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ABSTRACT

Many of the known extrasolar planets are “hot Jupiters,” giant planets with orbital periods of just a few days.
We use the observed distribution of hot Jupiters to constrain the location of its inner edge in the mass-period
diagram. If we assume a slope corresponding to the classical Roche limit, then we find that the edge corresponds
to a separation close totwice the Roche limit, as expected if the planets started on highly eccentric orbits that
were later circularized. In contrast, any migration scenario would predict an inner edge right at the Roche limit,
which applies to planets approaching on nearly circular orbits. However, the current sample of hot Jupiters is
not sufficient to provide a precise constraint simultaneously on both the location and the slope of the inner edge.
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1. INTRODUCTION

Early discoveries of hot Jupiters hinted at a pileup near a
3 day period, but recent transit surveys and more sensitive
radial velocity observations have discovered planets with even
shorter periods. The data now suggest that the inner limit for
hot Jupiters is not defined by an orbital period but rather by a
tidal limit, which depends on both the separation and the planet-
star mass ratio (Fig. 1). This would arise naturally if the inner
edge were related to the Roche limit, the critical distance within
which a planet would start losing mass (Faber et al. 2005). The
Roche limit separation, , is given by ,1/3a R p 0.462a mR P R

where is the radius of the planet and is the planet-R m p m/MP ∗
star mass ratio.

The many formation scenarios proposed for hot Jupiters can
be divided into two broad categories. The first involves slow
migration on quasi-circular orbits, perhaps due to interaction
with a gaseous disk or planetesimal scattering (Murray et al.
1998; Trilling et al. 1998). This would result in an inner edge
precisely at the Roche limit. The second category invokes tidal
circularization of highly eccentric orbits with very small peri-
center distances, following planet-planet scattering (Rasio &
Ford 1996; Weidenschilling & Marzari 1996; Ford et al. 2001;
Papaloizou & Terquem 2001; Marzari & Weidenschilling
2002), secular perturbations from a wide binary companion
(Holman et al. 1997; Wu & Murray 2003), or tidal capture of
free-floating planets (Gaudi 2003). These would result in a
limiting separation oftwice the Roche limit, assuming that
circularization can take place without significant mass loss from
the planet3 (Faber et al. 2005; Gu et al. 2003; Rasio et al. 1996).

2. STATISTICAL ANALYSIS

To constrain rigorously the distribution of hot Jupiters, we
adopt a Bayesian framework, where the model parameters are
treated as random variables to be constrained by the actual

1 Department of Astronomy, University of California at Berkeley, 601 Camp-
bell Hall, Berkeley, CA 94709; eford@astro.berkeley.edu.

2 Department of Physics and Astronomy, Northwestern University, 2145
Sheridan Road, Evanston, IL 60208; rasio@northwestern.edu.

3 This is very easy to show: Consider a planet on an initially eccentric orbit,
with initial eccentricitye and pericenter distance . Circularizing this orbit underrp

ideal conditions leads to dissipation of energy but conservation of mass and
angular momentum. Simply equating the angular momentum of the initial and
final orbits gives a final circularized radius for .a p r (1� e) � 2r e � 1p p

observations. To perform a Bayesian analysis, it is necessary
to specify both the likelihood (the probability of making a
certain observation given a particular set of model parameters)
and the prior (the a priori probability distribution for the model
parameters). Let us denote the model parameters byv and the
data byd, so that their joint probability distribution function
(PDF) is given by . Notep(d, v) p p(v)p(dFv) p p(d)p(vFd)
how the joint PDF is expanded in two ways, both expressed
as the product of a marginalized PDF and a conditional PDF.
The prior is given by , and the likelihood by , whilep(v) p(dFv)

is the a priori probability for observing the values actuallyp(d)
measured, and is the PDF of primary interest: the ap(vFd)
posteriori PDF for the model parameters conditioned on the
actual observations. The probability of the observationsp(d)
can be obtained by marginalizing over the joint PDF and again
expanding the joint density as the product of the prior and the
likelihood. This leads to Bayes’ theorem, the primary tool for
Bayesian inference,

p(dFv)p(v) p(dFv)p(v)
p(vFd) p p . (1)

p(d) dv p(dFv)p(v)∫

Often the model parameters contain a quantity of particular
interest (the location of the inner cutoff for hot Jupiters in our
analysis) plus other “nuisance parameters,” which are necessary
to describe the observations (e.g., the fraction of stars with hot
Jupiters in our analysis). Since Bayes’ theorem provides a real
PDF for the model parameters, we can simply marginalize over
the nuisance parameters to calculate a marginalized posterior
PDF, which will be our basis for making inferences about the
location of the inner cutoff for hot Jupiters.

