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ABSTRACT

Close binary systems in hydrostatic equilibrium can become unstable. The stability limit for circular orbits
occurs at the orbital separation that simultaneously minimizes the total equilibrium energy and angular
momentum in the system. The occurrence of such a minimum is a purely Newtonian hydrodynamic effect
resulting from tidal interactions. Its existence is independent of the degree of synchronization, assuming align-
ment of spin and orbital angular momentum. The development of an instability can drastically affect the ter-
minal evolution of coalescing binary systems. In particular, it can cause a rapid acceleration of the
coalescence, such that the final merging takes place on a time scale much shorter than the energy dissipation
time scale. For orbital decay by gravitational wave emission of a system containing two identical stars of mass
m and radius R, the radial infall velocity at contact is given by »,/(Gm/R)Y? ~ 1072-10"! for 0 < Gm/
(Rc?) < 0.1. Expressed as a fraction of the Keplerian orbital velocity at the stellar surface, the radial velocity

approaches a finite limiting value as Gm/(Rc?) — 0.

Subject headings: binaries: close — hydrodynamics — radiation mechanisms: gravitational — stars: neutron

1. INTRODUCTION

Close binary systems are traditionally studied in the Roche
approximation, where they are modeled as massless gas in
hydrostatic equilibrium in the effective potential of a point-
mass system (Kopal 1959). This model applies well to very
centrally condensed objects, with effective polytropic indices
n > 3, such as red giants and main-sequence stars with radi-
ative envelopes. In the opposite limit of incompressible con-
figurations (n = 0), the tensor virial method has been used to
calculate binary equilibrium solutions and their stability
properties (Chandrasekhar 1969). Little is known, however,
about the intermediate category of stars with 0 < # < 3. Many
binary systems contain stars that belong precisely to this cate-
gory. In particular, all low-mass white dwarfs and main-
sequence stars have n & 1.5, and neutron stars probably have
n = 0.5-1.

In a recent paper (Lai, Rasio, & Shapiro 1993a, hereafter
LRS), we used an energy variational method to construct
hydrostatic equilibrium solutions for Newtonian polytropes in
binary systems and study their stability. Both synchronized
and nonsynchronized systems were considered. We found that
close binary systems containing mildly compressible com-
ponents (n < 2) become unstable when the binary separation
decreases below a certain critical value. The instability sets in
when the orbital separation is such that the total equilibrium
energy and angular momentun of the system are both
minimum. For binaries in which one component is much more
compact than the other, this minimum always occurs before
the Roche limit is reached. For binaries containing two identi-
cal stars, the minimum occurs before the stars come into
contact.

The importance of this instability for coalescing binaries is
easy to realize. The total equilibrium energy E. . (r) must attain
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a minimum simultaneously with J (r) since dE, /dr =
QdJ. /dr, where Q is the orbital angular velocity (Ostriker &
Gunn 1969; LRS). If quasi-circular equilibrium were main-
tained during the coalescence, one would naively estimate the
secular radial infall as 7= E'/(dEeq/dr), which diverges as
dE.,/dr — 0, no matter how small the energy dissipation rate E
is.

The purpose of this Letter is to clarify the meaning of this
instability and to estimate the resulting large (but finite) value
of the radial infall velocity near the end of the coalescence. We
focus on the case where the orbital decay is driven by gravita-
tional radiation, but our results apply qualitatively to any
mechanism that can extract energy and angular momentum
from the system. We present a complete calculation of the
orbital decay for a simple, generic model of a close binary.
More detailed calculations based on the full equilibrium solu-
tions of LRS will be presented elsewhere (Lai, Rasio, & Shapiro
1993b).

Our results could affect a number of problems of great
current interest involving the coalescence of close binary stars.
Blue stragglers are likely to be formed by the merging of
contact main-sequence star binaries (Mateo et al. 1990).
Double white dwarf systems coalescing by gravitational wave
emission could be the progenitors of blue subdwarfs in globu-
lar clusters (Bailyn 1993). Perhaps most importantly,
coalescing neutron-star binaries are now thought to be the
most promising sources of gravitational radiation that may be
detected by gravitational-wave interferometers such as LIGO
(Thorne 1987; Abramovici et al. 1992). They have also been
proposed as a possible source of extragalactic gamma-ray
bursts (e.g., Paczynski 1991).

