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Runaway collisions in young star clusters – II. Numerical results
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ABSTRACT

We present a new study of the collisional runaway scenario to form an intermediate-mass black
hole (IMBH, M BH � 100 M�) at the centre of a young, compact stellar cluster. The first phase
is the formation of a very dense central core of massive stars (M∗ � 30–120 M�) through mass
segregation and gravothermal collapse. Previous work established the conditions for this to
happen before the massive stars evolve off the main sequence (MS). In this and a companion
paper, we investigate the next stage by implementing direct collisions between stars. Using
a Monte Carlo stellar dynamics code, we follow the core collapse and subsequent collisional
phase in more than 100 models with varying cluster mass, size, and initial concentration.
Collisions are treated either as ideal, ‘sticky-sphere’ mergers or using realistic prescriptions
derived from 3D hydrodynamics computations. In all cases for which the core collapse happens
in less than the MS lifetime of massive stars (�3 Myr), we obtain the growth of a single very
massive star (VMS, M∗ � 400–4000 M�) through a runaway sequence of mergers. Mass loss
from collisions, even for velocity dispersions as high as σ v ∼ 1000 km s−1, does not prevent the
runaway. The region of cluster parameter space leading to runaway is even more extended than
predicted in previous work because, in clusters with σ v > 300 km s−1, collisions accelerate
(and, in extreme cases, drive) core collapse. Although the VMS grows rapidly to �1000 M�
in models exhibiting runaway, we cannot predict accurately its final mass. This is because the
termination of the runaway process must eventually be determined by a complex interplay
between stellar dynamics, hydrodynamics, and the stellar evolution of the VMS. In the vast
majority of cases, we find that the time between successive collisions becomes much shorter
than the thermal time-scale of the VMS. Therefore, our assumption that all stars return quickly
to the MS after a collision must eventually break down for the runaway product, and the stellar
evolution of the VMS becomes very uncertain. For the same reason, the final fate of the VMS,
including its possible collapse to an IMBH, remains unclear.

Key words: stellar dynamics – methods: N-body simulations – stars: formation – galaxies:
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1 I N T RO D U C T I O N

In our first paper (Freitag, Rasio & Baumgardt 2006; hereafter
Paper I), we have presented our numerical approach to the study
of stellar collisions in young, dense star clusters with a broad stellar
mass spectrum. It is based on the use of ME(SSY)∗∗2 (for ‘Monte
Carlo Experiments with Spherically SYmmetric Stellar SYstems’),
a Monte Carlo (MC) code to simulate the long-term evolution of
spherical clusters subject to relaxation, collisions, stellar evolution

�Present address: Institute of Astronomy, University of Cambridge, Madin-
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and taking into account the possible presence of a central massive
object (Freitag & Benz 2001, 2002). Our main motivation is to in-
vestigate in detail the runaway growth of a massive object (‘very
massive star’, hereafter VMS) during core collapse (Ebisuzaki et al.
2001; Portegies Zwart & McMillan 2002; Gürkan, Freitag & Rasio
2004, hereafter GFR04). This provides a natural path to the for-
mation of an intermediate-mass black hole (IMBH) in a dense star
cluster, or a seed black hole (BH) in a proto-galactic nucleus In
Paper I, we presented a number of test calculations to validate
our MC code and compare its results for simple idealized sys-
tems to those from N-body, Fokker–Planck (FP) and gaseous-model
codes. These comparisons established that we can reliably fol-
low the relaxation-driven evolution of clusters with a broad mass
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function, all the way to core collapse. We also found good agree-
ment with models of dense clusters in which mergers between stars
create a mass spectrum starting from a single-mass population, thus
accelerating collapse and leading to collisional runaway (Quinlan
& Shapiro 1990).

Here we use ME(SSY)∗∗2 to perform a large number of calcula-
tions covering broadly the parameter space of young star clusters.
Specifically, we vary systematically the number of stars (in the range
105–108, using up to 9 × 106 particles) and the size of the cluster
(with half-mass radius values from 0.02 to 5 pc), and we consider
systems with low and high initial concentration (King parameter
W0 = 3 and W0 = 8). Our work is guided by the main finding of
GFR04, namely that for clusters with realistic initial mass func-
tions (IMFs) (for which the ratio of the maximum stellar mass to
the average mass is larger than ∼100), mass segregation drives the
cluster to core collapse in a time not longer than 15 per cent of the
initial central relaxation time. It is therefore expected that in any
cluster for which this relaxational core-collapse time is shorter that
the main-sequence (MS) lifetime of the most massive stars (M∗ ≈
100 M�), that is, ∼3 Myr, these objects will eventually collide with
each other in the high-density core, likely in a runaway fashion. As
we show in Section 2, our results confirm this expectation.

Our work on the subject was inspired by the investigations of
Portegies Zwart and collaborators who revived the study of the run-
away scenario thanks to N-body simulations (Portegies Zwart et al.
1999; Portegies Zwart & McMillan 2002). Although many key as-
pects of the process were already known from older works (in partic-
ular Spitzer & Saslaw 1966; Colgate 1967; Sanders 1970; Begelman
& Rees 1978; Vishniac 1978; Lee 1987; Quinlan & Shapiro 1990;
see Paper I, for a review of the field), these recent N-body studies
were seminal in considering the effects of collisions in a cluster
with a realistically broad IMF. This demonstrated explicitly for the
first time how mass segregation can lead to a collisional phase by
concentrating massive stars in a small central volume and made it
clear that the post-MS evolution of the most massive stars initially
present can prevent the runaway phase by driving cluster expansion.
Furthermore, Portegies Zwart and collaborators showed that, con-
trary to the somewhat unrealistic situation in single-mass clusters
(Lee 1987; Quinlan & Shapiro 1990), dynamically formed binaries,
far from preventing the runaway phase by halting the central con-
centration increase, promote it, as many binary interactions lead to
stellar mergers. As noted in Paper I and suggested by N-body sim-
ulations with higher particle numbers (Portegies Zwart et al. 2004),
in a broad-IMF cluster with N ∗ � 106, binaries probably cannot
form through three-body interactions before the collisional phase is
reached.

