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The evolution of binary fractions in globular clusters
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ABSTRACT
We study the evolution of binary stars in globular clusters using a new Monte Carlo approach
combining a population synthesis code (STARTRACK) and a simple treatment of dynamical
interactions in the dense cluster core using a new tool for computing three- and four-body
interactions (FEWBODY). We find that the combination of stellar evolution and dynamical inter-
actions (binary–single and binary–binary) leads to a rapid depletion of the binary population
in the cluster core. The maximum binary fraction today in the core of a typical dense cluster
such as 47 Tuc, assuming an initial binary fraction of 100 per cent, is only ∼ 5–10 per cent.
We show that this is in good agreement with recent Hubble Space Telescope observations of
close binaries in the core of 47 Tuc, provided that a realistic distribution of binary periods is
used to interpret the results. Our findings also have important consequences for the dynami-
cal modelling of globular clusters, suggesting that ‘realistic models’ should incorporate much
larger initial binary fractions than has usually been the case in the past.

Key words: stellar dynamics – methods: N-body simulations – binaries: close – binaries:
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1 I N T RO D U C T I O N

Binary stars play a fundamental role in the evolution of globular
clusters for at least two important reasons. First, the evolution of
stars in binaries, whether in a cluster or in the galactic field, can
be very different from the evolution of the same stars in isolation.
In a dense environment such as a globular cluster, this difference is
exacerbated by dynamical encounters, which affect binaries much
more than single stars. Secondly, binary stars crucially affect the
dynamical evolution of globular clusters, providing (through in-
elastic collisions) the source of energy that supports them against
gravothermal collapse (Goodman & Hut 1989; Gao et al. 1991;
Fregeau et al. 2003). In the ‘binary burning’ phase, a cluster can
remain in quasi-thermal equilibrium with nearly constant core den-
sity and velocity dispersion for many relaxation times, in a similar
way to that in which a star can maintain itself in thermal equilibrium
for many Kelvin–Helmholtz times by burning hydrogen in its core.
The binary fraction1 (and the initial, primordial binary fraction in
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1 Throughout this paper, the ‘binary fraction’ among a particular group of
objects is defined as the number of objects that are binaries divided by the
total number of objects. So, for example, a primordial binary fraction of
50 per cent implies that two-thirds of main-sequence stars are in binaries
initially. However, a binary fraction of 50 per cent among white dwarfs
(WDs) later on does not imply that two-thirds of white dwarfs are in binaries,
as some white dwarf companions may be main-sequence stars.

particular), is therefore one of the most important parameters that
determine the evolution of globular clusters. However, most previ-
ous dynamical studies of globular clusters – even those including
binaries – have neglected stellar evolution, which can significantly
impact the properties and survival of binaries and hence the reservoir
of energy they provide.

At present, there are very few direct measurements of binary
fractions in clusters. However, even early observations showed that
binary fractions in globular cluster cores are smaller than in the
solar neighbourhood (e.g. Cote et al. 1996). Recent Hubble Space
Telescope (HST) observations have provided further constraints on
the binary fractions in many globular clusters (Rubenstein & Bailyn
1997; Bellazzini et al. 2002b). The measured binary fractions in
dense cluster cores are found to be very small. As an example, the
upper limit on the core binary fraction of NGC 6397 is only 5–7
per cent (Cool & Bolton 2002). On the other hand, in very sparse
clusters, such as NGC 288 (Bellazzini et al. 2002a), but also in some
other ‘core-collapsed’ clusters, such as NGC 6752 (Rubenstein &
Bailyn 1997), the upper limit for the binary fraction can be as high
as ∼30 per cent.

For the initial binary fraction in globular clusters, there are of
course no direct measurements. However, there are no observa-
tional or theoretical arguments suggesting that the formation of bi-
naries and hierarchical multiples in dense stellar systems should be
significantly different from other environments such as open clus-
ters, the Galactic field, or star-forming regions. Binary frequencies
�50 per cent are found in the solar neighbourhood and in open
clusters (Halbwachs et al. 2003). T Tauri stars also have a very high
binary fraction (Köhler, Leinert & Zinnecker 2001). For the range
of separations between 120 and 1800 au, their binary fraction is
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comparable to that of main-sequence stars in the solar neighbour-
hood (Brandner et al. 1996), while at shorter periods it is higher
(Melo 2003). Furthermore, many stars are formed in systems of
multiplicity 3 or higher: in the field their abundance is no less than
40 per cent for inner periods �10 d (Tokovinin 1997). All of this
suggests that, in dense stellar systems as well, most stars could be
formed in binary and multiple configurations.

Most dynamical interactions in dense cluster cores tend to de-
stroy binaries (the possible exception is tidal capture, which may
form binaries, but turns out to play a negligible role; see Section
5.2). Soft binaries (with orbital speeds lower than the cluster veloc-
ity dispersion) can be disrupted easily by any strong encounter with
another passing star or binary. Even hard binaries can be destroyed
in resonant binary–binary encounters, which typically eject two sin-
gle stars and leave only one binary remaining (Mikkola 1983), or
produce physical stellar collisions and mergers (Bacon, Sigurdsson
& Davies 1996; Fregeau et al. 2004).

In addition, many binary stellar evolution processes lead to dis-
ruptions [e.g. following a supernova (SN) explosion of one of the
stars] or mergers (e.g. following a common envelope phase). These
evolutionary destruction processes can also be enhanced by dynam-
ics. For example, more common envelope systems form as a result
of exchange interactions (Rasio, Pfahl & Rappaport 2000), and the
orbital shrinkage and the development of high eccentricities through
hardening encounters may lead to the coalescence of binary com-
ponents (Hills 1984; Hurley & Shara 2003).

It is therefore natural to ask whether the small binary fractions
measured in old globular clusters today result from these many de-
struction processes, and what the initial binary fraction must have
been to explain the current numbers. We address these questions
in this paper by performing calculations that combine binary star
evolution with a treatment of dynamical interactions in dense clus-
ter cores. In Section 3 we describe in detail the method we use,
following a brief overview of the theoretical background in Section
2. We test our simplified dynamical model by comparing it against
full Monte Carlo N-body simulations in Section 4.1. In Section 4.2
we use semi-analytical estimates to predict the upper limit for the
final binary fraction in dense clusters. In Section 4.3 we estimate the
lower limit for the final binary fraction and analyse which mecha-
nisms of binary destruction are most efficient as a function of cluster
age. In Section 5 we present our numerical results for the evolution
of the binary fraction in dense cluster cores, and we compare these
results with observations. In particular, using our theoretically pre-
dicted period distribution, we re-examine observations of 47 Tuc
and re-derive constraints on the core binary fraction. In the final
discussion (Section 6), we point out how our results may be helpful
in interpreting observations of core binary fractions in other clus-
ters, and we discuss the required initial conditions for simulations of
clusters with binaries, and which methods are best suited for these
simulations.

2 B I NA RY P O P U L AT I O N S Y N T H E S I S
W I T H DY NA M I C S

There are several possible ways to approach the study of binary
evolution in dense clusters. The traditional approach is to start from
full N-body simulations to study the dynamics of the stellar sys-
tem and to introduce on top of this various simplified treatments
of single and binary star evolution. This has been used for many
years (for recent examples see Portegies Zwart et al. 2001; Shara
& Hurley 2002; Hurley & Shara 2003). Unfortunately, even with
the fastest special-purpose computers available today, this direct

N-body approach remains extremely expensive computationally, so
that previous studies have been limited to small systems such as open
clusters and with limited coverage of parameter space. In addition,
because binaries are particularly expensive to handle computation-
ally (as they increase enormously the dynamic range of direct N-
body simulations), these previous studies have also been performed
with unrealistically small numbers of binaries. For example, the time
required to perform just one direct N-body simulation of a cluster
containing 2 × 105 stars with all stars formed initially in binaries
would be at least a year on GRAPE-6, with some dependence on
the initial binary parameters.2

