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ABSTRACT

We study dynamical interactions of star-planet binaries with other single stars. We derive analytical cross sections
for all possible outcomes and confirm them with numerical scattering experiments. We find that a wide mass ratio in
the binary introduces a region in parameter space that is inaccessible to comparable-mass systems, in which the nature
of the dynamical interaction is fundamentally different from what has traditionally been considered in the literature
on binary scattering. We study the properties of the planetary systems that result from the scattering interactions for
all regions of parameter space, paying particular attention to the location of the ‘‘hard-soft’’ boundary. The structure
of the parameter space turns out to be significantly richer than a simple statement of the location of the hard-soft
boundary would imply.We consider the implications of our findings, calculating characteristic lifetimes for planetary
systems in dense stellar environments and applying the results to previous analytical studies, as well as past and future
observations. Since we recognized that the system PSR B1620�26 in the globular cluster M4 lies in the ‘‘new’’
region of parameter space, we performed a detailed analysis quantifying the likelihood of different scenarios in
forming the system we see today.

Subject headings: celestial mechanics — globular clusters: general — methods: n-body simulations —
planetary systems — pulsars: individual (PSR B1620�26)

Online material: color figure

1. INTRODUCTION

The subject of planets in dense stellar systems such as globu-
lar clusters came to life with the discovery that the binary pulsar
PSR B1620�26 in the globular cluster M4 is orbited by a distant
companion of approximately Jovianmass (Backer 1993; Thorsett
et al. 1999; Sigurdsson et al. 2003 and references therein). The
presence of such a system near the core ofM4 is, at first, puzzling
for several reasons. For example, the metallicity of M4 is low
(0.05 Z�), which makes the formation of such a planet via the
standard core accretion model very unlikely and has sparked the
creation of alternative formation theories (Beer et al. 2004 and ref-
erences therein). In addition, the planet is on such a wide orbit
about its host that the system should have been destroyed by
dynamical interactions on a very short timescale (�108 yr) in the
moderately high density environment of M4’s core, which implies
that it must have been formed recently via an alternative mecha-
nism such as a dynamical interaction involving a binary.

Campaigns searching for ‘‘hot Jupiter’’ planets (with orbital
periodsP10 days) in 47 Tuc have yielded null detections, instead
placing upper limits on the hot Jupiter frequency there (Gilliland
et al. 2000; Weldrake et al. 2005). It now appears that the lack of
hot Jupiters detected in 47Tuc is probablymore closely connected
with the lowmetallicity of the environment and not simply due to
destruction via dynamical encounters in the high-density stellar
environment. This result is consistent with the strong correlation
between host star metallicity and planet frequency in observed
systems (Fischer &Valenti 2005). Searches for planets via transits
in the higher metallicity environments of open clusters are cur-
rently under way.1

A key ingredient in the formation and evolution of planetary
systems in dense stellar environments that is absent in lower

density environments is dynamics. If either the stellar density is
large enough or the planetary system is wide enough, it is likely
to undergo a strong dynamical scattering interaction with an-
other star or binary, perturbing its properties or possibly destroy-
ing it in the process. The importance of dynamics for wide mass
ratio binaries cannot be overstated, especially when one consid-
ers the wealth of low-mass objects such as brown dwarfs that are
known to exist in open and globular clusters and may be in bi-
naries. In addition, the importance of dynamics as early as the
stage of star formation is now becoming clear. There is now con-
vincing evidence that a distant encounter with another star is re-
sponsible for the currently observed properties of distant solar
system objects such as Sedna (Kenyon & Bromley 2004;
Morbidelli & Levison 2004; Kobayashi et al. 2005). The object
HD 188753 is a hierarchical triple star system composed of a
main-sequence star in an�12.3 AU orbit about a compact main-
sequence binary. What makes this system interesting is that the
single star hosts a hot Jupiter in orbit about it, with a semimajor
axis of�0.04 AU (Konacki 2005). The current configuration of
the system is puzzling, since the binary companion would trun-
cate the initial disk out of which the planet could have formed at
a radius much smaller than that required by either the core ac-
cretion or gravitational fragmentation paradigms. It is now clear
that the current configuration of HD 188753 must have resulted
from a dynamical scattering interaction in a moderately dense
stellar environment (Pfahl 2005; Portegies Zwart & McMillan
2005).
The types of dynamical interactions we have been discuss-

ing have been studied in great detail and volume since at least
the mid-1970s for the case of comparable masses (Hills 1975;
Heggie 1975; Heggie & Hut 2003 and references therein). The
case of disparate masses in the binary (such as for a planetary
system) has been treated in less detail (Hills 1984; Hills &Dissly
1989; Sigurdsson 1992), but with considerable attention paid to1 See http://star-www.st-and.ac.uk/~kdh1/transits/table.html.
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the survivability of planetary systems in particular (Laughlin &
Adams 1998; Bonnell et al. 2001; Davies & Sigurdsson 2001).
To the best of our knowledge, there has not yet been a com-
prehensive treatment of dynamical scattering interactions with
wide mass ratio systems in the literature, as previous work has
typically been concerned with a numerical treatment of a certain
aspect of the problem. This paper is an attempt to remedy this
situation by carefully treating a wide area of parameter space
both analytically and numerically and identifying physically
distinct regions of the space, with an emphasis on application to
physically interesting problems.

In particular, the questions we would like to answer in this
paper are the following: For a dynamical interaction between a
star-planet system and another star, under what conditions does
the interaction result in (1) preservation of the planetary system,
in the sense that the planet remains in orbit about its parent star,
even if the orbit is perturbed; (2) exchange of the incoming star
for the planetary system’s host star; (3) destruction of the plan-
etary system, in the sense that the planet is not bound to either
star after the interaction; and (4) physical collisions involving
two or more of the three objects? For the outcome in question 2,
we would also like to know the resulting properties of the plan-
etary system’s orbit. In particular, we would like to know the
regimes in which the planetary system orbit shrinks and those in
which it widens.

In the language of binary scattering, the interaction of a binary
planetary systemwith a single star can bewritten symbolically as
‘‘[M1 m]M2,’’ where theMi represent the stars and m represents
the planet. The possible outcomes can be enumerated succinctly
as shown in Table 1. The outcome ‘‘pres’’ is preservation of the
planetary system and can result either from a strong interaction
or aweak flyby. The planetary system can have shrunk orwidened
in the process. The outcome ‘‘ex_s’’ is an exchange in which the
host star of the planetary system is exchanged for the incoming
star. The outcome ‘‘ex_p’’ is an exchange in which the two stars
remain bound, ejecting the planet. The outcome ‘‘ion’’ leaves all
objects (stars and planet) unbound from each other. The remaining
outcomes listed in the table are various permutations involving
one or more collisions. The outcome of a stable hierarchical triple
is omitted from the table, since it is classically forbidden (Heggie
& Hut 2003). It is possible for such a system to be formed as a re-
sult of a binary-single interaction if tidal effects are present. How-
ever, we ignore such effects in this paper.

Clearly, case 1 above corresponds to outcome ‘‘pres’’, case 2
corresponds to outcome ‘‘ex_s’’, and case 3 corresponds to out-
comes ‘‘ex_p’’ and ‘‘ion’’. The outcomes corresponding to case
4 are the remaining ones listed in the table. In this paper we ad-

dress the questions posed above by calculating cross sections for
the processes listed, as well as characteristic lifetimes. In x 2 we
treat as much of the problem as we can analytically. In x 3 we
confirm our analytical predictions with numerical experiments.
In x 4 we determine under what conditions the planetary system
will shrink or expand as the result of an exchange encounter, as
well as the average amount by which it shrinks or expands. In x 5
we discuss the implications of the results in the context of the
current literature and observations. In x 6 we quantify the likeli-
hood of the possible dynamical formation scenarios of the plan-
etary system PSR B1620�26 in the globular cluster M4. Finally,
in x 7 we summarize and conclude.