2. HYDRODYNAMIC INSTABILITIES IN BINARY SYSTEMS

Consider two stars of mass m and m’ in a circular orbit of
radius r. For large r, the stars behave like point masses, and the
total equilibrium energy of the system is simply —mm’/(27)
+ const (we adopt units such that G = ¢ = 1). As r decreases,
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tidal effects become increasingly important. For simplicity, let
m'’ be a point mass. The height h of the tidal bulge raised on m
by m’ is given by h/R ~ (m'/m)(R/r)%, where R is the stellar
radius. The tidal deformation increases the self-energy of m by
an amount ~ (m?/R)(h/R)*> ~ m’2R5/r® (making m less bound).
It also makes the gravitational interaction between m and m’
more attractive, and the corresponding energy is ~ —m'Q/
r* ~ —xm'2R5/r®, where Q ~ xmRh is the quadrupole moment
of m and « is a constant of order unity (smaller for a more
compressible star). However, the tidal interaction also leads to
a larger orbital angular velocity, and this increases the orbital
kinetic energy by an amount larger than the decrease in the
interaction energy. Therefore, the net effect of the tidal inter-
action is to increase the total equilibrium energy of the system
by an amount AE;, ~ xm>R>/r®, If the spin and orbital
motion are synchronized to some degree, with Q = f,Q and
f; <1, then the total energy is increased further, by an amount
AE ;, ~ kmR*f2Q% ~ km(m + m')fZR*/r>. When r becomes
sufficiently small, AE;,, and AE_;, become important and the
total equilibrium energy E. (r) can increase as r decreases. As a
consequence, there exists a critical binary separation r =r,,
where E.(r) attains a minimum.

In our detailed study of binary equilibrium configurations
(LRS), we have calculated this critical binary separation r,, for
a variety of different systems including Roche binaries (a poly-
trope in circular orbit about a point-mass companion) and
Darwin binaries (two identical polytropes in circular orbit
about each other). We have also considered their nonsyn-
chronized generalizations, the so-called irrotational Roche-
Riemann and Darwin-Riemann binaries. Such irrotational
configurations can result from the coalescence of an initially
wide binary containing nonspinning stars with small viscosity
(Kochanek 1992, see also Bildsten & Cutler 1992). Typically,
for all types of systems, we find that r, ~ 39> R, where
q = m'/m. As an illustration, Figure 1 shows the equilibrium
energy curves E_(r) for various configurations with mass ratio
g = 1 and polytropic index r» = 1. For both Roche and Roche-
Riemann binaries, we find that, as the separation r decreases,
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FIG. 1.—Equilibrium energy curves obtained by LRS for various binary
configurations with mass ratio g = 1 and polytropic index n = 1. The quantity
E_, is the total energy of the system when the binary separation r — co. The
Roche sequence (solid line), irrotational Roche-Riemann sequence (dotzed line),
Darwin sequence (shori-dashed line) and irrotational Darwin-Riemann
sequence (long-dashed line) are shown. The thin line near the top shows the
simple analytic model {eq. [1]) for & = 6. The curves for Roche and Roche-
Riemann configurations terminate at the Roche limit, while those for Darwin
and Darwin-Riemann binaries terminate when the stars are in contact.
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the minimum of E., is always reached before the Roche limit,
independent of both n and g. The Roche limit corresponds to the
smallest binary separation for which an equilibrium configu-
ration exists around a point mass. For Darwin and Darwin-
Riemann binaries, equilibrium solutions exist up to the point
at which the stars come into contact. For these systems we find
that when the stars are sufficiently incompressible (n < 2), the
minimum of E., is always reached before they come into
contact. The reason is that when 7 is small, the coefficient « is
large enough that AE,. and AE,,, already become appre-
ciable at separations exceeding contact.