Alternatively, a binary population synthesis code (e.g. Hurley,
Tout & Pols 2002), normally used to evolve large numbers of stars
and binaries without dynamical interactions, can be extended by in-
troducing a simple treatment of dynamics. In this type of approach
it is often assumed that all the relevant parameters of the cluster (e.g.
central density and velocity dispersion) remain constant throughout
each dynamical simulation, i.e. the dynamics is assumed to take
place in a fixed background cluster. Many previous studies of dense
stellar systems have been based on this type of approximation (see,
e.g., Hut,McMillan&Romani 1992; Di Stefano&Rappaport 1994;
Sigurdsson & Phinney 1995; Portegies Zwart et al. 1997a,b; Davies
1995; Davies & Benz 1995; Davies 1997; Rasio et al. 2000; Smith
& Bonnell 2001). This approach, sometimes called the ‘encounter
rate technique’ (Benacquista 2002), is computationally much less
expensive than direct N-body simulations and hence allows the sys-
tematic exploration of the vast parameter space of initial conditions
for clusters and their primordial binary populations. In addition, the
use of sufficiently large numbers of stars and binariesmakes the sim-
ulations more realistic. Although obviously much less accurate in
its description of the overall cluster dynamics, this method opens the
possibility of studying ‘star cluster ecology’ in considerably greater
detail than has been possible with N-body simulations. In partic-
ular, it makes it possible to study in detail the rare but important
evolutionary channels that may play a crucial role in the formation
of some of the most interesting tracers of dynamical interactions
in dense clusters, such as ultracompact X-ray binaries, millisecond
pulsars and cataclysmic variables (Ivanova & Rasio 2004, 2005).

Unfortunately, it is difficult to compare these two approaches, as
each is based on a very different set of simplifying assumptions.
There are no comprehensive studies of dense stellar systems in-
cluding a self-consistent treatment of both dynamics and binary
star evolution. In many recent N-body simulations for large clusters
(using either Aarseth-type codes or Hénon’s Monte Carlo method;
Aarseth 2001; Fregeau et al. 2003), binary stars are treated in the
point-mass limit and soft binaries are eliminated from the start. Bi-
nary destruction can then occur only through resonant four-body
interactions. However, N-body studies of open clusters that incor-
porate realistic treatments of binary stellar evolution have shown
that stellar evolution affects the binaries significantly, and that, even
in these low-density environments, the complex interplay between
binary evolution and dynamics, even for soft binaries, can play an
important role in the overall cluster evolution and in determining
the properties of surviving binaries (Hurley & Shara 2003).

The second approach, ‘binary population synthesis with dynam-
ics’, which we have adopted in this work, suffers from the lack of
self-consistent dynamical evolution of the cluster, which is assumed

2 J. Hurley, personal communication. The estimate is based on 5 d required
to simulate an open cluster of 20 000 stars with 2000 binaries on GRAPE-6
in Shara & Hurley (2002).
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to remain in a constant state of thermal equilibrium for its entire
evolution. This state, where the energy production through ‘binary
burning’ in the core is balanced by the outer energy flux into the clus-
ter halo, does indeed provide nearly constant conditions throughout
the lifetime of a typical globular cluster. The exception might be
‘core-collapsed’ clusters, which may have run out of binaries and
evolved to a much more centrally concentrated state. Typically, the
density and ‘temperature’ profiles of a cluster do not change much
as long as there are enough binaries remaining to provide support
against gravothermal contraction. Stellar interiors provide a useful
analogy: as long as a star keeps enough hydrogen to burn in its core,
it can remain in thermal equilibrium on themain sequence and avoid
core contraction and envelope expansion. Just like main-sequence
stars, globular clusters can maintain a nearly constant interior struc-
ture for many thermal time-scales (i.e. many relaxation times) as
long as they do not run out of ‘fuel’ (binaries). This behaviour is ex-
pected qualitatively (see, e.g., Goodman & Hut 1989), and has now
been demonstrated quantitatively in many different studies using
various numerical techniques for cluster simulations. For example,
the recent study by Fregeau et al. (2003) considered the evolution of
idealized clusters of equal-mass stars without stellar evolution for
a range of initial binary fractions. For the case of an isolated Plum-
mermodel with 10 per cent initial hard binaries they found (see their
fig. 4) that the core radius of this cluster can remain nearly constant
(to within a factor of ∼ 2) for many tens of half-mass relaxation
times (i.e. more than a Hubble time for most Galactic globular clus-
ters, where the half-mass relaxation time is ∼109 yr). For a more
realistic cluster model with 20 per cent hard binaries initially and
tidal truncation, they found that, after ∼ 40 t rh, when the cluster is
about to disrupt in the Galactic tidal field, the core radius still has
not varied by more than a factor ∼ 2 over the entire evolution (see
their fig. 11); and over the first 10 t rh, the core radius changed by
less than ∼ 20 per cent. The central velocity dispersion also does
not vary much with time (see, e.g., Giersz & Spurzem 2003, fig. 1).
Similar results have been obtained from direct N-body simulations
of open clusters, where the central density and velocity dispersion
also remain nearly constant in models with significant numbers of
binaries (Hurley & Shara 2003).

There are several binary population synthesis codes in use today.
Only a few of them include, in addition to a detailed treatment of
mass transfer phases, stellar evolution along with tidal interaction of
binary components. The code of Hurley et al. (2002) was designed
to study low- and intermediate-mass stars leading to the formation
of white dwarf systems. The code of Belczynski, Kalogera & Bulik
(2002, Belczynski et al., in preparation) was originally developed
to investigate more massive stars – progenitors of neutron star and
black hole systems (calibrated against full binary stellar evolution
codes for mass-transfer phases) – andwas expanded recently to treat
carefully binaries with white dwarfs as well. We use the latter code
(called STARTRACK) to follow the evolution of single and binary stars
in our simulations. As mentioned earlier, we also treat all dynamical
encounters explicitly by direct integration, using a recently devel-
oped numerical toolkit for small-N gravitational dynamics that is
particularly well suited to performing three- and four-body integra-
tions (Fregeau et al. 2004).

3 M E T H O D S A N D A S S U M P T I O N S

3.1 Cluster initial conditions

Our initial conditions are described by the following parameters:
the total number of stars N (single or in a binary), initial mass func-

tion (IMF), binary fraction f b, distribution of binary parameters
(period, P, eccentricity, e, and mass ratio, q = m 2/m 1 < 1). We typ-
ically adopt standard choices used in previous population synthesis
studies, which are based on available observations for stars in the
field and in young star clusters (Sills et al. 2003). For most of the
calculations reported here, we use the following ‘standard’ initial
conditions.

(i) We adopt the IMF of Kroupa (2002), which can be written as a
broken power law dN ∝ m−α dm, where α = 0.3 form/M� < 0.08,
α = 1.3 for 0.08 � m/M� < 0.5, α = 2.3 for m/M� � 0.5. We
assume that all stars are formed in a single burst of star formation
at t = 0 in our simulations.

(ii) We consider a wide range of stellar masses from 0.05 to
100 M�.3

(iii) The binary mass ratio, q, is assumed to be distributed uni-
formly in the range 0< q < 1. This is in agreementwith observations
for q � 0.2 (Woitas, Leinert & Köhler 2001).

(iv) The binary period, P, is taken from a uniform distribution in
log10P over the range P = 0.1–107 d.

(v) The binary eccentricity, e, follows a thermal distribution with
probability density p(e) = 2e.

(vi) We reject systems where binary components would overflow
their Roche lobe at pericentre.

The initial average stellar mass is then 〈m〉 � 0.5 M�, and, with
the flat mass ratio distribution, the average binary mass is 〈m b〉 �
0.75 M�.

3.2 Stellar evolution

Weevolve all stars (single and binary) using the population synthesis
code STARTRACK (Belczynski et al. 2002), which has recently been
updated significantly (Belczynski et al., in preparation). This is the
only current population synthesis code that incorporates detailed
treatments of all possible types of mass transfer (MT) episodes:
stable MT (conservative or non-conservative), unstable MT (ther-
mally or dynamically) and thermal time-scale MT. Also included
are the effects of Eddington-limited mass accretion and transient
behaviour of accretion discs (based on the disc instability model).
STARTRACK allows us to follow the evolution of binaries with a large
range of stellar masses, metallicities and star formation histories
(constant rate, sudden or exponential bursts, etc.). STARTRACK also
models in detail the loss of mass and angular momentum through
stellar winds (dependent on metallicity) and gravitational radiation,
asymmetric core collapse events with a realistic spectrum of com-
pact object masses, and the effects of magnetic braking and tidal
circularization on close binaries. In our simulations, we adopted the
new prescription for magnetic braking given by Ivanova & Taam
(2003). Compared with the older prescription (Verbunt & Zwaan
1981) closer binaries lose their angular momentum at a slower rate
and hence survive as binaries longer. The evolution of single stars in
STARTRACK is based on the analytic fits provided by Hurley, Pols &
Tout (2000), but includes a more realistic determination of compact
object masses (Fryer & Kalogera 2001).