2. ANALYTICAL CONSIDERATIONS

As described above, we symbolically label the interaction be-
tween a planetary system and a single star as ‘‘[M1 m] M2.’’ We
also use the symbolsMi andm for the masses of the bodies, along
with a for the planetary system semimajor axis, e for its eccen-
tricity, v1 for the relative velocity at infinity between the plan-
etary system and the single star, and b for the impact parameter.
If one treats all bodies as point particles and only considers their
masses for the time being, there are only two velocity scales in
the problem. The first is what has historically been called the
critical velocity, which is the value of v1 for which the total en-
ergy of the binary-single system is zero, and is given by

vc ¼
GM1m

�a

� �1=2

; ð1Þ

where � ¼ (M1 þ m)M2/(M1 þM2 þ m) is the reduced mass of
the binary-single star system. The second is the orbital speed of
the planet relative to its parent star, which is given by

vorb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G(M1 þ m)

a

r
ð2Þ

for a circular orbit. If we look at equations (1) and (2), we see
that if all the masses in the problem are comparable, then vc �
vorb. If, on the other hand, one of the members of the binary
system is much less massive than the other member (as is the
case for a planetary system), and we take M1 ¼ M2 � M and
q � m/MT1, then we can approximately write vc �

ffiffiffi
q

p
vorb.

For a typical planetary system, q � 10�3, and the two velocities
differ by more than an order of magnitude. Figure 1 plots the
two velocities for a planetary system with q ¼ 10�3 and M ¼
M� as a function of a. In essence, introducing a mass ratio in the

TABLE 1

Possible Outcomes of a Dynamical Scattering Interaction between

a Planetary System, [M
1
m], and a Single Star, M

2

Outcome Description Model Name

[M1 m] M2 .................................... Preservation ‘‘pres’’

[M2 m] M1 .................................... Exchange host star for incoming star ‘‘ex_s’’

[M1 M2] m .................................... Exchange planet for incoming star ‘‘ex_p’’

M1 M2 m ...................................... Ionization ‘‘ion’’

[Mi :m Mj] .................................... Collision of planet with one star, resulting in a binary

Mi :m Mj ....................................... Collision of planet with one star, resulting in ionization

[Mi :Mj m] .................................... Collision of two stars, resulting in a binary

Mi :Mj m ....................................... Collision of two stars, resulting in ionization

Mi :Mj :m ...................................... Collision of all objects

Note.—Colons denote a physical collision.
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binary opens up a strip in parameter space (between the two
diagonal lines in Fig. 1) in which the physical character of dy-
namical scattering interactions is fundamentally different from
that of the comparable-mass case.

In the literature on binary scattering involving stars of com-
parable mass, vc is the velocity delimiting the border between
‘‘hard’’ and ‘‘soft’’ binaries (Heggie 1975). If v1 < vc, the binary
is in the hard regime and will on average harden (a will get
smaller) as a result of an encounter. On the other hand, if v1 > vc,
the binary is in the soft regime and will on average soften (a will
get larger) as a result of an encounter—that is, if the binary is not
destroyed completely. However, Hills & Dissly (1989) and Hills
(1990) suggest that when considering binaries with disparate
masses, the boundary is more accurately given by v1 ¼ vorb, not
by v1 ¼ vc, and they suggest the use of the terminology ‘‘fast-
slow boundary’’ rather than ‘‘hard-soft boundary,’’ since it is the
relative speed of the binarymembers that is physically relevant. In
the literature considering the survivability of planetary systems
(and high mass ratio systems in general) in dense stellar envi-
ronments, both vc and vorb have been used as the single charac-
teristic velocity delimiting the boundary between ionization on the
high-velocity side and hardening on the low-velocity side. How-
ever, as we will see below, for planetary systems the hard-soft
boundary lies at v1 ¼ vc, while the characteristic timescale for the
survivability of a planetary system in a dense environment drops
markedly only at v1 ¼ vorb.

Now that we have written down the two characteristic ve-
locities in the problem, thus dividing the parameter space into
three distinct regions (as shown in Fig. 1), the question naturally
arises: What is the physical character of the scattering inter-
actions in each of the three regions? For v1 < vc, the total energy
of the binary-single system is negative. We thus expect that for
any ‘‘strong’’ encounter (defined approximately as one in which
the classical pericenter distance, rp, between the single star and
the planetary system is of order a), the interaction will be reso-
nant, in the sense that it will survive for many orbital times
(Heggie & Hut 2003). It will behave as a small star cluster, most
likely ejecting its lightest member, in this case the planet, yield-
ing the outcome ‘‘ex_p(res)’’. For rp k a, the likely outcome is a
‘‘direct’’ exchange of the incoming star for the planet (‘‘ex_
p(nonres)’’). We thus expect �ex p ¼ �ex p(res)þ �ex p(nonres) to
be the dominant cross section for v1 < vc . For v1 > vorb, the

interaction is impulsive, since the timescale of the interaction is a
small fraction of the binary orbital period. We thus expect that
any ‘‘strong’’ interaction will ionize the system, making �ion the
dominant cross section in this regime. For vc < v1 < vorb, the
timescale of the interaction is comparable to the orbital period, so
the outcome is not a priori obvious and must be treated numer-
ically. Below, as far as it is possible, we calculate using analytical
techniques the cross sections for each outcome in each of the
three regions of parameter space.

2.1. v1 < vc

First, since for v1 < vc the total energy of the binary-single
system is negative, it is clear that ionization is classically for-
bidden. Thus,

�ion ¼ 0: ð3Þ

We should also mention that for the outcome of preservation,
the only method we have for determining if an interaction was
‘‘strong’’ is whether or not it was resonant. Thus, it should be
clear that for every region of parameter space in Figure 1,

�pres(nonres) ! 1; ð4Þ

since every very distant passage of the single star by the binary
preserves it via a nonresonant interaction.
Heggie et al. (1996) considered interactions of ‘‘hard’’ bina-

ries (in the sense that v1 < vc) with single stars for a wide range
of possible mass ratios in the binary and between the binary
members and the incoming single star. Using analytical tech-
niques, they calculated the scaling of the cross sections for each
possible outcome. They then fitted to numerically calculated cross
sections to determine the weakly mass-dependent ‘‘coefficients’’
on each cross section. From their equations (13) and (14), with
m2 � m3 (since M1 � M2 here), we see that

�ex p(res) � �ex p(nonres): ð5Þ

The cross section for nonresonant exchange of the planet for the
incoming star is given by their equation (17) [divided by 2,
since �ex p(res) � �ex p(nonres)]:

�ex p(nonres) �
�GMta

4v 21

M1 þM2

Mt

� �1=6
M2

mþM2

� �7=2

;
M1 þ m

Mt

� ��1=3
M2 þ m

Mt

exp
X
m; n

amn
m

M1 þ m

� �m
M2

Mt

� �n
" #

;

ð6Þ

whereMt ¼ M1 þ mþM2 is the total mass of the binary-single
system, the exponential term is the ‘‘coefficient’’ fit to the nu-
merical results, and the values of amn are given in their Table 3.
The cross section for direct exchange of the incoming star for

the host star is also given by their equation (17), with the ap-
propriate permutation of masses:

�ex s(nonres) �
�GMta

2v21

M2 þ m

Mt

� �1=6
M2

M1 þM2

� �7=2

;
M1 þ m

Mt

� ��1=3
M1 þM2

Mt

exp
X
m; n

amn
M1

M1 þ m

� �m
M2

Mt

� �n
" #

:

ð7Þ

Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M� star and a 10�3M� planet in an orbit with semimajor
axis a, encountering a 1M� star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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The resonant cross section for this process, �ex_s(res), can be
calculated approximately by statistical techniques. Since for a
resonant interaction we expect the three-body system to behave
like a small star cluster, we can assume that the less massive
body (the planet) and the more massive bodies (the stars) reach
energy equipartition, yielding the approximate equality

mv2�; m ¼ Mv2�;M ; ð8Þ

where v�, m is the one-dimensional velocity ‘‘dispersion’’ of the
planet, v�,M is the one-dimensional velocity dispersion of the stars,
and we letM1 ¼ M2 ¼ M . If we assume that the three-body sys-
tem reaches thermal equilibrium on a timescale shorter than the in-
teraction timescale, each species obeys aMaxwellian distribution:

f (v; n; v�) ¼ 4�v2
n

(2�v 2� )
3=2

e�v 2=2v 2� ; ð9Þ

where n is the number density of the species, v� is its one-
dimensional velocity dispersion, and v is its speed. To find the ra-
tio of the probability for ejecting one of the stars to that for ejecting
the planet, one simply integrates the velocity distribution for each
species from the escape velocity, vesc , to infinity and considers the
ratio. By using the fact that vesc � 2

ffiffiffi
3

p
v�, where v� � v�;M is the

one-dimensional velocity dispersion of the full three-object sys-
tem, we have

�ex s(res)

�ex p(res)

¼
R1
2
ffiffi
3

p
v�
f (v; n; v�) dvR1

2
ffiffi
3

p
v�
f v; n; v�=

ffiffiffi
q

p� �� �
dv

¼
2e�6

ffiffiffiffiffiffiffiffi
6=�

p
þ erfc

ffiffiffi
6

p� �
2e�6q

ffiffiffiffiffiffiffiffiffiffi
6q=�

p
þ erfc

ffiffiffiffiffi
6q

p
ð Þ

; ð10Þ

where erfc(z) ¼ 1� erf (z) is the complement of the error func-
tion. Note that there is no factor of 2 in the numerator, since the
two stars in the system are distinguishable, in the sense that we
distinguish between ‘‘ex_s(res)’’ and ‘‘pres(res)’’. This function is
plotted in Figure 2. Note how, as q is decreased from unity, the test
particle limit is reached relatively quickly, at q � 0:1. The same
qualitative result is found in Fregeau et al. (2004), as shown in
their Figure 10.

Since in a resonant interaction the system loses all memory of
its initial configuration, we expect that for M1 ¼ M2 ¼ M, the
probability of preserving the system (and ejecting the incoming
star) in a resonant interaction is equal to that of ejecting the host
star and keeping the incoming star:

�pres(res) ¼ �ex s(res): ð11Þ

Finally, we remark on the likelihood of collisions in this re-
gime. Fregeau et al. (2004) have studied in detail the probability
of collisions during binary interactions, including binaries with
very small mass ratios, and have found that for systems in which
the radius of the low-mass member is independent of its mass
(as is approximately the case for planets), the test particle limit
is reached at q � 0:1 (see Fig. 10 of that paper). In other words,
the collision cross section is independent of the mass of the low-
mass member below q � 0:1. Furthermore, the collision cross
section is roughly as large as the strong interaction cross sec-
tion. Therefore, we expect the combined cross section for any
outcome involving a collision to be of the same order as �ex_p(res).
This estimate says nothing about the relative frequency of the
different outcomes involving collisions, which requires numerical

calculations to infer, and which we do not treat in this paper.
However, we do consider collisions briefly in the discussion of
PSR B1620�26 in x 6.

2.2. v1 > vorb

In the regime in which v1 > vorb, since v1 > vc, the total en-
ergy of the system is positive, so resonant scattering is forbidden:

�pres(res) ¼ �ex s(res) ¼ �ex p(res) ¼ 0: ð12Þ

Since v1 > vorb , the timescale of the scattering interaction is typ-
ically much smaller than the orbital period (unless rp3a). In this
case the interaction is in the impulsive limit and can be handled
quite efficiently with analytical techniques (Hut 1983). From
equation (5.10) of Hut (1983), the ionization cross section is

�ion ¼
40

3
�aG

M 2
2

M1 þ m

1

v21
: ð13Þ

Exchange in the impulsive regime occurs when the incoming
star, M2 , passes much closer to one member of the binary than
the other and undergoes a near-180� encounter in which all of
its momentum is transferred to that member. In order for M2 to
remain bound in the binary, it must receive nearly zero recoil in
the frame of the remaining binary member, which requires that
the mass of M2 be nearly equal to the mass of the binary mem-
ber it displaces (Hut 1983). Thus, exchange of the planet for the
incoming star, �ex_ p(nonres), is vanishingly small unlessM2 � m.
Exchange of the planet’s host star for the incoming star, on the
other hand, is more likely, since the stars’ masses are more
likely to be comparable. From equation (5.2 0) of Hut (1983), the
cross section for exchange of the planet’s host star for the in-
coming star is given by

�ex s(nonres) ¼
20

3
�
1

a
G3M 2(M þ m)

1

v61
; ð14Þ

with M1 ¼ M2 ¼ M .

2.3. vc < v1 < vorb

In the regime vc < v1 < vorb , the interaction is neither resonant
nor impulsive, so the techniques used above cannot be used here.

Fig. 2.—Plot of the ratio of the cross section for resonant exchange in which
the planet’s original host star is ejected, to that in which the planet is ejected,
�ex_s(res) /�ex_ p(res), as a function of the binary mass ratio, q � m/M . Here we
have assumed that both stars have mass M. Note how, as q is decreased from
unity, the test particle limit is reached relatively quickly, at q � 0:1.
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For qT1 the interaction is essentially the hyperbolic restricted
three-body problem, but since the timescale of the inter-
action is of order a few orbital periods, the standard techniques of
perturbation theory are of limited use. Instead, one must appeal
to numerical methods to discern the nature of the interactions. It
is possible, however, to make order-of-magnitude estimates of
the relevant cross sections. WheneverM2 passes within rp P a of
the binary, its force on the planet is comparable to that ofM1, in
which case the orbit of the planet should be sufficiently perturbed
to unbind it from the host star and either eject it from the system
or leave it bound to M2. Thus, we estimate that the total cross
section �ion þ �ex s(nonres) should be roughly equal to the strong
interaction cross section. In the absence of any more detailed
information, we simply assume �ion � �ex s(nonres), yielding

�ion � �ex s(nonres) � �a
GMt

v21
; ð15Þ

since gravitational focusing dominates. Since in this regime the
planet is effectively a test particle,�ex_p(nonres) is vanishingly small.

3. NUMERICAL CONFIRMATION

To confirm the analytical predictions of x 2, we have calcu-
lated the cross sections by numerically integrating many scatter-
ing interactions. We have used the Fewbody numerical toolkit to
perform the scattering interactions (Fregeau et al. 2004). For cal-
culating the cross sections, we use a generalization of the tech-
nique described in McMillan & Hut (1996), in which, for each
annulus in impact parameter, we perform only one scattering
interaction instead of the many required by their technique. This
allows us to more precisely calculate the uncertainties in the

cross sections, in particular yielding accurate asymmetric error
bars. To handle the small number statistics, we use the tables in
Gehrels (1986).
Figure 3 shows the dimensionless cross sections, �/�a2, for

the outcomes involving no collisions in Table 1, as a function of
v1/vc for a planetary system with mass ratio q ¼ 10�3, e ¼ 0,
andM1 ¼ M2 ¼ M . Points plotted are as described in the legend.
Circles represent resonant interactions, while triangles represent
nonresonances (‘‘direct’’ interactions). The error bars plotted are
1 �. The vertical dotted lines represent the critical velocity and
orbital speed. The solid lines show the analytically predicted cross
sections from x 2, while the dashed line between the two vertical
dotted lines indicates the order-of-magnitude estimated cross sec-
tion from the same section.We have calculated the same cross sec-
tions using Starlab (McMillan & Hut 1996; Portegies Zwart et al.
2001), and the agreement is excellent. Note that with the excep-
tion of those in x 6, all calculations presented in this paper are per-
formedwith e ¼ 0. Previous results show that most cross sections
of interest do not depend strongly on eccentricity (Hut & Bahcall
1983). Indeed, we have calculated the cross sections in Figure 3
using a thermal eccentricity distribution and find only a slight
increase in the resonant cross sections (and a corresponding de-
crease in the nonresonant cross sections) relative to the e ¼ 0 case.
If we look first at the region in which v1 > vorb, we see �ion

plotted with dark gray triangles and �ex_s(nonres) plotted with me-
dium gray triangles, along with the corresponding analytically
predicted cross sections (eqs. [13] and [14], respectively), which
are plotted as solid lines. The agreement is clearly quite excellent.
Next, ifwe look at the region inwhich v1 < vc, we see�ex_p(res)