What is the meaning of this minimum? It is well known that
any turning point (maximum or minimum of some global equi-
librium quantity) along a one-parameter sequence of hydro-
static equilibrinm configurations signals the onset of instability
(see, e.g., Shapiro & Teukolsky 1983). Here this instability
is associated with perturbations of the orbital separation r.
For r <, circular orbits are unstable because of deviations
of the effective interaction potential between the two stars
from a simple 1/r law. This is in complete analogy with the
familiar instability of circular orbits for test masses around a
Schwarzschild black hole. All circular orbits with r < 6M,
where M is the black-hole mass, are unstable in this case. The
equilibrium energy per unit mass for such orbits is given by
E., =@ —2M)[r( — 3M)]~ "2, and E, (r) has a minimum at
r=~6M.

3. ORBITAL DECAY DRIVEN BY GRAVITATIONAL RADIATION

Motivated by the results of LRS and § 2, we model the
equilibrium energy of the system by

mm’ 1 mm're !
Epe ——— =2
2r 20 r*

where r,, is the stability limit (E,, is minimum atr = r,)) and «
is a parameter 2 3. Both r,, and a are mainly determined by the
internal structure of the stars and the degree of synchro-
nization. While the exact form of the equilibrium energy curve
for a realistic system is certainly more complicated, we find
that expression (1) has all the essential features and can repro-
duce quite accurately the results of LRS (see Fig. 1), as well as
those of detailed numerical solutions (Lai et al. 1993b).

As long as the orbital decay remains quasi-static, the radial
infall velocity v, is given by

.. (dE\"!
v,=r= EGW(#) * (2)

where Egy is the energy-loss rate, which we calculate for sim-
plicity in the quadrupole approximation for point masses,

ty

32 (mm')X(m + m)

Eow= —
GW 5 T5 (3)
Substituting equations (1) and (3) into equation (2), we find
r<’zn -1\ -1
b= vpt(l - r) : @

where v, is the radial infall velocity for two point masses,

64 mm'(m + m')
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Clearly, when the binary separation approaches r,,, the radial
infall velocity can become much larger than it would be in the
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absence of an instability. Although gravitational radiation dis-
sipates energy on a time scale t; = | (mm'/2r)/Egw |, the orbital
decay time scale t, = |r/v,| = t (1 — r% 1/#*~ 1) can be much
shorter when approachingr = r,,.

Equations (2) and (4) become invalid when the rate of
increase of infall kinetic energy, uv(dv,/dt), where u is the
reduced mass, becomes comparable to (dE,/dr) v,. Using equa-
tions (1)—(5), we find that the critical separation r, > r,, where
this first occurs is given by

r

—7 r —5/4
8 =" 4o — 1)1 + q)”“(;’") . (6

m
Since r, ~ 3Rq'® and R/m> 1, we see that r, is in fact
extremely close to r,,,.

To properly calculate the orbital evolution for r < r,, when
the kinetic energy of radial infall becomes important, we now
write the total energy of the system, not necessarily in equi-
librium, as

roax—1
__mm_ %)
ofe — 2
where J is the total angular momentum. The last term in equa-
tion (7) represents the effective tidal interaction. We are
assuming that the internal dynamical time of the stars is much
shorter than the orbital decay time. For circular orbits (v, = 0),
the equilibrium condition (0E/0r); , .» = 0 yields for the equi-
librium angular momentum J,, of the system,

, mm'rs !
Jezq = uI:mmr + W] . 8)

If we substitute this expression for J in equation (7), we recover
expression (1) for the total equilibrium energy.

Taking the time derivative of equation (7), we obtain the
evolution equation

dv, J* mm'  mm!
&r L —m____9, 9
K ur® t e (o — 2=t ©)
where we have used the relation
dl 1 . wr’ .
d_t=§ GW=TEGW . (10

Equations (9) and (10), together with dr/dt = v,, are the equa-
tions describing the evolution of the system. They can be inte-
grated numerically given initial conditions at any separation r;
such that (r; — r,)/r, > 3. (see eq. [6]). We calculate v, and
dv,/dt at r = r; from equation (4) and then use equation (9) to
obtain the initial value of J. In Figure 2, we show the results for
a typical system with g =1, r,/R = 2.8, « = 6, and R/m = 10,
20, 10%, and 10*. The integration is terminated when the stars
are in contact, which we take to be at r; = 2.5R (a typical
value; see LRS). For comparison, the evolution of two point
masses is also shown for R/m = 10. We see that for » < r,,, the
orbital evolution departs quite severely from that of point
masses. The difference is largest when R/m is large.