We treat the evolution of stellar collision and binary merger prod-
ucts following the general ‘rejuvenation’ prescription ofHurley et al.
(2002). It ensures that the merger product has the same total amount
of hydrogen, helium and carbon as the two parent stars together. For
some stars, the assumptions made in the treatment of the merger

3 The lower limit is chosen in order to provide a self-consistent mass-ratio
distribution for binaries with primaries down to 0.15 M�.
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depend on the types of stars and the type of merger (collision versus
binary coalescence). For example, we assume that there is no ac-
cretion on to a neutron star during a physical collision, and that the
other star, if it is unevolved, is destroyed completely (e.g. we do not
consider the possible formation of a Thorne–Żhytkow object). We
treat as a ‘dynamical common envelope (CE)’ event the outcome
of a physical collision between a compact object and a red giant,
applying a standard ‘alpha prescription’ (where we adopt αCEλ = 1;
see Iben & Livio 1993), but taking into account the initial positive
energy. In particular, if this compact object is a neutron star, a com-
pact binary containing a neutron star and a white dwarf is formed.
We assume that, during the CE phase, the neutron star will accrete
a significant amount of the envelope material and will become a
millisecond pulsar (Bethe & Brown 1998). If the resulting mass of
the neutron star exceeds the limit for a neutron star (taken in our
simulations to be 2 M�), we assume that a black hole is formed.

To evolve the cluster population of single stars and binaries in our
code, we consider two basic time-scales. One is associated with the
evolutionary changes in the stellar population, �t ev, and the other
with the rate of encounters, �t coll (see Section 3.4). The evolution
time-step �t ev is computed so that no more than 2 per cent of all
stars change their properties (mass and radius) by more than 5 per
cent. The global time-step for the cluster evolution is taken to be
�t = min [t ev, t dyn].

3.3 Dynamical cluster model

As we described in Section 2, our model for the cluster dynamics
is highly simplified. We adopt a simple two-zone, core–halo model
for the cluster. We assume that the core number density, nc, and
one-dimensional (1D) velocity dispersion, σ 1D, and the half-mass
relaxation time, trh, remain strictly constant throughout the evolu-
tion. While dense globular clusters of interest have σ 1D ∼ 10 km
s−1, the core density can vary by several orders of magnitude. Here
we set n c = 105 pc−3 for most calculations, representative of a fairly
dense cluster such as 47 Tuc. In general, nc is the main ‘knob’ that
we can turn to increase or decrease the importance of dynamics.
Setting n c = 0 corresponds to a traditional population synthesis
simulation, where all binaries and single stars evolve in isolation
after a single initial burst of star formation. To model a specific
cluster, we match its core mass density today, ρob

M , central velocity
dispersion and half-mass relaxation time.

The escape speed from the cluster core can be estimated from
observations as ve � 2.5 σ 3D (Webbink 1985), where σ 3D is the
three-dimensional (3D) central velocity dispersion. Following an
interaction or a supernova explosion, any object that has acquired a
recoil speed exceeding ve is removed from the simulation.Acquiring
a large recoil velocity in a dynamical encounter is a very efficient
mechanism for ejecting low-mass objects from the cluster. We find
generally that recoil to the halo does not play a significant role: the
recoil velocity into the halo differs by ∼10 per cent from the escape
velocity from the cluster, and affects only a small number of objects.

For computing interactions in the core, the velocities of all objects
are assumed to be distributed according to a lowered Maxwellian
(King 1965), with

f (v) = v2/σ 2(m)
{
exp[−1.5v2/σ 2(m)]

− exp
[−1.5v2

e/σ
2(m)

]}
, (1)

where σ (m) = (〈m〉c/m)1/2σ 3D (assuming energy equipartition in
the core) and ve is the escape speed. Here 〈m〉c is the average mass
of an object in the core. In addition, we use σ to impose a cut-off

for soft binaries entering the core: any binary with maximum orbital
speed < 0.1 σ 3D is immediately broken into two single stars (Hills
1990).

In the presence of a broad mass spectrum, the cluster core is
always dominated by the most massive objects in the cluster, which
tend to concentrate there via mass segregation. As stars evolve, the
compositionof the corewill therefore change significantly over time.
Mass segregation in globular clusters was investigated recently in
Fregeau et al. (2002) by considering both light and heavy tracers in
two-component models. It was found that the characteristic mass-
segregation time-scale is given by

tsc � 10 C (〈m〉h/m) trh, (2)

where C is a constant of the order of unity and 〈m〉h is the aver-
age mass of an object in the halo, and m is the current mass of
the object. This equation represents a diffusion process and can be
applied to all stars, not just to those more massive than average.
Indeed, even low-mass objects may (rarely) diffuse into the cluster
core on a long time-scale, although on average they will tend to drift
outwards. However, for very light objects with masses �0.4 〈m〉h
(which is typically ∼0.3 M� at the beginning and ∼0.15 M� after
∼10 Gyr), this expression becomes less accurate, although it re-
mains valid qualitatively. For a more recent discussion of mass seg-
regation in the presence of a broad mass spectrum, see Gürkan,
Freitag & Rasio (2004).

To model mass segregation in our simulations, we adopted the
time-scale given by equation (2), but treated the process as stochas-
tic: the probability for an object of mass m to enter the core after a
time ts is sampled from a Poisson distribution,

p(ts) = (1/tsc) exp(−ts/tsc). (3)

This treatment ensures that all stars heavier than ∼0.4 〈m〉h dif-
fusing into the core will have the appropriate mass spectrum and
that interactions will occur between objects drawn from the correct
distribution.

Equation (2) was derived for the restricted case of a two-
component cluster – without a realistic IMF – therefore C is un-
known by a factor of a few. We find in simulations that the final
core mass is nearly proportional to 1/C〈m〉h. In order to obtain a
better fit to observations for the core mass versus total cluster mass
relation, we have fine-tuned equation (2) using data for 47 Tuc, in
particular the ratio of the core mass to the total mass of the cluster.
For this cluster we adopted a coremass of 105 M� and a total cluster
mass of 106 M� at present (Freire et al. 2001); we also take t rh =
3 × 109 yr (Harris 1996) and an age of 11 Gyr (Gratton et al. 2003).
While the core mass can be found directly from our simulations, the
total cluster mass has an uncertainty due to the IMF cut-off at the
low-mass end in our standard cluster model. First, we found the total
mass of a cluster model evolved to 11 Gyr and the initial number of
very massive stars (defined as those producing a black hole at the
end of their stellar evolution). We find that at 11 Gyr, the cluster
has 145 M� per black hole (or per heavy primordial star), when
the IMF extends down to 0.01 M�. This allows us to normalize our
model to the real cluster mass: with this ratio we have an estimate
for the total cluster mass when we use a higher cut-off for the IMF
(0.05 M�). This now gives us the ratio of the core mass to the total
cluster mass corresponding to our simulations. We find that the best
fit for 47 Tuc gives C〈m〉h = 3 M�.
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3.4 Treatment of dynamical interactions

All objects in our simulations are allowed to have dynamical inter-
actions only after they have entered the cluster core.We use a simple
Monte Carlo prescription to decide which pair of objects actually
have an interaction during each time-step.