It is important to stress, however, that our MC simulations probe a
different regime from that explored by the direct N-body approach.
We consider systems with higher number of stars in the central re-
gion (inside a few core radii). For this reason, some of our most
important results are only superficially similar to the findings of
Portegies Zwart et al. In particular, in such large-N clusters with
a long initial central collision time, a genuine core collapse, itself
driven by mass segregation, appears to be the condition for colli-
sional runaway. The situation for systems with a smaller number of
stars is more complex because there may not be enough massive
stars in the central regions to drive such a core collapse (Portegies
Zwart et al. 1999; Portegies Zwart & McMillan 2002; McMillan &
Portegies Zwart 2004; Portegies Zwart et al. 2004).

Our paper is organized as follows. In Section 2, we present the
simulations we have performed and explain their results. In Sec-
tion 3, we summarize our findings and discuss avenues for future

research in the field. Detailed presentations of the runaway scenario,
the physics at play, our numerical methods and test computations
are to be found in Paper I.

2 S I M U L AT I O N S

2.1 Initial conditions and units

In this work, we consider the evolution of isolated spherical stellar
cluster with a broad IMF, subject to two-body relaxation and stel-
lar collisions. When not stated otherwise, we use a Salpeter IMF,
for which the number, dN ∗, of stars with masses between M∗ and
M∗ + dM∗ is given by

dN∗
dM∗

∝ M−α
∗ for Mmin � M∗ � Mmax (1)

with α = 2.35, M min = 0.2 M� and M max = 120 M�. For this stellar
population, the average mass is 〈M∗〉 � 0.69 M�. There is no initial
mass segregation. To investigate the role of the initial concentration
of the cluster, we consider King models with W0 = 3 or 8 (Binney
& Tremaine 1987, Section 4.4). We do not enforce tidal truncation
because it was shown in GFR04 that this does not affect the central
regions which completely dominate the evolution.

We refer to GFR04 (section 3 and table 1) for detailed expla-
nations about the important physical parameters of such clusters
and units. In keep with the tradition, when not stated otherwise, we
are using the N-body unit system (Hénon 1971) defined by G =
1, M cl(0) = 1 (initial total cluster mass) and U cl (0) = −1/2 (ini-
tial cluster potential energy). As time-unit, we prefer the ‘FP’ time
TFP to the N-body unit T NB because the former is a relaxation
time while the latter is a dynamical time; they are related to each
other by TFP = N ∗/ln (γ c N ∗) T NB where N∗ is the total number of
stars in the cluster. As explained in Paper I, we conservatively use
γ c = 0.01 to determine relaxation times in this work. For King mod-
els, the N-body length unit is close to the half-mass radius, RNB �
1.19 Rh for W0 = 3 and RNB � 1.15 Rh for W0 = 8. The core radius
(Spitzer 1987, equations 1–34 and Paper I) is R core � 0.543 RNB

and encompasses a fraction 0.238 of the total mass for W0 = 3; for
W0 = 8, these values are 0.121 RNB and 0.0531, respectively.

Expressions for half-mass and local relaxation times are given in
GFR04 and Paper I. We denote the initial values of the half-mass
and central relaxation times by t rh (0) and t rc (0), respectively.

Table 1 lists the initial conditions for all runs performed in this
study. Np denotes the number of particles used in the simulation. We
also give in this table the value tra of the time when runaway started
for all runs in which a VMS formed.

2.2 Overview of the results of the standard set of simulations

We first establish the conditions for runaway formation of a VMS
using the simplest and most favourable prescription for the colli-
sions, that is, assuming that every time two stars come closer to
come closer to each other than the sum of their radii, they merge
without any mass loss. With such a clean collision physics, one
expects the runaway to happen provided that:

(i) Core collapse, driven by mass segregation due to two-body
relaxation (as studied in GFR04), occurs within t ∗ � 3 Myr or the
cluster is initially sufficiently collisional.

(ii) The collisional cross section is a steeply increasing function
of a star’s mass, S coll ∝ Mη

∗ with η > 1.

What ‘sufficiently collisional’ means is not easy to establish from
simple principles. One may think that a sufficient condition is that
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Table 1. Properties of Simulated Clusters.

Name W0 N∗ Np RNB Coll. Peculiarities tra tra

(pc) (TFP) (Myr)

K3-1 3 105 105 0.3 SS 1–120 M� 4.38 × 10−2 2.77
K3-2 3 105 105 0.4 SS . . . 1.08 × 10−2 2.25
K3-3 3 105 105 0.4 SS 1–120 M� . . . . . .

K3-4 3 105 105 0.5 SS . . . . . . . . .