(circles) and �ex_p(nonres) (triangles) plotted in light gray, with the
corresponding analytically predicted result of equation (6) (the

Fig. 3.—Dimensionless cross sections, �/�a2, for the outcomes involving no collisions in Table 1, as a function of v1/vc for scattering interactions between a
planetary system with mass ratio q ¼ m/M ¼ 10�3 and eccentricity e ¼ 0, and a star of massM. Points plotted are as described in the legend. Circles represent resonant
interactions, while triangles represent nonresonances (‘‘direct’’ interactions). The error bars plotted are 1 �. The vertical dotted lines represent the critical velocity and
orbital speed. The solid lines show the analytically predicted cross sections from x 2, while the dashed line between the two vertical dotted lines indicates the order-of-
magnitude estimated cross section from the same section. [See the electronic edition of the Journal for a color version of this figure.]
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two cross sections are expected to be roughly equal, from eq. [5])
plotted as a solid line. The values of �ex_p(res) and �ex_p(nonres) ap-
pear to be roughly equal, with those of �ex_p(res) larger by �10%
for v1Tvc , while the analytical prediction is roughly �50%
larger than the numerical result. Plotted with medium gray tri-
angles is �ex_s(nonres), along with the corresponding analytical re-
sult from equation (7), which is also plotted as a solid line. Clearly
the agreement is superb. Plotted with medium gray circles is the
resonant cross section �ex_s(res), with the analytical result from
equation (10) plotted as a third solid line. Although the statistics
on this very small cross section are not as good as those for the
other cross sections in v1 < vc, it still appears to agree very well
with the analytical prediction. Finally, plotted with black circles is
�pres(res). Although from equation (11) abovewewould expect it to
be equal to �ex_s(res), it is larger by nearly an order of magnitude.
The discrepancy is due to the operational definition of resonance
we have used; namely, that the mean-squared separation of all
bodies makes more than one minimum, with a successive mini-
mum counted only if the interveningmaximum between it and the
previous minimum is at least twice the value of both minima
(McMillan & Hut 1996). Clearly this definition is too liberal and
classifies some preservation outcomes as resonant when they
should not be classified as such. In fact, requiring that the mean-
squared separation make more than two minima for a resonance
decreases �pres(res) by about an order of magnitude, bringing it into
agreement with the analytical prediction and making it nearly
equal to �ex_s(res). Requiring that intervening maxima be 4 times
(instead of twice) the value of the minima on either side for a suc-
cessive minimum to be counted has no discernible effect on the
results.

In the region in which vc < v1 < vorb, resonance is, of course,
forbidden. The cross section �ex_p(nonres) drops off quickly above
v1 ¼ vc, obeying roughly

�ex p(nonres)

�a2
� 1:5 ; 103

� � v1
vc

� ��6

ð16Þ

for the case in whichM1 ¼ M2 ¼ M and q ¼ m/M ¼ 10�3. The
cross sections for ionization and exchange of the incoming star

for the host star (plotted with dark gray and medium gray tri-
angles, respectively) are of the same order of magnitude and are
only slightly different from the order-of-magnitude estimate in
equation (15) (dashed line). In particular, for the bulk of the
region, �ion � 2�ex s(nonres), and �ion is �20% larger than the
order-of-magnitude estimate, yielding

�ion � 1:2�a
GMt

v21
ð17Þ

and

�ex s(nonres) � 0:6�a
GMt

v21
; ð18Þ

again, for the case in which M1 ¼ M2 ¼ M and q ¼ m/M ¼
10�3. However, as discussed above in x 2, we expect the test
particle limit to be reached at q � 10�1, so the results here
should be valid for all values of qP 10�1.

4. PROPERTIES OF EXCHANGE SYSTEMS
AND THE HARD-SOFT BOUNDARY

Now that we have determined the character of the scattering
interactions in each region of parameter space shown in Figure 1,
we consider the properties of the final planetary system for the
outcomes that yield a planetary system, namely, resonant pres-
ervation, and exchange of the host star for the incoming star.
Since resonance is only allowed for v1 < vc, for simplicity we
consider only the outcome ‘‘ex_s(nonres)’’, which has a sig-
nificant cross section for all values of v1. Shown in Figure 4 are
the statistical properties of the final planetary systems in the
outcome ‘‘ex_s(nonres)’’ as a function of v1/vc, for the case with
M1 ¼ M2 ¼ M , q ¼ 10�3, and e ¼ 0. The fraction of the final
planetary systems that have hardened (semimajor axis decreased),
fhard, is shown by the solid line. The average change in the binding
energy of the planetary system,

h�Ebi=Eb ¼hGMm=2a0 � GMm=2ai=(GMm=2a) ¼ ah1=a0i � 1;

is shown by the dashed line. The vertical dotted lines show the
critical velocity and the orbital speed. The horizontal dotted line
represents the value 0.5 for fhard and 0 for h�Ebi/Eb. For v1T
vc, every outcome results in the planetary system hardening,
with h�Ebi/Eb � 0:4. This implies that the semimajor axis has
shrunk to about 70% of its initial value, as shown in Figure 5,
which plots ha/a0i�1

as a function of v1/vc. In the region in
which vc < v1 < vorb, the planetary system predominantly
widens as a result of the encounter, with only�30% of systems
hardening. The systems do not widen by much, on average de-
creasing their energy by about 20%. This corresponds to an in-
crease in the semimajor axis of about 25%, as shown in Figure 5.
This is rather interesting, since in this region exchange is nearly as
likely as ionization, implying that a significant fraction of systems
that undergo a strong dynamical encounter survive it. Further-
more, those that survive suffer a comparatively small change in
their semimajor axis, with a significant fraction actually harden-
ing. Finally, in the region in which v1 > vorb, since the cross sec-
tion for ionization is several orders ofmagnitude larger than that of
exchange, the statistics are too poor to say anything conclusive.
Although the curves in Figures 4 and 5 appear to begin to rebound,
we expect that they actually go smoothly to fhard ¼ 0, h�Ebi/Eb ¼
�1, and ha/a0i�1 ! 1.

Aswas described in x 2, there has been considerable variance in
the literature on what velocity demarcates the hard-soft boundary

Fig. 4.—Statistics on the final planetary systems formed via nonresonant ex-
change in which the planet’s original host star is ejected (‘‘ex_s(nonres)’’), as a
function of v1/vc, for the case withM1 ¼ M2 ¼ M and q ¼ 10�3. The fraction of
final planetary systems that have hardened (semimajor axis decreased), fhard, is
shown by the solid line. The average change in the binding energy of the planetary
system, h�Ebi/Eb ¼ hGMm/2a0 � GMm/2ai/(GMm/2a) ¼ ah1/a0i � 1, is
shown by the dashed line. The vertical dotted lines represent the critical velocity and
the orbital speed. The horizontal dotted line represents the value 0.5 for fhard and 0 for
h�Ebi/Eb. The hard-soft boundary lies where fhard crosses 0.5 and h�Ebi/Eb

crosses 0, which clearly and robustly occurs at v1 � 0:75vc.

DYNAMICAL INTERACTIONS OF PLANETARY SYSTEMS 1091No. 2, 2006



for systems with a wide mass ratio. A look at Figure 4 reveals that
(at least for M1 ¼ M2) the hard-soft boundary, which lies where
fhard crosses 0.5 and h�Ebi/Eb crosses 0, robustly occurs at v1 �
0:75vc. Of course, simply stating that the hard-soft boundary lies
at v1 � 0:75vc belies the fact that for vc < v1 < vorb the likelihood
of a planetary system surviving a strong dynamical encounter in
some form is rather significant.