2.1. One-dimensional Model

We start by presenting a simple one-dimensional model for
the distribution of hot Jupiters. The primary question we wish
to address is the location of the inner edge of the distribution
relative to the Roche limit. Therefore, we define ,x { a/aR

wherea is the semimajor axis of the planet and is the RocheaR
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Fig. 1.—Minimum mass ratio vs. orbital period for the current observed
sample. Planets discovered by radial velocity surveys are shown as triangles
with arrows indicating 1j uncertainties in mass due to unknown inclination.
The squares have inclinations and radii measured via transits. The gray squares
were discovered by radial velocity searches, and the black squares show planets
discovered by transit searches. The light gray lines show the minimum mass
corresponding to various velocity semiamplitudes and roughly indicate where
radial velocity surveys are nearly complete (≥30 m s�1), have significant sen-
sitivity (≥10 m s�1), and are only beginning to detect planets (≥3 m s�1). The
two dark gray lines show the location of the Roche limit (aR) and the ideal
circularization radius ( ) for a planet with a radius . The darka R p 1.2Rcirc P J

gray lines do not apply to the lowest mass planets that likely have a radius
significantly less than 1.2RJ given their different internal structure. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Marginalized posterior probability distribution for , the lowerxl

cutoff for the ratio of a planet’s semimajor axis to the Roche limit. Here we
show multiple posterior distributions for various simplified models. The dotted
curve assumes and for all planets, while the remainingR p 1.2R sin i p 1P J

lines assume the observed inclinations and radii for transiting planets and an
isotropic distribution of inclinations and mean radius for the re-R p 1.2RP J

maining planets. The widths of the distributions in radii are 0.0RJ (dotted and
solid curves), 0.05RJ (long-dashed curve), 0.1RJ (dot-dashed curve), and 0.2RJ

(short-dashed curve).

limit. We assume that the actual distribution ofx for hot Jupiters
is given by a truncated power law,

dx
gp(xFg, x , x )dx p x , x ! x ! x , (2)l u l u( )x

and zero elsewhere. Hereg is the power-law index, and andxl

are the lower and upper limits forx. The lower limit, , isx xu l

the model parameter of primary interest, whileg and arexu

nuisance parameters. Therefore, our results are contained in the
marginalized posterior PDF for .xl

For simplicity, we restrict our analysis to a subset of extrasolar
planets discovered by radial velocity surveys and very nearly
complete; this subset is extremely unlikely to contain any false
positives. To obtain such a sample, we impose two constraints:

, where is a maximum orbital period, andP ≤ P P K ≥max max

, where is a minimum velocity semiamplitude. We useK Kmin min

m s�1, following Cumming (2004). We typically setK p 30min

days, even though radial velocity surveys are likelyP p 30max

to be complete for even longer periods (provided ). ThisK ≥ Kmin

minimizes the chance of introducing biases due to survey in-
completeness or possible structure in the observed distribution
at larger periods. By considering only planets with orbital pa-
rameters such that radial velocity surveys are very nearly com-
plete, our analysis does not depend on the velocities of stars for
which no planet has been detected. Note that our criteria for
including a planet may introduce a bias depending on the actual

mass-period distribution. We will address this with a two-di-
mensional model below. Note that, in this Letter, we exclude
any planet discovered via techniques other than radial velocities
(e.g., transits), even if subsequent radial velocity observations
were obtained to confirm the planet.

Initially, we make several simplifying assumptions to allow
for a simple analytic treatment. We assume uniform priors
for each of the model parameters, andp(g) ∼ U(g , g )min max

, provided and zero otherwise.p(x , x ) ∼ const x ! x ! x ! xl u ll l u uu

The lower and upper limits are chosen to be sufficiently far
removed from regions of high likelihood that these choices do
not affect our results. We assume that the orbital period (P),
velocity semiamplitude (K), semimajor axis (a), stellar mass
( ), and planet mass ( ) are known exactly based onM m sin i∗
the observations.