K3-5 3 105 105 0.5 SS . . . 1.05 × 10−2 3.03
K3-6 3 105 105 0.5 SS . . . 1.07 × 10−2 3.08
K3-7 3 105 105 0.5 SS . . . 1.02 × 10−2 2.94
K3-8 3 105 105 0.5 SS 1–120 M� . . . . . .

K3-9 3 3 × 105 3 × 105 0.03 SS . . . 9.89 × 10−3 0.0634
K3-10 3 3 × 105 3 × 105 0.1 SS . . . 1.06 × 10−2 0.414
K3-11 3 3 × 105 3 × 105 0.1 SPH . . . 1.04 × 10−2 0.406
K3-12 3 3 × 105 3 × 105 0.2 SS . . . 1.05 × 10−2 1.16
K3-13 3 3 × 105 3 × 105 0.3 SS . . . 9.60 × 10−3 1.95
K3-14 3 3 × 105 3 × 105 0.3 SS Constant 5 per cent mass loss 1.03 × 10−2 2.09
K3-15 3 3 × 105 3 × 105 0.3 SS Constant 10 per cent mass loss 1.03 × 10−2 2.09
K3-16 3 3 × 105 3 × 105 0.3 SS Constant 30 per cent mass loss . . . . . .

K3-17 3 3 × 105 3 × 105 0.3 SS Fixed central object 1.01 × 10−2 2.05
K3-18 3 3 × 105 3 × 105 0.3 X 5 per cent mass loss 9.35 × 10−3 1.9
K3-19 3 3 × 105 3 × 105 0.3 SS Constant R∗ for VMS 9.66 × 10−3 1.96
K3-20 3 3 × 105 3 × 105 0.3 SS 0.2–10 M� 9.04 × 10−2 19.9
K3-21 3 3 × 105 3 × 105 0.3 SS Kroupa 0.08–120 M� 1.02 × 10−2 2.54
K3-22 3 3 × 105 3 × 105 0.3 SPH . . . 8.88 × 10−3 1.8
K3-23 3 3 × 105 3 × 105 0.4 SS . . . 9.50 × 10−3 2.97
K3-24 3 3 × 105 3 × 105 0.4 SPH . . . 9.28 × 10−3 2.9
K3-25 3 3 × 105 3 × 105 0.4 SS . . . 9.69 × 10−3 3.02
K3-26 3 3 × 105 3 × 105 0.4 SS . . . 1.02 × 10−2 3.18
K3-27 3 3 × 105 3 × 105 0.4 SS Check for orbit overlap 9.22 × 10−3 2.85
K3-28 3 3 × 105 3 × 105 0.5 SS . . . . . . . . .

K3-29 3 3 × 105 3 × 105 0.5 SS 0.2–10 M� . . . . . .

K3-30 3 106 106 0.1 SS Kroupa 0.01–120 M� 3.50 × 10−3 0.327
K3-31 3 106 106 0.2 SS . . . 7.07 × 10−3 1.87
K3-32 3 106 106 0.2 SPH . . . 8.00 × 10−3 1.39
K3-33 3 106 106 0.3 SS . . . 7.94 × 10−3 2.54
K3-34 3 106 106 0.4 SS . . . . . . . . .

K3-35 3 3 × 106 3 × 105 0.3 SS . . . . . . . . .

K3-36 3 3 × 106 3 × 106 0.1 SS . . . 6.44 × 10−3 0.617
K3-37 3 3 × 106 3 × 106 0.2 SS . . . 6.84 × 10−3 1.85
K3-38 3 3 × 106 3 × 106 0.2 SPH . . . 7.25 × 10−3 1.97
K3-39 3 3 × 106 3 × 106 0.3 SS . . . . . . . . .

K3-40 3 107 3 × 105 0.1 SS . . . 7.75 × 10−3 1.21
K3-41 3 107 3 × 105 0.1 SS . . . 7.53 × 10−3 1.18
K3-42 3 107 3 × 105 0.2 SS . . . 8.79 × 10−3 3.89
K3-43 3 107 3 × 105 0.25 SS . . . . . . . . .

K3-44 3 107 3 × 105 0.3 SS . . . . . . . . .

K3-45 3 107 3 × 105 0.4 SS . . . . . . . . .

K3-46 3 107 106 0.1 SPH . . . 6.41 × 10−3 0.998
K3-47 3 107 106 0.2 SS . . . 6.27 × 10−3 2.76
K3-48 3 107 106 0.25 SS . . . . . . . . .

K3-49 3 3 × 107 3 × 105 0.1 SS . . . 5.24 × 10−3 1.3
K3-50 3 108 3 × 105 0.03 SS . . . 3.49 × 10−4 0.0237
K3-51 3 108 3 × 105 0.04 SPH . . . 2.99 × 10−3 0.312
K3-52 3 108 3 × 105 0.05 SS . . . 7.36 × 10−4 0.107
K3-53 3 108 3 × 105 0.05 SS No relaxation 8.90 × 10−4 0.13
K3-54 3 108 3 × 105 0.1 SS . . . 1.94 × 10−3 0.801
K3-55 3 108 3 × 105 0.2 SS . . . 3.41 × 10−3 3.98
K3-56 3 108 3 × 105 0.2 SPH . . . . . . . . .

K3-57 3 108 3 × 105 0.25 SS . . . . . . . . .

K3-58 3 108 3 × 105 0.3 SS . . . . . . . . .

K3-59 3 108 3 × 105 0.4 SS . . . . . . . . .

K3-60 3 108 3 × 105 0.5 SS . . . . . . . . .