On the basis of the understanding garnered from our analysis
thus far, it is useful to consider the fate of a planetary system
subject to strong dynamical encounters in a stellar environment
of number density n and velocity dispersion v�. The average rel-
ative velocity between objects in such a system is roughly

ffiffiffi
2

p
v�,

but since we are interested only in orders of magnitude here, we
will take v1 ¼ v�. Since we know all relevant cross sections, we
can perform a simple ‘‘n�v’’ estimate for the lifetime of a
planetary system as a function of a,

� ¼ 1

n�v1
; ð19Þ

which we do now. A useful way to think about the evolution of a
planetary system subject to encounters is the following. If we
take the masses to be given, then for a given value of awe know
vc and vorb from equations (1) and (2). Given the value of v1
fixed by the velocity dispersion of the stellar environment in
which the planetary system finds itself, we thus have v1/vc and
know in which section of parameter space the planetary system
lies in Figure 3. In the region in which v1 < vc, by far the most
likely outcome of a strong dynamical interaction is an exchange
in which the planet is ejected. Thus, the value of � for this region
can be calculated using the cross section �ex p ¼ �ex p(res) þ
�ex p(nonres). In the region in which v1 > vorb, the dominant
outcome is ionization, so one uses �ion in equation (19). In be-
tween, in the region in which vc < v1 < vorb, the outcomes ‘‘ion’’
and ‘‘ex_s(nonres)’’ are almost equally likely. Fromequations (17)
and (18), roughly Xi � 2/3 of strong dynamical interactions result
in ionization, while the remaining Xe � 1/3 result in nonresonant
exchange of the host star for the incoming star. The systems that
undergo exchange suffer only a small perturbation to their orbital
size, as evidenced by Figure 5. As a changes, vc and vorb scale as
a�1/2 with vc/vorb fixed. Thus, in effect, as a changes, the quantity

v1/vc scales as a
1/2 with the distance between vc and vorb held fixed

in logarithmic space, and so the planetary system simply occupies
a new position on the x-axis in Figure 3. A planetary system lying
in regions in which v1 < vc or v1 > vorb is destroyed as a result
of an interaction. But for a planetary system in the intermediate
region, it is destroyed a fraction Xi of the time, while the other
fraction Xe of the time it survives with v1/vc increased by a mere
�10% on average (from Fig. 5). Eventually, systems that survive
via many exchange interactions will find themselves in the region
in which v1 > vorb and will be destroyed quickly by ionization.
Since the average change in a due to these exchanges is rather
small, let us, for the sake of simplifying the calculation of � , as-
sume that they survive indefinitely. The average lifetime in this re-
gion of parameter space, including both ionization and exchange,
is thus

� ¼ �i þ Xe�i þ X 2
e �i þ X 3

e �i þ � � � ¼ �i
1� Xe

; ð20Þ

where

�i ¼
1

n �ion þ �ex s(nonres)

� �
v1

: ð21Þ

Since all cross sections of interest here scale as � ¼ �0a/v
2
1,

where �0 is a function of the masses, we can be quite general
and plot

�n

v31
¼ 1

�0

a

ac

� ��1 �

GM1m
; ð22Þ

where the critical semimajor axis is ac ¼ GM1m/�v
2
1, as a func-

tion of a/ac in Figure 6. Note that the sharpness of the transitions
at a ¼ ac and a ¼ aorb is due to the use of the analytical cross
sections in calculating the lifetimes. From the numerical cross
sections in Figure 3 it is evident that, in reality, the transitions
are a bit smoother, although the general structure is the same.
Clearly, the overall trend is for the lifetime to scale as a�1, with
the coefficient varying by only a factor of a few among the
different regions of parameter space. Using only the fact that the

Fig. 5.—Plot of the quantity ha/a0i�1
, the inversely weighted average of the

ratio of the planetary system’s final semimajor axis a0 to its initial value a, as a
function of v1/vc for the planetary systems formed via nonresonant exchange in
which the planet’s original host star is ejected (‘‘ex_s(nonres)’’), for the case with
M1 ¼ M2 ¼ M and q ¼ 10�3. The vertical dotted lines show vc and vorb, while the
horizontal dotted line shows the value 1 for ha/a0i�1

.

Fig. 6.—Characteristic lifetime � , plotted in the quantity �n/v31 (see eq. [22]), of
a planetary system with mass ratio q ¼ 10�3, host star massM ¼ M�, and eccen-
tricity e ¼ 0 in a stellar environment of number density n and velocity dispersion
v1, as a function of a/ac. The critical semimajor axis ac is as defined in x 4 after
eq. (22). The two vertical dotted lines show a ¼ ac and a ¼ aorb. The quantity aorb
is the value of a for which the orbital speed in the planetary system is equal to v1.
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hard-soft boundary lies at v1 ¼ vc, one might expect the life-
time to drop markedly at a ¼ ac. In fact, it increases slightly
there and does not drop until a ¼ aorb, due to the large cross
section for planetary systems preserving exchange in the in-
termediate regime. We now consider the implications of this
result.

5. IMPLICATIONS

The main implication of our results is that the minimum size
of planetary systems that will likely be destroyed as a result of
dynamical interactions in dense stellar environments is larger
than has previously been assumed. This limit can be read almost
directly from Figure 6 for a given velocity dispersion, stellar
density, and timescale. For example, in a globular cluster like
47 Tuc, which has a central stellar density of �105 pc�3 and a
velocity dispersion of�10 km s�1, planetary systems wider than
0.05 AU will have been destroyed after �10 Gyr. The second
implication is that the statement that the location of the hard-soft
boundary is at v1 ¼ vc, although correct, when taken on its own
can be misleading. It is true that planetary systems on the low-
velocity side of the hard-soft boundary that survive interactions
tend to harden on average. However, planetary systems are
overwhelmingly likely to be destroyed in this regime, as can be
read directly from the cross sections in Figure 3. Similarly, al-
though planetary systems tend to soften, on average, for v1 >
vc, it is not until v1 > vorb that ionization dominates the out-
come. In other words, there is a wide region in parameter space
(from v1 ¼ vc to v1 ¼ vorb) for which the probability of ex-
change in which a planetary system results is comparable to that
of ionization, and those resulting planetary systems soften by
only a small amount (as shown in Figs. 4 and 5).

Our results have a bearing on previous studies in the literature
in which authors have adopted inappropriate prescriptions for
outcomes of scattering interactions with planetary systems. As
an example, Bonnell et al. (2001) calculated the evolution of a
population of planetary systems in stellar environments of dif-
fering density, using a Monte Carlo approach in which planetary
systems undergo binary-single interactions with field stars. As a
result of each interaction, the planetary system is assumed to be
ionized if v1 > vc and to harden if v1 < vc. However, as our re-
sults show, for v1 < vc those planetary systems undergoing
strong interactions are destroyed, for vc < v1 < vorb they have
an increased probability of surviving, and for v1 > vorb they are
predominantly ionized. The result of the discrepancy is that most
of the systems destroyed on the high-velocity side of the hard-
soft boundary (v1 ¼ vc) in these simulations will actually sur-
vive as planetary systems of some kind. The growth of a spike in
the relative frequency of planetary systems smaller than ac
predicted in low-velocity dispersion systems (such as open
clusters) should not occur, with the distribution of semimajor
axes dropping smoothly from ac to aorb. There is the possibility
for a slight hump in the relative frequency of planets with ac <
a < aorb, on the basis of our Figure 6, but it would not be nearly
as pronounced as what is shown in Figure 5 of Bonnell et al.
(2001).