The cross-section for an encounter between twoobjects, ofmasses
mi and mJ , with relative velocity at infinity viJ , is computed as

Si J = πd2
max

(
1 + v2

p/v
2
i J

)
, (4)

where dmax is themaximumdistance of closest approach that defines
a significant encounter and v2

p = 2G (mi + mj)/dmax is the velocity at
pericentre. Here the index i (lowercase) reflects an individual object
in the core, while J (uppercase) denotes a random representative
object from the subclass of objects J. In order to more accurately
determine encounter rates, at each time-step binaries and single
stars in the core are divided into 100 subclasses: 10 by size (radius
for single stars or semimajor axis for binaries) and 10 by mass.
Boundaries between mass subclasses are fixed approximately as 0.1
× 2n . Subclasses by size depend on the current sizes of single and
binary populations (separately), with the step between subclasses
taken as δ log10r bin = 0.1 (log10Rmax −log10Rmin). The encounter
rate for a given object i and an object from subclass J is � i,J =
nJSiJviJ , where nJ is the number density of objects in subclass J,
and the cross-section and relative velocity are defined for an average
object in subclass J.

The total interaction rate for a given object i is the sum of the in-
teraction rates with all relevant subclasses, �i = ∑

J n J Si J vi J . The
corresponding interaction time is τ i = 1/� i . The actual time for an
encounter ti follows a Poisson distributionwithmean τ i . In practice,
we generate a random number 0 < X < 1, and assume that the en-
counter happened if ti = Xτ i � �t . The time-step is limited so that
�t dyn � 0.25 mini τ i . We keep track separately of the time-scales
τ i,J for interactions with each subclass J, and the corresponding
t i,J = XJτ i,J is generated from an independent random number. If
an encounter happened, it is assumed to be with an object from the
subclass with the smallest t i,J . The actual interacting object Ĵ from
that subclass J is randomly selected from the list of non-interacted
objects in this subclass.

In this paper we consider separately binary–binary, binary–single
and single–single interactions. The cross-sections and rates are cal-
culated using dmax = 5 (Ri + 〈R〉 J ) for single–single, dmax = 3 (bi +
〈R〉 J ) for binary–single and dmax = 3 (bi + 〈b〉 J ) for binary–binary.
Here bi = ai(1 + ei) is the apocentre separation of the binary (ai

is the semimajor axis and ei is the eccentricity), 〈R〉 J is the aver-
age stellar radius in subclass J and 〈b〉 J is the average apocentre
separation in subclass J. A single–single interaction with pericen-
tre distance di � 2(Ri + RJ) is treated as a physical collision and
assumed to lead to a merger or a dynamical CE phase. If 2 < di/(Ri

+ RJ) < 5, we check whether a binary could be produced via tidal
capture using the approach described in Portegies Zwart & Meinen
(1993). If a tidal-capture binary is formed, its eccentricity is set to
zero and its semimajor axis set to 2di, assuming rapid circularization
(∼10 yr) as predicted by the standard model described inMcMillan,
McDermott & Taam (1987).

Each dynamical interaction involving a binary is calculated using
FEWBODY, a new numerical toolkit for simulating small-N gravita-
tional dynamics that provides automatic calculation termination and
classification of outcomes (for a detailed description see Fregeau
et al. 2004). FEWBODY numerically integrates the orbits of small-N
systems, and performs collisions in the sticky-star approximation.
The ability of FEWBODY to automatically classify and terminate cal-

culations as soon as the outcome is unambiguous makes it well
suited for carrying out large sets of binary interactions, for which
calculations must be as computationally efficient as possible.

4 T E S T C A L C U L AT I O N S A N D S I M P L E
E S T I M AT E S

4.1 Comparison with N-body simulations

We have compared our simple dynamical model to recent re-
sults from fully self-consistent Monte Carlo simulations based on
Hénon’s algorithm for solving the Fokker–Planck equation (Joshi,
Rasio & Portegies Zwart 2000; Joshi, Nave & Rasio 2001). For our
test we used the results obtained for an idealized model cluster con-
taining 20 per cent primordial hard binaries (binding energies in the
range 1–133 kT , where kT is the average kinetic energy of an object
in the cluster) for a King model with dimensionless central potential
W 0 = 7 (Fregeau et al. 2003, hereafter F03). In this simulation all
stars had equal masses, were treated as point masses (no physical
collisions), no stellar evolutionwas taken into account and all binary
interactions were treated using simple recipes.

We used our code to perform a similar simulation: we considered
a cluster consisting of equal-mass stars, and we turned off all stellar
evolution and physical collisions. To fit the F03 model, we took the
core mass as 8.3 per cent of the total cluster mass (corresponding to
a King model with W 0 = 7), and we took an average star mass of 1
M� and σ r = 10 km s−1. For a total cluster mass of 3 × 105 M�
these conditions imply t rh = 8 × 108 yr and n c = 2000 pc−3. We
evolved the cluster for 20 t rh.

In Fig. 1 we show our results for the core and halo binary frac-
tions as a function of time, compared with the model of F03. The
agreement with F03 is excellent: the core binary fraction rises
very quickly to ∼35 per cent and then remains close to this value
for ∼10 t rh. In contrast, the halo binary fraction decreases more

Figure 1. Evolution of the core and halo binary fractions (top) and the core
radius (bottom) in our test model, compared with the F03 model (see the
text). In the top panel, the solid line shows the binary fraction in the core and
the dashed line shows the binary fraction in the halo, both for the test model.
The dotted line shows the binary fraction in the core in the F03 model and
the dash-dotted line shows the binary fraction in the halo in the F03 model.
In the bottom panel the solid line shows the core radius in the test model and
the dotted line shows the core radius in the F03 model.
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gradually from 20 to 10 per cent. Considering the differences be-
tween the two treatments, especially for binary interactions, this
agreement is quite remarkable.

In the bottom panel of Fig. 1 we show the evolution of the core ra-
dius rc. The core radius evolves in the same way as in the dynamical
simulation of F03. Overall, the core radius does not change much
during the entire evolution and its value is consistent with the mea-
sured values for observed globular clusters with similar parameters
(e.g. NGC 3201 or 6254, in which the total cluster mass, the central
number density and the central velocity dispersion are similar to
those in our model).

4.2 Semi-analytic estimates

One can estimate the final binary fraction f b,c in a dense environ-
ment by considering several mechanisms of binary destruction.

(i) All soft binaries are usually destroyed during a strong en-
counter.

(ii) Some fraction of hard binaries is destroyed through stellar
evolution (mergers or disruptions after supernova explosions).

(iii) When a hard binary has a strong encounter with another hard
binary or a single star, it can exchange its lessmassive component for
a more massive star, shrink its orbit or be destroyed in a collisional
merger.

It should be noted that in our simplified semi-analytical treatment
we neglect the effect of mass segregation, which tends to increase
the core binary fraction. (This issue is discussed in more detail in
Section 5.2.)

Let us consider a dense environment with number density
105 pc−3, σ 1D = 10 km s−1 and with an average mass of 0.5 M�.
With our choices of initial parameters, and an average mass of 0.5
M�, 40 per cent of all primordial binaries initially are soft (this
fraction would be 50 per cent with respect to the average mass of 1
M�). We introduce η – the hardness of a binary system – as

η = Gm1m2

aσ 2〈m〉 , (5)

where a is the binary separation, m1 and m2 are the masses of the
binary components and 〈m〉 is the average mass of a single star.
Binaries that have η < 1 are termed soft, and those with η > 1 are
termed hard.

To find how many hard binaries will be destroyed by stellar evo-
lution alone, we calculated the probability of binary destruction as a
function of its initial total mass and orbital period, using the binary
population synthesis code (see Fig. 2). This simulation was per-
formed with 1.25 × 105 binaries distributed initially flat in log P d

and log M tot (in order to have better resolution for destruction rates
for high-mass binaries), where Pd is the binary period in days and
M tot = M 1 + M 2 is the total binary mass in M�, and was evolved
for 14 Gyr.

The result is striking: most of the very hard binaries, with hard-
ness ratios η � 100, are destroyed by stellar evolution. The empty
space near the bottom right-hand corner of Fig. 2 reflects the ab-
sence of systems below the minimum period for binaries on the
main sequence (the period at which stars come into contact). For
binaries with total mass �10 M� destructions mainly occur during
the first 108 yr of cluster evolution. Binaries with period �104 d
are mainly destroyed through SN explosions. Binaries with period
�10 d are destroyedmainly viamergers at theMS stage. For periods
in the range 10–104 d the destructions are associated with common
envelope evolution and occur at later times. Destructions in binaries

Figure 2. Destruction of primordial binaries by stellar evolution, shown
in the parameter space of total initial binary mass and initial binary period.
Solid lines are lines of constant binary hardness and dashed lines are lines
of constant collision time.

of smaller masses are not much different from more massive bina-
ries at small periods, but are not destroyed through SN explosions
at large periods. Also, the CE event in less massive binaries occurs
when the donor is a less evolved giant (at the first red giant branch).