K3-61 3 108 106 0.04 SS . . . 5.05 × 10−4 0.0524
K3-62 3 108 106 0.1 SPH . . . 3.19 × 10−3 1.31
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Table 1 – continued

Name W0 N∗ Np RNB Coll. Peculiarities tra tra

(pc) (TFP) (Myr)

K3-63 3 108 106 0.1 SPH . . . 3.20 × 10−3 1.31
K3-64 3 108 106 0.1 SS . . . 1.90 × 10−3 0.78
K3-65 3 108 106 0.2 SPH . . . . . . . . .

K8-1 8 3 × 105 3 × 105 0.9 SS . . . 3.97 × 10−4 0.418
K8-2 8 3 × 105 3 × 105 2 SS . . . 4.63 × 10−4 1.62
K8-3 8 3 × 105 3 × 105 3 SS . . . . . . . . .

K8-4 8 3 × 105 3 × 105 4 SS . . . . . . . . .

K8-5 8 3 × 105 3 × 106 1.2 SPH . . . 3.89 × 10−4 0.618
K8-6 8 3 × 105 3 × 106 4.7 SPH . . . . . . . . .

K8-7 8 106 106 0.1 SS . . . 4.00 × 10−4 0.0246
K8-8 8 106 106 1 SS . . . 4.32 × 10−4 0.841
K8-9 8 106 106 2 SS . . . 4.82 × 10−4 2.65
K8-10 8 106 106 3 SS . . . . . . . . .

K8-11 8 1.4 × 106 1.4 × 106 0.96 SS Fixed central object 4.02 × 10−4 0.843
K8-12 8 1.4 × 106 1.4 × 106 0.96 SS Fixed central object 3.91 × 10−4 0.819
K8-13 8 1.4 × 106 1.4 × 106 0.96 SS Fixed central object, tidal truncation 3.75 × 10−4 0.786
K8-14 8 1.4 × 106 1.4 × 106 0.96 SS . . . 4.66 × 10−4 0.976
K8-15 8 1.4 × 106 1.4 × 106 0.96 SS . . . 3.98 × 10−4 0.834
K8-16 8 1.4 × 106 1.4 × 106 0.96 SS Fixed central object, stellar evolution 4.19 × 10−4 0.878
K8-17 8 1.4 × 106 1.4 × 106 0.96 SS Fixed central object, stellar evolution 3.91 × 10−4 0.819
K8-18 8 1.4 × 106 1.4 × 106 0.96 SS . . . 4.32 × 10−4 0.904
K8-19 8 3 × 106 3 × 106 0.2 SPH . . . 3.31 × 10−4 0.0892
K8-20 8 3 × 106 3 × 106 1 SS . . . 3.43 × 10−4 1.03
K8-21 8 3 × 106 3 × 106 1 SPH . . . 3.43 × 10−4 1.03
K8-22 8 3 × 106 3 × 106 1 SS . . . 3.70 × 10−4 1.12
K8-23 8 3 × 106 3 × 106 1 SS . . . 3.74 × 10−4 1.13
K8-24 8 3 × 106 3 × 106 1 SS Fixed central object 2.99 × 10−4 0.9
K8-25 8 3 × 106 3 × 106 1.2 SPH . . . 4.22 × 10−4 1.65
K8-26 8 3 × 106 3 × 106 1.4 SS . . . 4.27 × 10−4 2.13
K8-27 8 3 × 106 3 × 106 2 SS . . . . . . . . .

K8-28 8 3 × 106 3 × 106 4.7 SPH . . . . . . . . .

K8-29 8 9 × 106 9 × 106 1 SS . . . 3.78 × 10−4 1.78
K8-30 8 107 3 × 106 1 SS . . . 3.61 × 10−4 1.78
K8-31 8 107 3 × 106 1.4 SS . . . 3.12 × 10−4 2.55
K8-32 8 107 3 × 106 1.4 SS . . . 3.86 × 10−4 3.15
K8-33 8 107 3 × 106 2 SS . . . . . . . . .

K8-34 8 3 × 107 3 × 106 1 SS . . . 3.14 × 10−4 2.45
K8-35 8 3 × 107 3 × 106 1.4 SS . . . . . . . . .

K8-36 8 108 3 × 106 0.1 SS . . . 7.49 × 10−5 0.0308
K8-37 8 108 3 × 106 0.6 SS . . . 2.40 × 10−4 1.45
K8-38 8 108 3 × 106 0.8 SS . . . 2.74 × 10−4 2.55
K8-39 8 108 3 × 106 1 SS . . . . . . . . .

K8-40 8 108 3 × 106 1.4 SS . . . . . . . . .

K8-41 8 108 3 × 106 2 SS . . . . . . . . .

MGG9-K8 8 2.7 × 106 2.7 × 106 2.6 SPH Model for MGG-9 . . . . . .