We begin by assuming that (orbital plane seensin i p 1
nearly edge-on) for all systems and that all planets have the
same radius, . With these assumptions, the posterior prob-RP

ability distribution is

n

n g g �n g�1p(x , x , gFx , … , x ) ∼ g (x � x ) x , (3)�l u 1 n u l j
jp1

provided that and .x ! x ≤ x ≤ x ≤ x ! x g ! g ! gll l (1) (n) u uu min max

Here n is the number of planets included in the analysis,x(1)

is the smallest value ofx among the planets used in the analysis,
and is the largest value. The normalization can be obtainedx(n)

by integrating over all allowed values of , , andg. We showx xl u

the marginal posterior distributions after integrating over the
nuisance parameters, andg, in Figure 2 (dotted line), as-xu
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Fig. 3.—Posterior distributions from our one-dimensional model (top) and
full two-dimensional model (bottom) for various mean radii:AR S p 1.0RP J

(long-dashed curve), 1.1RJ (dotted curve), 1.2RJ (solid curve), 1.3RJ (dot-
dashed curve), and 1.4RJ (short-dashed curve), all assuming .j p 0.1RR JP

suming . The distribution has a sharp cutoff atR p 1.2RP J

and a tail to lower values reflecting the chance thatx x !(1) l

due to the finite sample size.x(1)

Next, we adopt an isotropic distribution of inclinations
( ), but we use the measured value for radialcosi ∼ U[�1, 1]
velocity planets where the orbital inclination has been deter-
mined via transits. We show the marginal posterior distribution
for in Figure 2 (solid line). The sharp cutoff at is replacedx xl (1)

with a more gradual tail, reflecting the chance that forsin i ! 1
planets with the smallest values ofx.

Now consider the consequences of allowing for a distribution
of planetary radii. For transiting planets, we use a normal dis-
tribution based on the published radius value and uncertainty.
For nontransiting planets, we assume a normal distribution with
standard deviation . We show the resulting marginalizedjRP

posterior PDFs in Figure 2. Allowing for a significant disper-
sion broadens the posterior distribution for and results in axl

slight shift to smaller values. We have also explored the effects
of varying the model parameter from 8 to 60 days. WePmax

find that this does not produce any discernible difference in
the posterior PDF for .xl

Our results are sensitive to the choice of mean radius for
the nontransiting planets. In the top panel of Figure 3, we show
the posterior PDFs for various mean radii, assumingj pRP

. Since few planets have a known inclination, there is a0.1RJ

nearly perfect degeneracy between and . Even when weR xP l

include transiting planets, this degeneracy remains near perfect;
i.e., . How-′ ′p(xFR , x , … , x ) � p[x (R /R )FR , x , … , x ]l p 1 n l P P P 1 n

ever, it remains extremely unlikely that for any reason-x � 1l

able planetary radius.

2.2. Two-dimensional Model

We can improve our analysis by more properly considering
the joint PDF in orbital period and planet-star mass ratio, which
we write as

dP dm
a bp(P, mFa, b, P , P , m , m , c) ∼ cP m , (4)min max min max P m

provided , , and .m ! m ! m P ! P a(P, M ) ≥ x a (R , m)min max max ∗ l R P

Herea andb are new power-law indices. Again, our results are
not sensitive to the nuisance parameters, , , and . Form m Pmin max max

definiteness, we fix their values at days,P p 30 m pmax min

, and . We take priors uniform in�53.3# 10 m p 0.01max

and , as the density corresponds�1 �1tan (a) tan (b) U[�p/2, p/2]
to a uniform prior density for the slope of the power-law distri-
bution on a log-log plot. We take a prior uniform in , as islog c
standard for scale parameters. Our calculation of the likelihood is
similar to that of Tabachnik & Tremaine (2002), exceptwereplaced
their inner boundary of with our boundaryP ≥ P a(P, M ) ≥min ∗

. The necessary integrals can be performed analyticallyx a (R , m)l R P

provided we approximate . For convenience, we used1 � m � 1
Maple to obtain an analytic expression for the integral of the
likelihood overP andm. The remaining integrals overa, b, and
c were performed numerically over a grid with∼1010 points.

By considering the joint mass-period PDF, we are able to
account for the bias previously introduced by imposingK ≥

. Since we are considering only planets with orbital pa-Kmax

rameters such that radial velocity surveys are very nearly com-
plete, our results depend only on the number of surveyed stars
for which no planet has been discovered and not the observed
velocities of these stars. For the total number of stars in radial

velocity surveys that are complete for and ,K ≥ K P ≤ Pmin max

we estimate . We show the resulting marginalizedN p 2000∗
posterior PDF for in the bottom panel of Figure 3.xl