Onemay expect that destruction rates should vary smoothly; how-
ever, binary evolution involves many qualitatively different events.
In particular, an interesting fluctuation in destruction rates can be
seen at log P ∼ 1.75 and log M tot ∼ 0.95, where local destruction
rates are lower than for nearby binaries. For these and nearby bina-
ries the destruction rates are approximately the same for mass ratio
q � 0.5 but different for larger q. For binaries of masses close to and
smaller than these, most destructions for q � 0.5 occur during the
CE event between a WD and a giant. This CE phase is the second
interaction in the binary and follows the stable MT event with the
other donor. When the total binary mass is smaller, the WD mass is
�0.9 M�, and a CE event leads to a merger. For binaries of higher
total mass, the second interaction occurs between a He star or aWD
and a star at the Hertzsprung gap. This MT is unstable and leads
to a merger. This, therefore, provides for a small local decrease in
destruction rates.

With our IMF and considering binaries of all masses, the frac-
tion of hard binaries destroyed during their evolution is 20 per
cent. Among binaries where at least one star is more massive than
0.5 M� the destruction fraction is 50 per cent, and for those with
total initial mass above 1 M�, this fraction is closer to 60 per cent.
The fraction of hard binaries that is not destroyed but is instead
softened by evolution is very small, �1 per cent. In Section 4.3 we
will discuss in more detail how binary destruction rates change with
time.

Therefore, even before any dynamical processes are considered
for the hard binary population, we estimate that the final binary
fraction cannot be higher than ∼ 50 per cent, and for binaries with
at least one star moremassive than 0.5M� this upper limit becomes
30 per cent. For relatively massive binaries, with total initial mass
above 1 M�, the upper limit for f b,c is only 24 per cent. Overall,
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this estimate already shows that (i) the expected final binary fraction
in a dense star cluster will be low and (ii) stellar evolution cannot be
neglected when estimating binary fractions from dynamical models
of dense star clusters.

Let us now consider the effects of dynamical interactions. The
time-scale for a binary to undergo a strong encounter with another
single star, the collision time, can be estimated as τ coll = 1/nσv∞.
Assuming that the strong encounter occurs when the distance of
closest approach dmax � ka with k � 2, we obtain

τcoll = 3.4 × 1013 yr × k−2P−4/3
d M−2/3

tot n−1
5 v−1

10

×
[
1 + 913

(Mtot + 〈M〉)
k P2/3

d M1/3
tot v2

10

]−1

. (6)

Here 〈M〉 is the mass of an average single star in M�, v10 =
v∞/(10 km s−1), where v∞ is the relative velocity at infinity and
n5 = n/(105 pc−3), where n is the number density. Using equation
(5), equation (6) can be rewritten in a more convenient form:

τcoll = 1.7 × 108 yr × η2k−2n−1
5

〈M〉2
M2

1 M2
2

×
(
1 + η

2

k

Mtot + 〈M〉
M1M2

〈M〉
)−1

.
(7)

It can be seen from equation (7) that the collision time for a
binary with η = 1 and M tot = 1 M� is only ∼108 yr. Overall,
with our IMF, ∼50 per cent of all hard binaries have collision times
shorter than∼10Gyr (see also Fig. 2), and 15 per cent have collision
times as short as ∼1 Gyr. In addition, most of the hard binaries
that could have experienced an encounter are binaries with η = 1–
100, and therefore they are from the population that is destroyed
by stellar evolution to a lesser degree than binaries harder than η =
100. While this estimate considered only binary–single encounters,
binary–binary encounters will further enhance the destruction rate.
Moreover, when the binary fraction is higher than ∼25 per cent,
binary–binary encounters dominate over binary–single encounters.

Each binary–single encounter with a hard binary can result in a
hardening of this binary, an exchange of a companion with a more
massive single star, or binary destruction in a physical collision. The
probability of a physical collision during an encounter increases
strongly as the binary becomes harder (Fregeau et al. 2004). In ad-
dition, a very hard binary can be ejected from the core if its recoil
velocity exceeds the escape speed from the cluster. Each of these
three processes, directly or indirectly, leads to the depletion of bina-
ries (immediate or delayed): acquiring a more massive companion,
and orbital shrinkage or the eccentricity increase, makes systems
more likely be destroyed through stellar evolution. As a conserva-
tive lower limit, we assume that half of the interacting hard binaries
will be destroyed as a result of an encounter (immediately or later).
This is clearly a lower limit, as scattering experiments show that,
for hard binaries containing main-sequence stars most encounters
will lead to a physical collision (Fregeau et al. 2004).

Taking everything into account, we conclude that 64 per cent of
all binaries will be destroyed – only k s = 36 per cent of primordial
binaries can survive to the present. The expected final binary fraction
is therefore f b = N b/(N s + N b) = k s/(2 − k s) = 22 per cent (for
stars over the entire mass range) and it is 13 per cent (k s = 23 per
cent) for binaries with at least one star more massive than 0.5 M�,
while for M tot � 1 M� it is only 10 per cent (k s = 18 per cent).
We note again that this upper limit for the final binary fraction does
not take into account several other mechanisms leading to binary

destruction, such as binary–binary encounters,which aremore likely
to cause binary destruction than binary–single encounters.

4.3 Encounters in dense environments

In order to verify our encounter rates, we considered the evolution
of a binary population that is completely immersed into a dense en-
vironment with n c = 105 pc−3 for its entire evolution. We adopted
a velocity dispersion σ 1D = 10 km s−1 and evolved the system for
14 Gyr. This is an even simpler model of a star cluster, where all
objects are effectively inside the ‘core’ at all times and the effects
of mass segregation and diffusion between a core and a halo are
completely ignored. It allows us to study more clearly the vari-
ous types of dynamical interactions as separate processes. We ran
a sequence of simulations, with: (i) only binary–single encounters,
with no physical collisions allowed during an encounter; (ii) binary–
single encounters with physical collisions; (iii) both binary–single
and binary–binary encounters but still without physical collisions;
(iv) binary–single and binary–binary encounters with physical col-
lisions; and (v) all types of encounters allowed, including single–
single collisions. In this last casewe also eliminated from the system
any object that acquired a recoil speed exceeding the escape velocity
ve = 2.5σ 3D.

In Section 4.2 we estimated that, with only binary–single encoun-
ters taken into account, the final binary fraction should not exceed
22 per cent. This assumed that all objects in the core had a mass
equal to the average mass 0.5 M�. With the complete IMF, a sin-
gle star participating in the encounter can have mass higher than
0.5 M�. Also, a fraction of initially hard binaries can become soft
during the evolution, e.g. because of mass loss. As a result, we ob-
tain even lower remaining binary fractions: f b,c = 16.5 per cent for
case (i) and f b,c = 16.4 per cent for case (ii). These numbers are in
agreement with the upper limits we estimated in Section 4.2.

When binary–binary encounters are taken into account, the result
is even more dramatic: we obtain f b,c = 8.0 per cent and f b,c = 7.9
per cent for cases (iii) and (iv), respectively. As expected, we see
that binary–binary encounters further enhance the binary destruction
rate.

When all dynamical processes are taken into account, in case (v),
we obtain a final binary fraction f b,c = 6.9 per cent. While our
semi-analytical estimate of the binary fraction provided an upper
limit, the result obtained in this section is clearly a lower limit: in a
real cluster, not all binaries will be exposed to the high interaction
rates of the core at all times. However, as more massive objects are
more likely to diffuse into the core, and as their destruction rate can
be higher than for objects of average mass, this lower limit is only
approximate, but we may expect it to be much closer to the real
value than our previous, conservative upper limit.

Let us now consider in detail which mechanisms of binary de-
struction are most important. In Fig. 3 we show the rates of binary
destruction (events per binary per Gyr) for a field population (with
no interactions). Except for the interval between∼107 and∼108 yr,
when black holes and neutron stars are formed, the binary destruc-
tions are mainly coming from mergers. The power-law behaviour
observed for the overall destruction rate at late times is on the one
hand imposed by the rate of orbital decay driven by magnetic brak-
ing, and on the other hand depends on the evolutionary time-scale
for the companion to become a red giant.