MGG9-K9 9 2.7 × 106 2.7 × 106 2.6 SPH Model for MGG-9 1.55 × 10−4 1.95
MGG9-K12a 12 2.7 × 106 2.7 × 106 2.6 SPH Model for MGG-9 5.10 × 10−6 0.0644
MGG9-K12b 12 2.7 × 106 2.7 × 106 2.6 SPH Model for MGG-9 5.98 × 10−6 0.0755

When not otherwise mentioned in the ‘Peculiarities’ column, clusters were modelled with a Salpeter (α = 2.35) IMF extending from 0.2 to 120 M�, our
standard M–R relation and prescription for collisional rejuvenation and MS lifetime. The data listed in the column entitled ‘Coll.’ indicates the type of collision
treatment used. ‘SS’ stands for sticky-sphere approximation; ‘SPH’ for the prescriptions for mass loss and merger derived from the SPH simulations of Freitag
& Benz (2005);‘X’ is a special case for which a simple merger criterion was used [λmerg = −1.14–0.5(l v − 3.0); see Section 3.2.5 of Paper I] and a flat
mass-loss rate of 5 per cent was assumed in all cases. tra is the time at which runaway growth of a VMS started. It is given in FP time-units (TFP) and Myr. No
value is given for clusters which didn’t experience collisional runaway.

the collision time at the centre, for a star near the top of the IMF
(i.e. 120 M� for our standard IMF), t coll|Mmax (see equation 3), be
shorter than the MS lifetime for such a star. But this does not ac-
count for the structural evolution of the cluster due to relaxation and
collisions themselves. Another condition is suggested by the coag-
ulation equation (Lee 1993, 2000; Malyshkin & Goodman 2001;
see also the simplified mathematical analysis encompassed in equa-

tions 6 and 7 of Paper I). In the case of strong gravitational focus-
ing, it reduces to R∗ ∝ Mβ

∗ with β > 0 (R∗ is the stellar radius),
a condition always obeyed by MS stars (but not during the pre-MS
stage). If gravitational focusing is strong (i.e. for velocity dispersion
σ v > 500–1000 km s−1), one needs β > 0.5, which is (although
marginally) not satisfied by our standard VMS mass–radius relation
(M–R relation) (β = 0.47, see Paper I). In any case, the relevance
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Figure 1. Diagram summarizing the initial conditions and outcomes of the ‘standard’ cluster simulations with collisions treated as perfect mergers or using the
SPH prescription. Each point represents the cluster mass and (initial) N-body length unit (RNB) for one simulation. Triangles correspond to W0 = 3 King models,
round dots to W0 = 8. The standard 0.2–120 M� Salpeter IMF was used in all cases. The solid diagonal lines (of negative slope) show the condition for the
relaxation-driven core-collapse time to be 3 Myr, t cc|rlx = 0.12 t rc(0) = 3 Myr for W0 = 8 (top) and W0 = 3 (bottom). The long-dashed lines (of positive slope)
show where the central collision time for a 120-M� star (with any other star) is 3 Myr. The dot–dashed curves indicate where the time for occurrence of runaway
should be 3 Myr, according to our parametrization (see equation 4 and text). Short-dashed lines indicate approximately the 1D central velocity dispersion. Solid
symbols are for simulations which resulted in runaway formation of a VMS; open symbols are for cases in which stellar evolution interrupted core collapse before
a VMS could grow. In some cases, several simulations with the same RNB and N∗ (but different W0, initial realizations of the cluster, random sequences for the
MC algorithm, number of particles or collision prescription) were carried out. These cases correspond to symbols connected together with a thin line. Asterisks
indicate simulations done with a number of particles smaller than the number of stars (3×105 or 106 particles for W0 =3 cases, 3×106 particles for W0 =8). In the
colour online version of this diagram, simulations using the SPH prescriptions for collision outcome are indicated by red points. Among the three models with
W0 = 3, N∗ = 108 and RNB = 0.2 pc, one was computed with the sticky-sphere approximation and experienced runaway; the other two, making use of
SPH prescriptions, missed the runaway phase. This is essentially the same plane as fig. 1 of Paper I except that RNB is used instead of Rh and that the plotting
domain is shifted to higher masses and smaller sizes to match the conditions that can be treated by the MC approach and may lead to runaway evolution.

of the second condition is not clear because it stems from a type of
analysis which disregards the stellar dynamics, most noticeably the
role of mass segregation.

Fig. 1 represents the (M cl, RNB) plane in which are plotted, for
W0 = 3 and W0 = 8, the conditions t cc|rlx = 0.12 t rc (0) = t ∗ = 3 Myr
and t coll |Mmax = 3 Myr. t cc|rlx denotes the relaxational core-collapse
time, when collisions are absent. The value t cc|rlx = 0.12 t rc(0)
is the average value yielded by ME(SSY)∗∗2 when collisions are ab-
sent (see Paper I and discussion below). We also indicate the initial
one-dimensional velocity dispersion at the centre,

σ0 ≡ σv,c(0) � 0.55

√
G Mcl

RNB

� 36 km s−1

(
Mcl

106 M�

)1/2 (
RNB

1 pc

)−1/2

. (2)

This is approximately correct for any W0 value. By comparing σ 0

with the escape velocity from a stellar surface, 500–1000 km s−1,
one can estimate whether gravitational focusing (included in all
simulations) and collisional mass loss (not accounted for in the
sticky-sphere approximation) may play an important role.

