have to be constructed to evaluate f at
a given point. However, at least to some extent, this merely reflects the real increase of
complexity occuring in the physical system.

BLACK HOLE FORMATION IN PHASE SPACE

A well-known example of a relativistic collisionless system is an equilibrium
cluster of compact stars characterized by a truncated isothermal distribution function,

F(E) — {éfexp(_E/T)’ ‘)Etlirf;;;:::: (9)
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where K is a normalization constant, E is the conserved “energy at infinity” of a star, T
is the “temperature at infinity” of the cluster, and E,,,, is the value of E at the surface of
the cluster. Following historical tradition (Zel’dovich and Podurets 1965, Fackerell 1966,
Ipser 1969, ST2), we examine the one-parameter sequence of models obtained by imposing
the constraint E,,az = mo — 0.5T, where my is the rest mass of a star. Figure 1 shows the
time evolution of the central redshift for several models along the sequence. The transition
between stability and instability is clearly located at central redshift Z, = 0.42, in complete

agreement with the semi-analytic calculations of Ipser (1969), and the particle simulations
of ST2.

Figure 1. Time evolution of the central redshift Z, for several clusters
initially taken along the truncated isothermal sequence. Here the unit of
time tqy, = (37/32)Y%a;1p; 1/2 is the central (minimum) free-fall proper
time scale. The three models at the bottom are stable: our calculations
reveal no change of structure on a dynamical timescale. The five models
having initial redshifts above 0.42 are unstable: they collapse to black holes
in a few dynamical times.
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Figure 2. Time evolution of the distribution function for a cluster undergoing catastrophic
collapse to a black hole. Initially, the cluster has a truncated isothermal distribution with
central redshift Z, = 0.52. The Schwarzschild radius r, (in units of the total mass-energy
M) and the radial velocity u” are used as phase-space coordinates. Each plane (r,,u’) isa
two-dimensional slice taken from the three-dimensional phase space by setting the angular
momentum j (cf. eqn.(2)) equal to a constant. Here 7 = 0.5M%, which represents the
angular momentum of a “typical star” in this cluster (0 < 7 < M? for f # 0). Lines of
constant f are shown, equally spaced between 0 and its maximum value in this slice (Note
that since j # 0, the matter in this slice can never reach r, = 0). In the final plot, the
entire mass of the cluster has collapsed inside an event horizon located at r, = 2M.
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We now focus our attention on the unstable cluster with Z, = 0.52. In a few dynamical
times, this cluster collapses to a black hole, which is identified in our numerical code by
the appearance of an event horizon and a region of trapped surfaces. The unique character
of our method is revealed in figure 2, which shows how this collapse proceeds in phase-
space. The coordinates used here are the Schwarzschild areal radius r, = Ar and the radial
velocity u* = u,/(Aau®) measured by a normal observer. The reason for this choice is that
r, and u® are freezing variables, i.e. they become constant (with t) at late times wherever
the lapse of proper time in the normal observer’s reference frame goes to zero (cf. ST4).
Therefore we expect the distribution function expressed in these variables to exhibit a
steady configuration at late coordinate time, wherever & — 0. This is indeed what we find:
once all the matter in the cluster has collapsed inside the horizon, the distribution function
very slowly evolves towards a final steady structure, symmetric with respect to +u’.

Figure 3. Fractional binding energy E;,/M, versus central redshift Z, for
the sequence of clusters constructed by Kochanek et al. (1987) as a possible
relativistic end point to the gravothermal catastrophe. Note the absence of
turning point in the curve, indicating stability.
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STABLE RELATIVISTIC CLUSTERS WITH ARBITRARILY
LARGE CENTRAL REDSHIFTS?

All relativistic clusters studied in the past by semi-analytic metho Is or
particle simulations exhibit a behavior similar to that of truncated isothermal cluste s, i.e.
they become unstable to spherical perturbations once their central redshift becomes greater
than about 0.5 (Ipser 1969, ST2). The onset of instability always appears to coincide with
the first maximum along the sequence of the fractional binding energy Ey/Mp = 1— M/M,,
where M is the total mass-energy of the cluster, and M, is its total rest mass. This is known
to be true for all spherical fluid configurations, but could never be proved for collisionless
systems. However it was proved that clusters located along the ascending branch of E;/Mj,
in an appropriately constructed one-parameter sequence of models, are stable (Ipser 1980).

In the process of studying the stability properties of several one-parameter sequences of
relativistic clusters, we discovered one which does not conform at all to the above picture.
It was constructed by Kochanek et al. (1987) as a possible relativistic generalization to
the self-similar structures that constitute the end point of the gravothermal catastrophe.
Our dynamical calculations indicate that all clusters along this sequence remain stable to
spherical perturbations, even when their central redshifts become much larger than 0.5.
This is in agreement with the fact that the fractional binding energy of these clusters
appears to increase monotonically with central redshift (Figure 3).

The existence of stable relativistic star clusters with arbitrarily large central redshifts was
already postulated by Bisnovatyi-Kogan and Thorne (1970). However, their clusters had
rather unphysical properties, like infinite radii and central densities. On the contrary,
the clusters we studied, even though centrally condensed, have finite radius and densities.
More on this exciting discovery will be published elsewhere (Rasio, Shapiro, and Teukolsky
1988b).
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