From equation (6), we can derive an approximate relation
for the radial infall velocity at r = r,,. By continuity, since §, <
1, v(r,,) should be approximately equal to v,(r.), given by equa-
tion (4). We find

bra) ~ 0r) % —341%(1 + 9*(a - 1)-”4(%’)_7/4. (1)
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F1G. 2—Terminal evolution of an unstable binary system with mass ratio
q = 1, coalescing by gravitational wave emission. The stability limit is at r =
r,, = 2.8R (vertical lines) and o« = 6. All curves end at r = r, = 2.5R at time
t = 0. Results are given for R/m = 10 (solid lines), 20 (short-dashed lines), 10*
(long-dashed lines), and 10* (dotted-dashed lines). For comparison, the thin
dotted lines show the results for two point masses with R/m = 10 (eq. [5]).

An exact expression can be obtained for v(ry) in the limit
where R/m — co. In this limit energy and angular momentum
are conserved during the evolution for r < r,,. We therefore
simply set J2 = J2(r,,) in equation (9). We then obtain

- |2 =D, GV
olrs) = l:oc(a—2) (a—2)y T2y = o :I

x (1 +gp(=)
m

o — 1\1/2 r \ 12
~ _( 3 ) 5201 + q)”z(;") , (R/m— o),

(12)

where we have defined y =r,/r, =1 + 6 and for the second
equality we have assumed 6 < 1. Note that the ratio
v(r )/(m/R)"'* is independent of R/m in this limit, as shown in
Figure 2. This is because the motion for r < r,, is driven by a
purely dynamical instability.

4. DISCUSSION

What is the final fate of such an unstable system? For
Roche-type binaries, we have shown that the Roche limit
cannot be approached quasi-statically. Instead, an appreciable
radial infall velocity develops, leading to rapid mass transfer.
Depending on how angular momentum is redistributed as a
result of mass transfer, the dynamical response of the system
can be stable or unstable (Hut & Paczyfiski 1984). If it is
unstable, the star is tidally disrupted in just a few orbital
periods. If it is stable, steady mass transfer could proceed, but
on a time scale determined by the growth rate of the instability
rather than the energy dissipation time scale. For Darwin-type
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binaries, there is no reason for the radial infall to be inter-
rupted when contact is first established, since hydrostatic equi-
librium solutions continue to exist beyond this point (Hachisu
1986). The likely outcome is then the formation of a merged
object in just a few orbital periods. This has been demonstrated
with three-dimensional numerical simulations by Rasio &
Shapiro (1992) for neutron star binaries (see also Oohara
& Nakamura 1993) and is discussed by Rasio (1993) for
main-sequence star binaries in the context of blue straggler
formation.

For binary neutron stars and neutron-star—black-hole
binaries, relativistic effects are also likely to be important in
determining the final evolution of the system (Lincoln & Will
1990; Kidder, Will, & Wiseman 1992). The last stable circular
orbit due to general relativity for a neutron star of mass m
orbiting a black hole of mass m' is at rgg ~ 6(m + m’), while the
hydrodynamic stability limit is at r,, ~ 2(1 4+ g)*/3R (see LRS).
Therefore we expect hydrodynamics to remain important as
fong as 1+ q < 6[(R/m)/10]*2. For two identical neutron
stars, Kidder et al. (1992) find rgz = 14m, while LRS obtain

LAI, RASIO, & SHAPIRO

¥,, = 2.8R. In this case hydrodynamic effects remain important
as long as R/m 2 5. Note that, since general relativity, just like
tidal interactions, causes a strengthening of the gravitational
interaction between the two stars at small separation, the
minimum of E, () in a relativistic fluid model should occur at
a somewhat larger binary separation. Therefore, the inequal-
ities given above tend to underestimate the importance of
hydrodynamics. From these inequalities, we conclude that the
instability discussed here could play an important role in many
systems containing neutron stars and stellar-mass black holes.
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