From this diagram, it is clear that only relatively small clus-
ters may have t cc|rlx < 3 Myr without being initially collisional
(t coll|Mmax > 3 Myr); for this one must have N ∗ < 106 for W0 = 3
and N∗ < 3 × 106 for W0 = 8. This fact was not included in GFR04,
who considered only the t cc|rlx condition. Consequently, there are in
principle more clusters which may form VMSs through collisions.
Even though initial conditions with collision time shorter than a
few million years are questionable, they are an interesting idealiza-
tion to pave the way to more realistic simulations of the collisional
formation of dense clusters.
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We show in Fig. 1 the initial conditions for all simulations carried
out with the standard IMF and collisions treated as pure mergers or
with the smoothed particle hydrodynamics (SPH)-generated pre-
scriptions. We also indicate the outcome of each simulation, that
is, whether a VMS grew or whether the core collapse was ter-
minated by stellar evolution of the massive MS stars before this
could happen. We set the lower limit for successful VMS growth at
M VMS � 400 M�. This is a relatively arbitrary value which matters
only in the case of the four simulations with W0 = 3, N ∗ = 105 and
RNB = 0.5 pc. These runs were computed with the same code and
parameters but using different realizations of the cluster and random
sequences. In three runs, a star grew to 400–500 M� before it left
the MS; in the fourth, only ∼300 M� was reached. To determine
the time at which the runway started, tra, we look for an increase of
mass of a factor of 3 or more in a star more massive than 0.9 M max

(the maximum mass in the IMF) within the last tenth of the elapsed
time. This definition may seem contrived but is required to capture
the onset of runaway as it would be naturally identified by inspection
of collision history diagrams such as Fig. 12 or 13. In practice tra is
very close to the core-collapse time one would identify by looking
at the evolution of the Lagrange radii.

We followed the merger sequence to 1000 M� at least in most
cases but, except for a few exceptions, did not try to carry on the
simulation until the growth was terminated by evolution off the MS.
With no or little collisional mass loss, each merger brings new hy-
drogen to the VMS and allows it to survive until the next merger, see
Figs 16 and 17. It is likely that, in real cluster, the growth will saturate
through some process not included in ME(SSY)∗∗2. One possibility is
the depletion of the ‘loss cone’, that is, the disappearance of the stars
populating the orbits that intersect the small central volume in which
the VMS move around, see Section 2.5.3. Another limiting mecha-
nism could be that the VMS cannot radiate the energy dumped into it
by collisions fast enough to keep its relatively small MS size, and in-
stead swells and becomes ‘transparent’ to impactors, as suggested,
for other reasons, by Colgate (1967). On the MS, a VMS is not
only dense enough to stop impactors but also resilient to disruption
despite its radiation-dominated interior. Indeed, the binding energy
per unit mass actually increases from ∼3 to ∼4.5 GM�/R� for
masses ranging from 100 to 104 M� (Bond, Arnett & Carr 1984).
In any case, we are here mostly concerned with detecting the onset
of the runaway growth and leave the difficult prediction of its final
mass for future studies.

Our work is limited to clusters with a relatively large number of
particles: N ∗ � 105, 3 × 105, for W0 = 3, 8, respectively, because
the MC code can only yield robust results when there are always at
least a few dozens particles in the cluster core; otherwise, one cannot
make a robust estimate of the central density, which is required to
simulate relaxation and compute the collision probabilities.

An examination of Fig. 1 shows that, in general, the simple ex-
pectation derived from the results of GFR04 that VMS formation
will occur when and only when the central relaxation time is shorter
than 20 Myr is borne out by the present simulations. However, for
relatively small clusters (N ∗ < 3 × 105 for W0 = 3; N ∗ < 106 for
W0 = 8), a shorter central relaxation time appears to be required.
This is possibly a consequence of the dearth of massive stars in the
central regions: with our standard IMF, the number of stars with
M∗ > 50 M� in the core of a N ∗ = 3 × 105, W0 = 3 or a N ∗
= 106, W0 = 8 cluster is ∼30 or ∼20, respectively. Although,
over the time required for core collapse ∼100 M� stars may come
to the centre from distances much larger than the core radius,
the dynamics of core collapse is driven by a small number of
particles and the applicability of the standard treatment of relax-

Figure 2. Time of collisional runaway occurrence as a function of central
initial collision time for 120-M� stars (equation 3), for all simulations with
standard Salpeter IMF where runaway happened. Times are given in units
of the initial central relaxation time. Triangles and circles are for W 0 =
3, 8 models respectively. The squares are W 0 = 9, 12 models for the clus-
ter MGG-9 in M 82 (see Section 2.5.2). These simulations were carried out
with a Kroupa IMF extending from 0.1 to 100 M�. Solid symbols corre-
spond to the ‘sticky-sphere’ treatment of collisions, open symbols to the
SPH prescriptions for collision outcomes. The dashed line is an ad-hoc
parametrization of the sticky-sphere results given in equation (4). Note that
for large collision times, one gets t ra � 0.12 t rc(0), in good agreement with
GFR04 for the relaxational core-collapse time but with a large dispersion in
the result. The star corresponds to a simulation with no two-body relaxation
but the same initial conditions as those for the triangular point below it (see
Fig. 6).

ation (and of the notion of two-body relaxation itself) becomes
questionable.

For large clusters, in contrast, we see that runaway VMS for-
mation may happen at sizes for which t rc(0) > 20 Myr because
collisions occur from the beginning and accelerate core collapse.
Fig. 2 is a graphical attempt at quantifying this effect. On this di-
agram, we plot, for all simulations with our standard IMF which
lead to VMS formation, tra, the time of runaway occurrence. Using
equation [8–123] of Binney & Tremaine (1987), we define the initial
central collision time for a star of 120 M� as

tcoll,c(0) ≡ tcoll|M1 = A
(

N∗/106
)−3/2

(Rh/1 pc)−7/2

1 + B (Rh/1 pc)
(

N∗/106
)−1 , (3)

where

A = 4.13 × 1012 yr

CnCσ

( 〈M∗〉
M�

)−1/2 (
R1 + R2

R�

)−2

,

B = 22.2

C2
σ

(
R1 + R2

R�

)−1 (
M1 + M2

〈M∗〉

)
,

Cn = n(0)R3
h

N∗
=

{
0.385 if W0 = 3,

9.10 if W0 = 8,
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Cσ = σv

√
Rh

G Mcl
=

{
0.474 if W0 = 3,

0.495 if W0 = 8.