On the observational side, we find that, of the hot Jupiter
planetary systems expected to be detected in 47 Tuc in the transit
survey of Gilliland et al. (2000), which was sensitive to periods
of up to �4 days, essentially all are expected to survive dynam-
ical interactions in the high-density core of the cluster on time-
scales comparable to the age of the cluster. This can be read
directly from Figure 6 with a � 0:05 AU. This bolsters the con-
clusion drawn by Weldrake et al. (2005) that it is not dynamics
that is responsible for the lack of hot Jupiters detected in 47 Tuc,

but rather may be metallicity-dependent effects (Fischer &
Valenti 2005). TheWeldrake et al. study sampled regions outside
the core and was sensitive to orbital periods up to �16 days, so
the hot Jupiter binaries that they looked for would also not have
been destroyed by dynamical interactions due to the lower den-
sity there. However, it is possible that they would have been de-
stroyed early in the lifetime of the cluster if it went through a
high-density phase early on, the possibility of which is discussed
in Bonnell et al. (2001).

Looking ahead, we now speculate on future possibilities for
observations of planets in dense stellar environments. The glob-
ular cluster Terzan 5 is unique in that it has supersolar metallicity.
Any argument against the formation of planets in globular clus-
ters due to metallicity effects is null in Terzan 5. If we adopt the
frequency of hot Jupiters in the solar neighborhood of 0.8%
(Butler et al. 2000; Basri 2004) and use the estimated central
number density of 105 pc�3 and core radius of 0.5 pc (Harris
1996), we would expect �100 hot Jupiters to be in orbit around
main-sequence stars in the core of Terzan 5. According to Fig-
ure 6, for v1 ¼ 10 km s�1, all of these systems would survive for
a Hubble time, since the definition of a ‘‘hot Jupiter’’ implies an
orbit period of less than�10 days. Terzan 5 lies nearly in the Ga-
lactic disk, close to the Galactic center, making optical observa-
tions of it practically impossible. However, it is readily observed
in radio wavelengths, and already many millisecond pulsars
(MSPs) have been discovered in it (Ransom et al. 2005). There
is thus the possibility of detecting planets in orbits around MSPs
in this cluster. The most natural formation mechanism involves
exchanging the MSP for the planet’s host star in a dynamical in-
teraction. From Figure 1 we see that, for the velocity dispersion
of Terzan 5, planetary systems with a � 0:01 10 AU lie in the
intermediate regime and are thus most likely to possibly have
brought in a MSP through exchange. The formation of such sys-
tems is a balancing act between destruction (for the wider sys-
tems) and a long interaction timescale (for the smaller systems),
with a ‘‘sweet spot’’ at a � 0:1 AU. Although the expected
number of MSP-planet systems is small (probably �1), we can
predict that such a system would have a � 0:1 AU. There is also
the possibility that planets could form around pulsars, but the
frequency of formation is rather less certain (Sigurdsson 1992).

6. PSR B1620�26

The planetary system PSR B1620�26 in the globular cluster
M4 consists of a Jovian-mass object in an�20 AU orbit about a
MSP–white dwarf (WD) binary. The planetary system sits right
at the edge of the core of M4 in projection, which has a central
velocity dispersion of�4 km s�1. If we look at Figure 1, we see
that the planetary system lies comfortably in the ‘‘intermediate’’
regime, making it very likely that it was formed via a dynamical
scattering interaction in which the neutron star–containing (NS-
containing) binary exchanged into the planetary system (as one
unit) in place of the planet’s original host star (scenario 2 below).
With this motivation, we now perform a detailed numerical
analysis of the possible formation scenarios of PSR B1620�26.

First, it is useful to list the physical parameters of the system.
The pulsar has a spin period of �11ms and a mass of�1.35M�,
while the WD has a mass of 0:34 � 0:04 M�. Hubble Space
Telescope data have confirmed that theWD is young, with an age
of�0.5Gyr. The PSR-WDbinary has an eccentricity of �0.025.
The planet has a mass of �1–3MJ, where MJ is the mass of
Jupiter, and orbits with an eccentricity of �0.3 about the MSP-
WD binary. The inclination between the inner and outer orbits is
�55þ14

�8 deg. The currently favored dynamical formation sce-
narios are the following. In what we will call scenario 1 a binary
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composed of aWD and a NS undergoes an exchange interaction
with a binary consisting of a main-sequence star near the turn-off
mass and a Jovian planet. In the encounter the WD is ejected
from the system, with the normal star exchanging into orbit with
the PSR, which leaves the planet in a wide orbit about the star-
PSR binary. The star then undergoes mass transfer as it goes
through the red giant phase, recycling the PSR to millisecond
periods (Sigurdsson et al. 2003). In scenario 2, a binary com-
posed of a NS and a near–turn-off main-sequence star of mass
0.8 M� undergoes an exchange interaction with a binary com-
posed of a main-sequence star and a Jovian planet. In the en-
counter the NS-star binary acts as a single unit and exchanges
into the planet’s orbit, ejecting the planet’s original host star. The
star then undergoes mass transfer as it goes through the red giant
phase, recycling the PSR to millisecond periods (Ford et al.
2000). As we discuss below, our expectation that scenario 2 is
the much more likely one proved to be correct.

6.1. Quantifying the Outcome Likelihoods

As in x 3, we use the Fewbody numerical toolkit to per-
form scattering interactions and calculate cross sections for dif-
ferent outcomes. The interaction rate per planetary system is
simply

R¼
Z 1

0

dv1 f (v1)n�v1; ð23Þ

where f (v1) is the velocity distribution function, n is the num-
ber density of NS binaries, and � is the cross section for the
outcome of interest. Rates presented below were calculated by
discretizing the integral over the distribution function and sum-
ming over a range of velocities wide enough to guarantee
convergence. In particular, we typically integrate over a range
of velocities from 1 to 15 km s�1, with the upper limit set by the
escape speed of 15.25 km s�1 of the cluster (Beer et al. 2004). For
the distribution function we assume a simple Maxwellian with a
velocity dispersion of v1 ¼

ffiffiffi
2

p
v�, where v� ¼ 3:88 km s�1 is the

velocity dispersion in the core of M4 and the factor of
ffiffiffi
2

p
is due to

the fact that we are considering relative velocities between pairs of
objects. Our naming convention for the objects is analogous to
what we used above, with ‘‘[NS MS1] [MS2 P]’’ denoting the
initial configuration of the two binaries before the scattering inter-
action. ‘‘MS1’’ in fact represents a WD in scenario 1 and a main-
sequence star in scenario 2; however, we label it ‘‘MS1’’ in both
cases since it is only the mass of the object that matters in the
scattering interactions (the radius of the object plays only a minor
role when direct physical collisions are considered). We label the
semimajor axis of the NS-MS1 binary a0 and that of the MS2-P
binary a1. Since the NS binary must be significantly tighter than
the planet binary, it is expected to behave dynamically as a single
unit; thus, the cross sections for different outcomes are expected to
scale with a1 (our numerical results confirm this). We therefore
vary only a0, from 0.1 to 1 AU (a typical range of values), and
keep a1 fixed at 5 AU. We fix e1, the eccentricity of the planet
binary, at 0, while we draw e0, the eccentricity of the NS binary,
from a thermal distribution truncated at large e0 such that neither
object in the binary exceeds its Roche lobe. Figure 7 shows the
seminormalized rate R /½n�(a0 þ a1)

2	 (in units of km s�1) for
the different outcomes listed in the legend as a function of a0. The
most likely outcome is [NS MS1] MS2 P; that is, destruction of
the planetary system and preservation of the NS binary. The next
most likely outcome is scenario 2 ([[NSMS1] P] MS2), confirm-
ing our expectations from above. The next is any outcome involv-

ing direct physical collisions between systemmembers, which we
lump together into one category for the sake of succinctness. The
next is scenario 1 ([[NSMS2] P] MS1), which is larger than [[NS
MS1] MS2] P only for a0 k 0:3 AU.
To verify that our results are not dependent on the choice of a1,

we now consider the relative probabilities for scenarios 1 and 2
over a large grid in a0-a1 space. To simplify the presentation of
the results, we plot the normalized cross section for each out-
come, �/�(a0 þ a1)