In Fig. 4 we show the binary destruction rates again, but for
the dense environment. During the first few Gyr the main destruc-
tion mechanism is the dynamical disruption of soft binaries. The
rate of disruption through stellar evolution is smaller than in the
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Figure 3. Binary destruction rates as a function of time for a field pop-
ulation (i.e. without dynamical interactions). Rates are given as numbers
of events per binary per Gyr for mergers and disruptions (following a su-
pernova explosion). Note the peak in evolutionary disruptions at t ∼ 107–
108 yr, which is due to supernovae.

Figure 4. Same as in Fig. 3, but now for the same binary population
evolved in a high-density environment with 105 binaries pc−3. Here dis-
ruptions through binary–binary (BB) and binary–single (BS) interactions
dominate for the first ∼5 Gyr.

field population: some massive binaries are destroyed by dynami-
cal encounters before they evolve to a supernova explosion. How-
ever, the rate of evolutionary mergers is approximately the same
as for the field for the first ∼108 yr. This is consistent with our
estimate for the collision time of hard binaries: at this time, hard
binaries have not yet been hardened significantly by dynamical en-
counters. After ∼108 yr the rate of binary evolutionary mergers
is increased compared with the field population, as the dynamical
hardening of hard binaries has now started. The rates for binary de-

struction through mergers and physical collisions are very similar:
in most cases, if a binary is tight enough for an evolutionary merger,
the most likely outcome of a dynamical interaction is a physical
collision.

At ∼ 5 Gyr, the rate of binary destruction through physical col-
lisions starts dominating over dynamical disruptions: at this stage,
almost no soft binaries are left, and the hard binaries are more likely
to lead to physical collisions during an encounter. Consider a binary
withη ∼ 1 at this stage. Fromequation (7)we canfind that a collision
time of 5 Gyr corresponds typically to binary components of 0.1 and
0.05 M� (assuming an average mass ratio of 0.5 and an average
field mass as 0.5 M�). This binary is clearly at the lowest-mass end
of our IMF, and therefore by this time almost all soft binaries in the
simulation have been destroyed. On the other hand, consider some
moremassive binary, which has evolved through approximately half
of its main-sequence lifetime, and has component masses of 0.8 and
0.4 M� (and still the same collision time of 5 Gyr). The hardness
of such a binary is η � 100, corresponding to a binary separation
�10 R�. For such a tight binary, the probability of a physical colli-
sion in an encounter is almost 100 per cent. The total rate of binary
destructions through physical collisions become comparable to that
of dynamical disruptions, as can be seen from Fig. 4.

5 R E S U LT S

5.1 Overview of cluster models

Initial conditions for all of our models are given in Table 1. The
first group of models is used to cover the parameter space of initial
conditions over fairlywide ranges.Ourmain referencemodel,model
1, has a core density of n c = 105 pc−3, a half-mass relaxation time
of t rh = 109 yr, an initial binary fraction of f b,0 = 1, a central
velocity dispersion of σ 1D = 10 km s−1 and a central escape speed
of ve = 2.5 σ 3D = 43 km s−1. We then consider three models with
different central densities (D3, D4 and D6), two with different half-
mass relaxation time (T8 and T10) and one with an initial binary
fraction decreased to 50 per cent (B05). The initial total number of
stars is N = 2.5 × 105 for all models, except for the ‘47 Tuc’ model
(see below), where we used N = 5× 105). In all of these models the
cluster core was assumed to contain∼1 per cent of the stars initially
and the metallicity was fixed at Z = 0.001 (these two parameters
have very little influence on our results).

Table 1. Initial conditions for all models.

Model log nc log ρob
M log t rh f b,0 σ 1D ve

1 5.0 9.0 1.0 10.0 43.0
D3 3.0 9.0 1.0 10.0 43.0
D4 4.0 9.0 1.0 10.0 43.0
D6 6.0 9.0 1.0 10.0 43.0
T8 5.0 8.0 1.0 10.0 43.0
T10 5.0 10.0 1.0 10.0 43.0
B05 5.0 9.0 0.5 10.0 43.0
M12 3.8 3.5a 9.02 1.0 4.5 19.6
M4 4.4 4.1 8.82 1.0 4.2 20.3
47 Tuc 5.3 5.1 9.48 1.0 11.5 56.8
NGC 6388 5.9 5.7 9.08 1.0 18.9 78.2

Notation: nc is the core number density in pc−3 (assumed fixed), ρob
M is the

observed core mass density in M� pc−3, t rh is the half-mass relaxation time
in yr, f b,0 is the initial binary fraction, σ 1D is the 1D velocity dispersion in
km s−1 and ve is the escape speed in km s−1

at rh for specific clusters are taken from Harris (1996), ρob
M and σ 1D from

Pryor & Meylan (1993), and ve from Webbink (1985).
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Table 2. Results for reference models.

Model log ρ M f b,c f 0.5 f wd

1 4.7 0.095 0.15 0.080
D3 2.7 0.265 0.37 0.165
D4 3.7 0.170 0.25 0.115
D6 5.7 0.035 0.055 0.055
T8 4.5 0.11 0.13 0.085
T10 4.8 0.055 0.07 0.055
B05 4.7 0.072 0.010 0.055

Here ρ M is the core mass density in M� pc−3, f b,c is the
binary fraction in the core, f 0.5 is the binary fraction for
non-degenerate stars more massive than 0.5 M� and f wd
is the binary fraction among white dwarfs. Values for all
quantities are given at 14 Gyr.

We performed several simulationswith parameters that attempt to
match those of specific globular clusters in the Galaxy (the bottom
part of Table 1). All of these clusters are classified observationally
as ‘non-core-collapsed’, meaning that they are well fitted by stan-
dard King models. These are precisely the kinds of clusters that,
theoretically, we expect to be in the ‘binary burning’ thermal equi-
librium state. For this set, we tried to consider the maximum range
of dynamical parameters, while concentrating on clusters at rela-
tively small distances and/or very well studied observationally, so
that current or future observations could test our predictions. For
our most important model, 47 Tuc, we also considered additional
models in which we varied the initial binary fraction or introduced a
time-dependent core density (see Section 5.5). For all of our models
of specific observed globular clusters, the central number density
was chosen in order to provide (at the actual age of the cluster,
∼11–13 Gyr) the best fit to the observed mass density ρob

M (Pryor &
Meylan 1993). Metallicities for these models are taken from Harris
(1996).

5.2 Main reference model

First, we present our results for a typical dense cluster, represented
by model 1. With 100 per cent binaries initially, the final core bi-
nary fraction (at 14 Gyr), f b,c, is only 9.5 per cent. This is strikingly
low, given that the cluster started with all stars in binaries, and that
binaries should concentrate more into the core through mass segre-
gation, but it is expected from our estimates in Section 4. Decreasing
the initial binary fraction, f b,0, to a more reasonable (but still large)
50 per cent reduces f b,c further to 7 per cent, as shown in model
B05 (see Table 2). The dependence of f b,c on f b,0 is not linear. This
is mainly due to mass segregation: decreasing f b,0 also increases
the ratio of mean binary mass to mean stellar mass in the cluster,
thereby resulting in a higher concentration of binaries in the core.

Themajority (∼ 75 per cent) of destroyed binaries were disrupted
by close dynamical encounters (or, rarely, following a supernova
explosion). Note that some binaries that are initially hard eventually
become soft after undergoing significant mass loss due to stellar
evolution. About 20 per cent of the destroyed binaries experienced
mergers, typically after significant hardening through interactions.
A few per cent of the binaries lost were actually not destroyed but
instead were ejected from the cluster as a result of recoil in strong
encounters. Tidal capture did not play a significant role: the total
number of tidal-capture binaries formed during the cluster lifetime
is less than 1 per cent of the final number of binaries in the core.
The total core mass during most of the cluster evolution (the last
∼10 t rh) did not vary by more than a factor of 2.