We take M 1 = 120 M�, M 2 = 〈M∗〉 � 0.69 M� and R1,2 =
R∗(M 1,2) according to our MS M–R relation. When collisions are
treated as perfect mergers (‘sticky-sphere’ approximation), a rea-
sonable fit to our results for the runaway time is

tra
−1 = [0.12 trc(0)]−1 + [250 tcoll,c(0)]−1. (4)

Hence t ra is approximately 0.12 t rc(0), close to the core-collapse
time found in GFR04, 0.15 t rc(0), for all clusters with a relatively
long initial central collision time. As t coll,c(0) decreases, so does t ra,
first mildly and then steeply when t coll,c(0) < 10−3 t rc(0). For very
short t coll,c(0), one has t ra � 250 t coll,c(0). In this regime, the core
collapse appears to be driven by collisions rather than relaxation.
This is made clear by comparing the results of two simulations of a
cluster with W0 = 3, N∗ = 108 (Np = 3 × 105) and RNB = 0.05 pc.
The first run (K3-52) was realized with the usual physics, including
two-body relaxation and collisions but, for the second, relaxation
was switched off. The evolution of the Lagrange radii is plotted
for both the runs in Fig. 6. With relaxation, core collapse occurs
at t cc � 7.4 × 10−4 TFP. When only collisions drive the evolution
(run K3-53), it is slightly slower, with t cc � 8.9 × 10−4 TFP, but is
otherwise similar.

It is somewhat surprising that the transition to collision-
dominated core collapse occurs at such a short value of t coll,c(0) and
that t ra/t coll,c(0) is so long in this regime. To some extent, this is due
to our definition of t coll,c(0), based on the most massive stars in the
IMF (M 1 = 120 M�), a choice which may not accurately capture
the nature of the cluster evolution in the collisional regime. Indeed
stars much less massive also experience collisions from the begin-
ning. Using M 1 = 1 M�, R1 = 1 M� to define t coll,c(0), one finds
t ra � 2 t coll,c(0) when t coll,c(0) � t rc(0). In any case this relation for
t ra only holds for sticky-sphere collisions. When the SPH-inspired
prescription is used (with mass loss and merger requiring d min <

R1 + R2) and for high velocity dispersions, collisions are less
effective at driving core collapse and t ra is consequently longer for
a given, small t coll,c(0) value, as is apparent on Fig. 2.

Although it is clearly only approximate, it is tempting to use equa-
tion (4) to predict which conditions will lead to collisional runaway
by assuming this happens if, and only if t ra < 3 Myr. Therefore we
have also plotted in Fig. 1 lines indicating this ‘corrected’ runaway
condition. One sees that, when the velocity dispersion is sufficiently
smaller than V∗, this condition reduces to the condition on the cen-
tral relaxation time alone1 while at high velocities, one predicts
runaway for larger cluster sizes than suggested by trc. However, the
simulation results show the runaway domain for very massive clus-
ters to reach still slightly larger RNB values. Some of this may be
due to dispersion in the t ra results (see below) but, by inspecting the
run K3-55, another effect is discovered. In this case, the VMS star
survives to at least t = 4 Myr, despite its MS lifetime being shorter
than 3 Myr. This is due to the combination of (1) the prescription
used to set the effective age of merger products by following their
central He content (‘minimal rejuvenation’, see Paper I), (2) the re-
lation we use for the value of the core He at the end of the MS as
a function of the stellar mass (fig. 3b of Paper I) and, (3) for this
particular simulation, the assumption of perfect merger. Because the

1 This had to be expected because the ratio of relaxation time
to collision time is t rlx/t coll ∼ (ln 	)−1 (1 + θ )θ−2 with θ �
(V∗/σ v)2.

MS lifetime is nearly independent of the mass for M∗ � 100 M� but
more massive stars transform a larger fraction of their mass into He
on the MS, each merger amounts to an effective rejuvenation if no
mass loss is allowed. Clearly collisional mass loss may change the
picture in this very special regime but we think the most important
shortcoming of the approach is to assume the VMS to be on the
MS. As we will see below, in most cases, the average time between
collisions is much shorter than the thermal time-scale of a MS VMS
so that it structure is likely strongly affected by collisions and our
SPH mass-loss prescriptions would not be appropriate anyway.

The extension of the runaway domain to larger systems opens the
possibility that proto-galactic nuclei without a massive black hole
(MBH) may be subject to runaway formation of a central massive
object, despite relatively long relaxation times. Present-day nuclei
have a size of a few pc. However, using equation (4) as a guide, a
compact RNB = 1 pc nucleus with W0 = 8 needs to be at least as
massive as ∼3 × 109 M� to experience collision-driven collapse
in less than 3 Myr. For RNB = 3 pc, the minimum mass is ∼3 ×
1010 M�! So it seems that this process may operate in galactic nuclei
only if they are born very compact or concentrated. Indeed for W0 =
10, one would expect all clusters more compact than ∼2.5 pc to
complete core collapse within 3 Myr, independent of their mass.