2, as a function of a1/a0, as shown in Figure 8;
hence the multivalued nature of the cross sections. For simpli-
city, all interactions were performed with v1 ¼ 5 km s�1, since
the velocity-dependent rate peaks at this value. It is clear from
the figure that as long as a1 k a0, which is quite reasonable on
physical grounds, scenario 2 is the most probable. For the phys-
ically most reasonable value of a1/a0 � 10, scenario 2 is more
probable by more than an order of magnitude over scenario 1.
Now that we have confirmed the preferred formation scenario,

we consider the orbital parameters of the hierarchical triple sys-
tem formed. Figure 9 shows the cumulative distribution of the
center-of-mass velocity of the triple system after the exchange
interaction for the cases with a0 ¼ 0:1 AU (solid lines) and a0 ¼
1 AU (dotted lines) for several values of v1, from 1 km s�1 (left-
most line) to 15 km s�1 (rightmost line). The triple system appears
to suffer a recoil of�3 km s�1, which is clearly not enough to eject
it from the cluster (which would require�15 km s�1), but may be
enough to eject it from the core. Figures 10 and 11 show the cu-
mulative distributions of the outer semimajor axis, aout, and the
eccentricity, eout, respectively, with the same convention for the
line types as in Figure 9. The outer semimajor axis is clearly not
particularly dependent on either a0 or v1, with a peak at�10 AU.
The outer eccentricity, on the other hand,while not particularly de-
pendent on v1, is strongly dependent on a0. For a0 ¼ 0:1 AU the
eccentricity distribution is roughly thermal, with the cumulative

Fig. 7.—Quantifying the likelihood of the possible formation scenarios of
PSR B1620�26: Plot of the seminormalized rate R /½n�(a0 þ a1)

2	 (in units of
km s�1) for various outcomes of a scattering interaction between a NS-MS1
binary and a MS2-P planetary system as a function of a0, the semimajor axis of
the NS-MS1 binary. Symbols are as defined in the legend. The rate for scenario 2
([[NSMS1] P] MS2) clearly dominates over scenario 1 ([[NSMS2] P] MS1) for
a wide range in values of a0.
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distribution /e2out. For a0 ¼ 1 AU the eccentricity distribution is
flatter, with more systems at lower eccentricity. This result sug-
gests that of the two, a0 ¼ 1 AU is the favored value for the NS
binary semimajor axis, since we know from observations that the
outer eccentricity is rather low, with eout � 0:2 � 0:1 (Sigurdsson
& Thorsett 2005). In Figure 12 we show the cumulative distri-
bution of the inner binary semimajor axis, ain, with the same con-
vention for the line types as in the previous figures. Confirming
our earlier assumption, the inner binary clearly behaves as a single
dynamical unit, with the distributions for the final values strongly

Fig. 9.—Cumulative distribution of the center-of-mass velocity of the pu-
tative PSRB1620�26 triple system after the exchange interaction in scenario 2, for
the cases a0 ¼ 0:1 AU (solid lines) and a0 ¼ 1 AU (dotted lines) for several values
of v1, from 1 km s�1 (leftmost lines) to 15 km s�1 (rightmost lines). In both cases
we set a1 ¼ 5 AU. The triple system appears to suffer a recoil of�3 km s�1, which
is clearly not enough to eject it from the cluster (whichwould require�15 km s�1),
but may be enough to displace it significantly away from the core.

Fig. 10.—Cumulative distribution of the outer semimajor axis, aout, for the
putative PSR B1620�26 triple system formed in scenario 2. Line conventions and
initial conditions are the same as in Fig. 9.

Fig. 8.—Normalized cross section, �/�(a0 þ a1)
2, for PSR B1620�26 for-

mation scenarios 1 (stars) and 2 (circles) as a function of a1/a0, where a0 is the
initial semimajor axis of the neutron star binary and a1 is that of the planet
binary. The cross sections are calculated over a large grid in a0-a1 space; hence,
their multivalued nature as a function of a1/a0. All interactions were performed
with v1 ¼ 5 km s�1, since the velocity-dependent rate peaks at this value. It is
clear from the figure that as long as a1 k a0, which is quite reasonable on
physical grounds, scenario 2 is the most likely.

Fig. 11.—Cumulative distribution of the outer eccentricity, eout , for the pu-
tative PSR B1620�26 triple system formed in scenario 2. Line conventions and
initial conditions are the same as in Fig. 9.
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peaked around their initial values, and with very minimal de-
pendence on v1.

6.2. Evolution of the Hierarchical Triple Due to Mass Transfer

In scenario 2, the hierarchical triple system formed via the
dynamical interaction is not the planetary systemwe see today in
M4, but merely its progenitor. In this section we calculate the
effects on the triple system due to mass transfer in the inner bi-
nary as the main-sequence star ascends the red giant branch and
apply the results to the ensemble of triple systems formed in our
scattering interactions. We assume slow isotropic mass loss and
that during this process the eccentricities remain invariant (Rasio
et al. 1992). For the sake of simplifying the calculation, we also
assume that the inner and outer eccentricities are zero. Since the
outer orbit carries so little angular momentum (�0.4% of the total
angular momentum of the triple system), we neglect angular
momentum coupling between the two orbits and treat them as two
separate binaries during the mass transfer.

The angular momentum of the inner orbit is given by

Lin ¼ MNSMMS1

Gain

Min

� �1=2

; ð24Þ

whereMin ¼ MNS þMMS1,MNS andMMS1 are the masses of the
NS and the WD progenitor star, respectively, and ain is the semi-
major axis of the inner binary. Similarly, the angular momentum
of the outer orbit is given by

Lout ¼ MinMP

Gaout

MT

� �1=2

; ð25Þ

whereMT ¼ Min þMP,MP is the mass of the planet, and aout is
the semimajor axis of the outer orbit. If we take the logarithm of
both sides and differentiate, we get

�Lin
Lin

¼ �MNS

MNS

þ �MMS1

MMS1

þ 1

2

�ain
ain

� 1

2

�Min

Min

ð26Þ

and

�Lout
Lout

¼ �Min

Min

þ �MP

MP

þ 1

2

�aout
aout

� 1

2

�MT

MT

ð27Þ

for differential changes in the inner and outer orbits.
In the mass transfer process, we assume that the mass lost

from MS1 gets channeled into an accretion disk around the NS
and that any mass lost from the system is lost from the accretion
disk with the characteristic angular momentum of the NS (see,
e.g., Podsiadlowski et al. 2002). This implies that

�Lin ¼ a2
in

M 2
MS1

M 2
in

�in�Min; ð28Þ

where �in is the orbital velocity of NS, given by

�in ¼
GMin

a3in

� �1=2

: ð29Þ

Similarly, as mass is lost from the inner binary in the mass trans-
fer process, the angularmomentumof the outer binarywill change
according to

�Lout ¼ a2out
M 2

P

M 2
T

�out�MT ; ð30Þ

where �out is the orbital angular velocity of the inner binary in
the outer orbit and is given by

�out ¼
GMT

a3out

� �1=2

: ð31Þ

Fig. 12.—Cumulative distribution of the inner semimajor axis, ain, for the
putative PSR B1620�26 triple system formed in scenario 2. Line conventions
and initial conditions are the same as in Fig. 9.