2.3. The Shape of the Inner Cutoff

The above results clearly demonstrate that the present ob-
servations strongly favor an inner cutoff at the ideal circular-
ization distance rather than at the Roche limit,assuming that
the inner edge follows the slope of the Roche limit. We have
also performed calculations treating this slope as an unknown
model parameter. Unfortunately, the present observations are
not sufficient to constrain this parameter empirically, and the
resulting marginalized posterior PDF for still allows, but noxl

longer exclusively favors, .x � 2l

We could gain additional leverage by including planets in
short-period orbits down to lower . Unfortunately, the in-Kmin

completeness of the radial velocity surveys is likely to be sig-
nificant for m s�1. Since the number, quality, andK ! 20min

spacing of observations varies widely among the stars in these
surveys, it would be necessary to calculate the probability for
detecting planets as a function of orbital period and velocity
semiamplitude for each star. Additionally, the planet mass-
radius relation, which is extremely flat for planets near 1MJ,
becomes important for much lower mass planets. Therefore,
we have not attempted to extend our analysis to planets for
which radial velocity surveys are not yet complete. We expect
that the recent improvements in measurement precision will
eventually extend their completeness to smaller .Kmin

We have begun a preliminary investigation of the constraints
obtained by adding information from the OGLE transit survey
(Udalski et al. 2002). Due to both signal-to-noise ratio and
aliasing issues, the OGLE survey does not provide a complete
sample of short-period planets for a significant fraction of pa-
rameter space. Therefore, it is necessary to calculate the prob-
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ability of detecting planets with various orbital periods and
radii. We estimate these probabilities by taking the actual ob-
servation times and uncertainties for the 62 transit candidates
from the 2002 OGLE observations of the Carina field and
applying the detection criteria from Pont et al. (2005). While
the transiting planets are consistent with our above findings,
they do not provide sufficient additional information to con-
strain the slope of the inner edge. We look forward to both
radial velocity and transit surveys detecting additional lower
mass objects in short-period orbits, so that we may eventually
constrain the slope of the cutoff empirically.

3. DISCUSSION

The current distribution of hot Jupiters shows a cutoff that
is a function of orbital period and planet mass. Under the as-
sumption that the slope of this cutoff follows the Roche limit,
our Bayesian analysis solidly rejects the hypothesis that the
cutoff occurs inside or at the present Roche limit. This is in
contrast to what would be expected if these planets had slowly
migrated inward on quasi-circular orbits and with radii close
to the presently measured values of around 1.2RJ. If confirmed
by future analyses of a more extensive data set, this result would
be highly significant, as it would eliminate a broad class of
popular migration scenarios for the formation of hot Jupiters.

Instead, our analysis shows that this cutoff occurs at a distance
nearly twice that of the Roche limit, as expected if the planets
had been circularized from a highly eccentric orbit. These find-
ings suggest that hot Jupiters may have formed via planet-planet
scattering (Rasio & Ford 1996), tidal capture of free-floating
planets (Gaudi 2003), or secular perturbations from a highly
inclined binary companion (Holman et al. 1997). Regardless of
the exact mechanism, our model would require that the hot Ju-
piters all started on highly eccentric orbits and survived the strong
tidal dissipation needed to circularize their orbits. A few caveats
are worth mentioning. Our study addresses the statistical prop-
erties of the population of hot Jupiters and does not attempt to
advance the state of knowledge of any specific planet. In par-
ticular, we adopt average properties of an assumed distribution
that is analogous to—and derived from—the presently known

distribution of hot Jupiters, but we do not consider or solve for
the specific properties of any individual extrasolar planet. More-
over, strongly nonrandom or non-Gaussian effects would be
poorly modeled with the technique developed here.

An alternative explanation is that the planets migrated inward
at an early time and arrived at their Roche limit on a quasi-
circular orbit when their radii were still≥2RJ (Burrows et al.
2000). The dissipation process causing the migration must then
have stopped immediately afterward to avoid further decay of
the orbit as the planets continued to cool and contract. We find
this scenario unattractive, especially since there is no natural
explanation for the factor of 2 in this case.

Yet another alternative is that short-period giant planets are
destroyed by some processbefore they reach the Roche limit.
Hubble Space Telescope observations of HD 209458 indicate
absorption by matter presently beyond the Roche lobe of the
planet and have been interpreted as evidence of a wind leaving
the planet and powered by stellar irradiation (Vidal-Madjar et
al. 2003, 2004). Further theoretical work will help us determine
under what conditions these processes can cause significant
mass loss (e.g., Hubbard et al. 2005) and whether complete
destruction could occur rather suddenly when the orbital radius
decreases below∼2aR.

Future planet discoveries will either tighten the constraints
on the model parameters or provide evidence for the existence
of planets definitely closer than twice the Roche limit. Addi-
tionally, future discoveries of transiting hot Jupiters around
young stars could help us discriminate between the above al-
ternatives. Moreover, new detections of lower mass planets with
very short periods could help us better constrain the shape of
the inner cutoff as a function of mass. In the future, an improved
statistical analysis could also include such low-mass planets;
at present, surveys are not yet complete for these low-mass
planets.
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