Figure 5. Evolution of the core binary fraction in model 1. We show sep-
arately the binary fractions for all objects, for non-degenerate stars with
mass�0.5M�, for non-degenerate stars with mass�0.3M� and for white
dwarfs.

While the final core binary fraction is extremely low, the overall
cluster binary fraction, which takes into account all halo binaries,
remains high.However, the halo binaries consistmainly of very low-
mass systems: the average primary mass among binaries remaining
outside the core at 14 Gyr is 0.2 M�, with the average companion
mass being around 0.1M�. These binarieswould be extremely faint
and hard to detect observationally.

We have also examined different stellar subpopulations in the
cluster: (i) the subpopulation of non-degenerate objects with mass
(for a single star or for the primary in a binary) �0.5 M� and (ii)
the subpopulation of all white dwarfs, single or in binaries. The
binaries in group (i) may be easier to detect, e.g. from broadening
of the main sequence in a colour–magnitude diagram (Rubenstein
& Bailyn 1997). Binaries in group (i) are harder than less mas-
sive average binaries, so fewer of them are destroyed. On the other
hand, stellar evolution plays a more significant role in the destruc-
tion of white-dwarf binaries, which were initially more massive and
harder (Fig. 5). Therefore, the binary destruction rate in group (ii)
is much higher, enhanced both by stellar evolution (mass loss and
mass transfer at more advanced evolutionary stages, and supernovae
in binaries), and by dynamical interactions (larger cross-section for
encounters). Note also that the overall f b,c is decreased partially
through a lower binary fraction for degenerate objects.

5.3 Different densities and relaxation times

Let us now compare results for different central densities, in mod-
els 1, D3, D4 and D6. The evolution of f b,c for these models is
shown in Fig. 6. As expected, the core binary fraction decreases as
nc increases. The dependence is steeper at high densities, where dy-
namical interaction rates play a more dominant role compared with
stellar evolution.

With respect to the half-mass relaxation time (models T8 and
T10), we find that, surprisingly, the model with shorter relaxation
time has a higher core binary fraction. There are two competing
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Figure 6. Evolution of the core binary fraction in model 1 compared with
models with different core number densities (D3, D4 and D6).

mechanisms that play a role here: mass segregation, which brings
binaries into the core, and dynamical interactions, which destroy
binaries in the core. A shorter segregation time increases the rate at
which binaries enter the core but also allows less massive binaries
to interact. Therefore, the average mass of a binary in the core and
the effective mass density in the core are smaller. As a result, fewer
binaries are destroyed.

5.4 Binary period distribution

Through dynamical interactions, we would expect that the initial
period distribution of binaries should be depleted above the bound-
ary between hard and soft binaries. Stellar evolution should deplete
a fraction of hard binaries, especially at very short periods, and dy-
namical encounters should further deplete some of the wider hard
binaries. Indeed, for lower-density clusters, we find that the distri-
bution remains much flatter in log P (see Figs 8 and 9), with more
and more of the wider hard binaries disappearing as the density
increases.

This period distribution can be used to better extrapolate the ob-
served binary fractions, which are usually limited to rather narrow
ranges of masses and periods. In particular, it is clear that the usual
assumption of a flat distribution in log P for hard binaries at present
in a cluster core (e.g. Albrow et al. 2001) can be very misleading.
This will be shown in Section 5.5 for our models of several real
clusters.

5.5 Comparison with observations

We performed several simulations with parameters that attempt to
match those of specific globular clusters in the Galaxy (Tables 1 and
3). For these models, the total core masses we compute at present
match well those of King models fitted to the observed cluster pa-
rameters, and the corresponding core radii of our models (from total
core mass and density) are all ∼0.5 pc, matching the observed val-
ues. In all cases the initial binary fraction is assumed to be 100 per
cent, so our results for final core binary fractions represent upper
limits. As in all reference models, we predict low values for f b,c in
all globular clusters, with smaller values in higher-density cores.

We compare our derived binary fraction for M4 with the results

Figure 7. The binary period distributions in models with different densities
(from the top: D3, D4, model 1 and D6). Nb is the total number of binaries
and N b,p is the number of binaries in each period bin.

Figure 8. Period distributions for different binaries in model 1 (at 14 Gyr).
The middle plot shows the period distribution of binaries containing two
MS stars with masses greater than 0.25 M�, bottom plot shows the period
distribution of binaries with at least one WD; the shaded area shows the
fraction of dynamically formed binaries. Nb is the total number of binaries
and N b,p is the number of binaries in each period bin.

from Cote & Fischer (1996). Using a Monte Carlo modelling of
the binary population, they found that the best fit to the observed
binaries (in the period range from 2 d to 3 yr) is f b,c � 15 per
cent. This is in good agreement with our overall predicted f b,c =
11.5 per cent, and alsowith our prediction for heaviermain-sequence
binaries, f 0.5 = 17.5 per cent.

In the 47 Tuc model (for which we increased the total number of
stars initially to a more realistic N = 5 × 105), f b,c is only 8 per
cent at an age of 11 Gyr and ∼ 7 per cent at 14 Gyr (we provide
this value at different ages given the uncertainty in observationally
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Figure 9. The binary period distribution in our 47Tucmodel, at 11Gyr. The
middle plot shows the period distribution of binaries containing two main-
sequence stars with masses greater than 0.25M�; the bottom plot shows the
period distribution of binaries with at least one white-dwarf component (the
shaded area shows the fraction of dynamically formed binaries). As before
Nb is the total number of binaries and N b,p is the number of binaries in each
period bin.

Table 3. Results for models of specific clusters.

Model Age log ρ M f b,c f 0.5 f wd

M12 12 3.5 0.170 0.26 0.130
M4 13 4.4 0.115 0.175 0.10
47 Tuc 11 5.1 0.080 0.125 0.075
NGC 6388 12 5.7 0.06 0.08 0.045

With the same notation as before, the columns give: the
name of the cluster; the cluster age in Gyr; the central mass
density in M� pc−3 in simulations at the given age, the
core binary fraction, the binary fraction for non-degenerate
objects more massive than 0.5 M� and the binary fraction
among white dwarfs.

determined values for the ages of 47 Tuc; see, e.g., Schiavon et al.
2002; Zoccali at al. 2001; also note that f b,c does not change much
over the last several Gyr). At first glance, this may seem to con-
flict with observations. In particular, Albrow et al. (2001) derive
an overall binary fraction for the core of 47 Tuc of ∼13 per cent,
from observations of eclipsing binaries with periods in the range
P � 4–16 d. This estimate was based on an extrapolation as-
suming a flat period distribution that is in log P from ∼ 2.5 d to
50 yr (soft primordial binarieswith P > 50 yr are assumed destroyed
and short-period primordial binaries with P � 4 d are assumed to
evolve toward much shorter periods through angular momentum
loss by magnetic braking). In Fig. 9 we show the final period distri-
bution of core binaries in our simulation. Note that the period range
of eclipsing binaries is near the peak of the distribution, while for
longer periods the number of binaries drops rapidly. In particular,
if we concentrate on the binaries consistent with the observed set,
with primary masses M 1 > 0.25M� and q > 0.3, we find that the
number of systems with periods in the range 16 d–50 yr is approx-
imately six times smaller than would be predicted by adopting a

flat distribution that was in log P . For the whole period range from
2.5 d to 50 yr we have 2.2 times fewer binary systems compared
with the flat distribution. If we take into account this depletion of
wider binaries when modelling the number of observed eclipsing
binaries in 47 Tuc, we are led to revise the observed core binary
fraction from Albrow et al. (2001) to 6 ± 2 per cent, which is much
closer to our theoretical prediction.

We performed three additional simulations for 47 Tuc, with
f b,0 = 0.25, 0.5 and 0.75. The corresponding core binary fraction
extrapolated from observations (corrected as above) does not vary
much among these different models. Its maximum value is obtained
for f b,0 = 0.5, which gives a core binary fraction of ∼ 8 per cent,
and in this case the total number of binary systems is 1.6 times less
than with an assumed flat distribution.