Fig. 13.—Cumulative distribution of the inner binary semimajor axis of the
putative PSRB1620�26 triple system after mass transfer. The solid lines represent
the case with a0 ¼ 0:2 AU; in other words, the NS-MS1 semimajor axis was
0.2 AU before the scattering interaction. The dotted lines represent the case with
a0 ¼ 0:3 AU. In both cases we set a1 ¼ 5 AU and v1 ¼ 5 km s�1. For each set of
lines, the rightmost line represents completely nonconservative mass transfer
(� ¼ 0), while the leftmost line represents completely conservative mass transfer
(� ¼ 1).
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We parameterize the mass loss by defining � as the fraction of
mass lost from MS1 that is accreted by the NS, so that �MNS ¼
���MMS1 and �Min ¼ (1� � )�MMS1. Note that with our con-
ventions �MMS1 < 0. By combining equations (24)–(31), con-
verting the � quantities to differentials, and integrating, we find
(Podsiadlowski et al. 2002)

a0in
ain

¼ M 0
MS1

MMS1

� ��2
M 0

NS

MNS

� ��2=�
M 0

in

Min

� ��1

for 0 < � 
 1;

ð32Þ

a0in
ain

¼ M 0
MS1

MMS1

� ��2
M 0

in

Min

� ��1

exp 2
M 0

MS1�MMS1

MNS

� �� �
for � ¼ 0;

ð33Þ

a0out
aout

¼ M 0
T

MT

� ��1

for all �: ð34Þ

We can apply the expressions in equations (32)–(34) to the
ensemble of triple systems formed via scenario 2 to determine
their properties after mass transfer. Figure 13 shows the cu-
mulative distribution of the inner binary semimajor axis after
mass transfer. The solid lines represent a0 ¼ 0:2 AU; in other
words, the NS-MS1 semimajor axis was 0.2 AU before the scat-
tering interaction. The dotted lines represent the case in which
a0 ¼ 0:3AU. In both caseswe set a1 ¼ 5AUand v1 ¼ 5 kms�1.
For each set of the lines, the rightmost line represents completely
nonconservativemass transfer (� ¼ 0), while the leftmost line rep-
resents completely conservative mass transfer (� ¼ 1). Figure 14
shows the cumulative distribution of the outer semimajor axis for
the cases with a0 ¼ 0:2 and 0.3 AU. Line types are as in Figure
13. If we compare the distributions of the inner semimajor axis
after the scattering interaction in Figure 12 with those after mass
transfer in Figure 13, we see that the effect of mass transfer is to
create a spread in the distribution that is of order the initial value.

From observations we know the period of the inner orbit to be
191 days, which corresponds to a semimajor axis of �0.8 AU
(Sigurdsson&Thorsett 2005). From this figurewe see that we can
quite reasonably create such a system with a0 � 0:3 AU for a
wide range in the mass transfer parameter �. From Figure 14 we
see that the distribution of the outer semimajor axis after mass
transfer is much broader. Although the peak in the distribution
appears to occur around 5–10 AU, it is quite plausible to form a
system with an outer semimajor axis of 20 AU, as we observe for
the system today.

7. SUMMARY AND CONCLUSIONS

We have studied in detail dynamical scattering interactions
between star-planet systems and other single stars, tabulating
analytical cross sections for all possible outcomes of the scat-
tering encounter and confirming them with numerical experi-
ments (as shown in Fig. 3). In the scattering of planetary systems
(or wide mass ratio binaries in general), there are two charac-
teristic velocities in the problem (as shown in Fig. 1): the critical
velocity vc, which is the value of v1 for which the total energy of
the three-body system is zero, and vorb, the orbital speed in the
binary. For a mass ratio of qP 10�3, the two characteristic ve-
locities differ by more than an order of magnitude, opening up a
region in parameter space inwhich the nature of the scattering pro-
cess is fundamentally different from what occurs in comparable-
mass encounters. For vc < v1 < vorb, two outcomes dominate
the cross section with roughly equal weight: ionization, which
destroys the planetary system, and exchange of the incoming
star for the planet’s original host star. Thus, in this region, which
does not exist for comparable-mass systems, there is a signifi-
cant probability that a planetary system undergoing a strong
dynamical encounter will survive, albeit with a new host star.
Since in the past workers in the field have typically taken vc
as the velocity above which planetary systems are predomi-
nantly destroyed, this implies a greater survivability of planetary
systems in dense stellar environments than has been predicted
in some cases, as the characteristic lifetime plotted in Figure 6
shows.

We have also numerically determined the location of the hard-
soft boundary for planetary systems, and we find that it lies at
v1 � 0:75vc. In other words, interactions with v1 < vc in which
the binary survives (e.g., via exchange) typically harden (a de-
creases), while for v1 > vc surviving binaries soften (a increases).
However, this simple statement belies the rich structure of the pa-
rameter space. In particular, for vc < v1 < vorb, although the sur-
viving binary typically softens, it softens by only a small amount,
increasing its semimajor axis by only �25%, as shown in Fig-
ure 5. Its final eccentricity, of course, is uncorrelated with the
initial value, taking on a thermal distribution (dP/de ¼ 2e). Only
for v1 > vorb does the binary soften by a large amount; that is, if it
is not destroyed completely, which is the overwhelmingly domi-
nant outcome for this region of parameter space.

We have briefly explored the implications of our results. As
mentioned above, the main implication is that the minimum size
of a planetary system that will likely be destroyed as a result of
dynamical interactions in dense stellar environments is larger
than has previously been assumed. For a stellar environment of
a given velocity dispersion and density, this limit can be read
almost directly off of Figure 6. By applying our results to the
observational campaigns searching for hot Jupiters in 47 Tuc
via stellar transits, we find that the planetary systems that the
Gilliland et al. (2000) observations were sensitive to would have
in fact survived to the present day. This bolsters the conclusion
drawn by Weldrake et al. (2005) that it is not dynamics that is

Fig. 14.—Cumulative distribution of the outer semimajor axis of the putative
PSR B1620�26 triple system after mass transfer for the cases a0 ¼ 0:2 AU
(solid lines) and a0 ¼ 0:3 AU (dotted lines). Line conventions and initial condi-
tions are the same as in Fig. 13.
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responsible for the lack of hot Jupiters detected in 47 Tuc, but
rather may be metallicity-dependent effects. Looking toward the
future, we predict that a MSP-planet binary may likely be de-
tected via pulsar timing in the supersolar-metallicity cluster
Terzan 5, with a semimajor axis of �0.1 AU.

Since we recognized that the planetary system PSRB1620�26
in the globular cluster M4 lies in the ‘‘intermediate’’ region of pa-
rameter space, we have performed a detailed numerical study of
the possible scenarios in which it may have formed. By calcu-
lating cross sections and interaction rates and treating the effects of
mass transfer in the inner binary, we conclude that the scenario in
which a NS-MS binary exchanges as a single dynamical unit into
the planetary system for the planet’s original host star (similar to
the scenario of Ford et al. 2000) is strongly favored over that of
Sigurdsson et al. (2003), in which the exchange interaction in-
volves ejecting the original NS binary companion, with the
planet’s host star exchanging into it. This statement is quantified in
Figure 8 for a wide range of initial binary semimajor axes.

Our general analysis (xx 2–5) does not consider the effects of
direct physical collisions between objects (e.g., MS stars and
planets), whichmay play an important role when the ratio of stel-
lar size to binary semimajor axis isk0.01 (Fregeau et al. 2004).
However, our code accurately treats physical collisions, and we
have allowed for collisions in our analysis of PSR B1620�26 in
x 6, as shown in the cross sections of Figure 7. We have not

looked at the ejection speeds of the planets in encounters that
destroy the planetary system. This topic has already been studied
in detail using N-body methods (Smith & Bonnell 2001; Hurley
& Shara 2002).
Since our results assume point-mass particles, they are ap-

plicable to systems of any mass, as long as the mass ratio in the
binary is relatively small (P0.1) and the incoming object and the
heaviest object in the binary are of comparable mass. We have
not yet explored the application to scenarios involving, for ex-
ample, intermediate-mass black holes and supermassive black
holes, stars and intermediate-mass black holes, and planetesim-
als and planets. Our results may also have limited application to
wide mass ratio binaries containing more than one light body, as
long as the total mass in light objects is significantly less than the
host mass, and the orbits of the light objects are not so strongly
coupled that they transmit perturbations on timescales compa-
rable to the orbital period.
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discussions about mass transfer in binaries. We also thank the
anonymous referee for many helpful comments on the manu-
script. This work was supported by NSF grants AST 02-06182
and AST 05-07727 and NASA grant NAG5-12044.
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