An alternative estimate of the binary fraction in the core of 47 Tuc
is based on observations of BYDra stars (Albrow et al. 2001). Their
estimated core binary fraction, which can be considered a lower
limit, is ∼ 0.8 per cent, 18 times lower than the estimate based on
eclipsing binaries. This estimate was based on 31 BY Dra binaries
(observed in the period range 0.4–10 d) and five eclipsing binaries
(period range 4–16 d). We analysed the core binary population in
our model in order to identify BY Dra systems and eclipsing bina-
ries, and considering the ratio of the two. We adopted the standard
definition for a BY Dra binary: primary mass in the range 0.3–
0.7M� (see, e.g., Bopp & Fekel 1977) and period in the range
0.4–10 d (as for the observed sample in 47 Tuc). For eclipsing bi-
naries we adopted the observed period range 4–16 d with each star
�0.25 M�. The ratio between the number of BY Dra systems and
the number of eclipsing binaries is found to be 5.9, 6.7, 7.2 and
3.5 for models with f b,0 = 1.0, 0.75, 0.5 and 0.25, respectively.
Therefore, a large initial binary fraction�75 per cent is most likely.

Of the quantities that we explicitly assume in our cluster model to
be constant, the central (core) density is thatwith the largest dynamic
range inmodels that provide for dynamical evolution.Hence it is also
the quantity that ismost likely to significantly affect our final results.
To test the sensitivity of our results to a changing central density,
we have run our model of 47 Tuc with a central density assumed to
increase by a factor of 10 from t = 0 to the present. Specifically, we
still match the currently observed core density while ramping up the
value either exponentially or linearly in time, starting with a value
10 times smaller than at present. This could represent qualitatively
the gradual core contraction observed in some N-body models of
star clusters with binaries (see Aarseth & Heggie 1993, and, for a
steeper core contraction, seeGiersz&Spurzem2003). Thesemodels
predict a present-day core binary fraction that is only slightly higher,
by∼1–2 per cent. To increase the binary fractionmore significantly,
the time-averaged core density in the cluster would have had to
be many orders of magnitude lower than what is observed today.
There is no reasonable dynamical history that would produce such
an unusual result. In contrast, recent N-body simulations show that
the presence of just 10 per cent hard primordial binaries leads to core
radius expansion and therefore the core density might be higher in
the past (Wilkinson et al. 2003). Though we did not run another
47 Tuc model with a central density decreasing with time, we can
predict that the present-day binary fraction would then be smaller
by ∼1–2 per cent.

6 C O N C L U S I O N S

We have considered in detail processes of binary destruction (and
formation) in dense stellar systems. In particular,we have shown that
the present binary fraction in cluster cores should be relatively small

C© 2005 RAS, MNRAS 358, 572–584



Evolution of binary fractions in clusters 583

(�10 per cent). This is caused not only by dynamical encounters,
but also binary stellar evolution, which is the dominant mechanism
for the destruction of hard binaries. We also find that the destruction
rate due to stellar evolution is enhanced significantly by dynamical
hardening of binaries.

We have shown that values of binary fractions for stars in different
mass ranges and at different evolutionary stages can differ signifi-
cantly. The fraction of dynamically formed binaries is higher when
one considers stars at more advanced evolutionary stages. The bi-
nary period distribution evolves from flat in log P for loose clusters
toward a sharply peaked distribution in denser clusters, even if all
clusters have identical velocity dispersions and therefore identical
hard–soft binary boundaries. This implies that a flat period distribu-
tion should not be assumedwhen deriving overall binary fractions by
extrapolation from the distribution of observed binaries in a narrow
period range (e.g. eclipsing binaries).

We considered several models that attempted to match observed
globular clusters. For those with good available data on binaries
(M4 and 47 Tuc), we found our predicted binary fractions to be in
good agreement with observations once we take into account the
correct binary period distribution. The main conclusion we derive
from these calculations and our semi-analytic estimates is that the
currently observed binary fractions in cluster cores suggest very
high initial (primordial) binary fractions – close to 100 per cent.

In addition to their implications for the interpretation of observed
binary fractions in cluster cores, our results have important con-
sequences for the theoretical modelling of globular clusters using
N-body simulations. Indeed, it is clear that ‘realistic’ dynamical
simulations of globular cluster evolution should include large pop-
ulations of primordial binaries, with initial binary fractions in the
range ∼50–100 per cent (similar to what is usually assumed for the
field; see, e.g., Duquennoy & Mayor 1991). This poses a particu-
lar challenge for direct N-body simulations, where the treatment of
even relatively small numbers of binaries can add enormous com-
putational costs. For this reason, current direct N-body simulations
of star clusters with large initial binary fractions typically have N
too small to be considered representative of globular clusters (see,
e.g.,Wilkinson et al. 2003; Portegies Zwart et al. 2004). Othermeth-
ods, such as Monte Carlo simulations, do not suffer from the same
limitations, and routinely simulate clusters with reasonably large
N (∼105–106) and binary fractions (∼30 per cent), but have not
yet included advanced treatments of binary star evolution (see, e.g.,
Fregeau et al. 2003, and references therein).
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A P P E N D I X : RO L E O F T H R E E - B O DY B I NA RY
F O R M AT I O N

Consider the rate of three-body binary formation (via the close ap-
proach of three single stars) in a dense cluster core. We denote by
�(E b) the rate per star of the formation of a binary with binding
energy Eb. First, we consider �(b � bmax) – the rate (per star) at
which three objects come together within a region of size bmax. The
probability that a third object will be in the vicinity b of two other
interacting objects is the product of the probability of the first two
bodies meeting and the probability that during this time a third ob-
ject will be in the same vicinity. The rate of two-body encounters
for masses m1 and m2, with number density n2 is

�2(b � bmax) = πb2
max

(
1 + v2

p

〈v12〉2
)

n2v12, (A1)

where

v2
p = 2G(m1 + m2)

bmax
(A2)

is the velocity at closest approach and

〈v12〉2 � (
σ 2
1 + σ 2

2

) = σ 2〈m〉m1 + m2

m1m2
, (A3)

where σ is the three-dimensional velocity dispersion.
We define the minimum hardness for the binary to be formed as

ηmin = Gm1m2

bmax〈m〉σ 2
. (A4)

Then

�2(b � bmax) = πb2
max (1 + 2η) n2v12. (A5)

The second object spends in the vicinity b of the first object a
time �t � 2 b/vp. The probability that a third object will be within
the same vicinity is then

p3 � n3

(
b2
max�tv3 + b3

max

) = n3b
3
max

(
1 + 2

v3

vp

)
, (A6)

where v3 is the relative velocity of the third object with respect to
the centre of mass of the first two. Effectively, it reflects velocity
at which the population at the vicinity b is increasing. We do not
consider here the population decrease, assuming that if the object
was in the neighbourhood, a three-body encounter has happened.

The final result then takes the form given in Binney & Tremaine
(1987, Section 8), but with an additional mass- and hardness-
dependent factor f ,

�3(η > ηmin) = n2
cG5〈m〉5

σ 9
f (m1, m2, m3, η) (A7)

f (m1, m2, m3, η) = π
n2n3

n2
c

m5
1

〈m〉5
m5

2

〈m〉5 η−5 (1 + 2η)

×
[
1 + v3

σ
η−1/2

√
2

m1m2

(m1 + m2)〈m〉

]
v12

σ
.

(A8)

It is clear that the rate is highly dependent on the masses of the
participating stars and decreases steeply with increasing hardness
of the binary that is formed.

If all encounters resulted in the formation of a binary with hard-
ness η, then the rate of binary formation would be completely de-
scribed by equation (A7).

Using the equation (A7), the time-scale for three-body binary
formation can also be written as

T3b = 2.08 × 1016(yr)

(
105

nc

)2 (
M�
〈m〉

)5 (
σ

10 kms−1

)9

× nc

n2

nc

n3

( 〈m〉
m1

)5 ( 〈m〉
m2

)5
σ

v12

× η5(1 + 2η)−1

[
1 + v3

σ
η−1/2

√
2

m1m2

(m1 + m2)〈m〉

]−1

.

(A9)

Even in the core of a large, very dense cluster, with density
∼105 pc−3 and containing ∼105 stars, no binaries with η > 1 will
be formed from ∼1 M� stars in a Hubble time. It has also been
shown that many three-body binary formation events will lead to
physical collisions for stars as small as white dwarfs (Chernoff &
Huang 1996). We therefore neglect all three-body interactions in
our cluster simulations.
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