Our results show a relatively large dispersion in the runaway
time when evolution is dominated by relaxation, in which case t ra

should be very close to the core-collapse time found in GFR04,
that is, t cc|rlx � 0.15 t rc(0) (with little variation from one simulation
to another). The present results indicate a slightly faster evolution,
t cc|rlx � 0.12 t rc(0), which is very likely the consequence of the use
of a different code.2 The larger intrinsic dispersion is also a property
of the present code, linked to the use of local time-steps; they impose
a scheme in which the selection of the next particle pair to evolve is
a random process.

Following this overview of our results for the complete set of
standard simulations, we proceed, in the following subsections to
a more detailed description of the runaway process based on a few
illustrative cases. Presentation of non-standard cases, for which we
varied the IMF, M–R relation, collision prescription, or the treatment
of the VMS, will be done in Section 2.5.

2.3 Cluster structure evolution

2.3.1 Missing the collisional runaway

Figs 3 and 4 illustrate what occurs when the core-collapse time is
longer than MS lifetime of massive stars. For the sake of clarity,
we present a case in which the segregation-induced core collapse
would have taken just slightly longer than t ∗ = 3 Myr. The evo-
lution of the Lagrange radii, plotted in Fig. 3, indeed indicates a
first core contraction which stopped and reversed at t ∗. A second
collapse occurs much later, at t � 500 Myr. What happens is made
clear by Fig. 4. On the top panel, we have plotted the evolution of
the number of stellar remnants; the bottom panel is the evolution of
the Lagrange radii for each stellar type [MS: main-sequence stars,
WD: white dwarfs (0.6 M�), NS: neutron stars (1.4 M�), BH: stel-
lar black holes (7 M�)]. The first collapse stops when the massive

2 See Freitag & Benz (2001) for comparisons of the t cc|rlx values found with
different codes, in the case of the collapse of a single-mass model. Models
with a broad mass spectrum are more affected by particle noise than single-
mass clusters (at a given Np) and display more intrinsic and code-to-code
variation.
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Figure 3. Evolution of Lagrange radii for model K8-27. For this cluster,
the core collapse is slightly too long to allow the runaway process to set in.
The cluster undergoes two successive core collapses. The first one driven by
the massive MS stars, the second by the stellar BHs (with a mass of 7 M�)
resulting from their evolution off the MS. For clarity, the curves have been
smoothed by using a sliding average procedure with a (truncated) Gaussian
kernel over 10 adjacent data points. See also Fig. 4.

stars turn into BHs, causing strong mass loss from the central re-
gion which re-expands as its binding energy decreases. The BHs
are born strongly segregated because their massive progenitors had
concentrated at the centre. The BH distribution first re-expands but
eventually re-collapses as a result of mass segregation. From t �
40 Myr onwards, they are indeed the most massive objects in the
cluster. The subsequent evolution of this population of BHs will be
driven by their binaries, either present before the second collapse, or
dynamically formed through three-body interactions during it. The
MC code used here cannot treat binaries so we leave the study of
the evolution of the central dense BH subcluster out of the present
work (see O’Leary et al. 2006).

2.3.2 Core collapse with runaway

The evolution of Lagrange radii during the core collapse and run-
away VMS growth are depicted, for four W0 = 3 cases, in Fig. 5. The
first simulation is for a cluster which not is collisional initially, that
is, from equation (4), with t coll,c(0) – as defined in equation (3) for
120-M� stars – larger than ∼10−3 t rc(0): t coll,c(0) = 3.0 × 106 yr =
0.056 t rc(0). For this particular cluster, core collapse occurs in ap-
proximately 2.5 Myr, thus beating stellar evolution. Collisions are
very rare until the runaway starts in deep core collapse, see Fig. 12.
Therefore, the evolution to core collapse is very similar to what was
obtained for the pure relaxation case in Paper I. Once the runaway
has started, the central regions re-expand as a result of the heating
effect of the accretion of deeply bound stars by the central object,
as in a cluster with a central BH destroying or ejecting stars that
come too close (Shapiro 1977; Duncan & Shapiro 1982; Amaro-
Seoane, Freitag & Spurzem 2004; Baumgardt, Makino & Ebisuzaki
2004a,b). We cannot follow this ‘post-collapse’ evolution very far
because our code slows down considerably when reaching the run-

Figure 4. Evolution of the various stellar types for model K8-27 (same as
Fig. 3). For this cluster, the core collapse is slightly too long to allow the
runaway process to set in. The stellar types accounted for are: MS stars
(MS), white dwarfs (WD), neutron stars (NS) and stellar BHs (BH). For
simplicity, all WDs have 0.6 M�, all NS 1.4 M� and all BHs 7 M�. Top
panel: number of compact remnants as function of time. Bottom panel:
evolution of Lagrange radii. The simulation was stopped as the stellar BHs
underwent core collapse on their own.

away phase, as the central relaxation and collision times plummet.
Furthermore, as will be discussed in Section 2.5.3, it is likely that
our way of computing collision probabilities applies correctly to the
VMS only at the beginning of its growth.

The other simulations plotted in Fig. 5 correspond to denser clus-
ters in which collisions play an increasingly important role in the
dynamics and lead to shorter and shorter collapse time (when mea-
sured in relaxation times). The central collision times t coll,c(0) for
a 120 M� star are 6.2 × 105 yr = 0.014 t rc(0), 8.8 × 103 yr =
1.3 × 10−4 t rc(0) and 500 yr = 2.9 × 10−5 t rc(0). As explained in
Section 2.2, in extremely dense clusters, core collapse is driven by
collisions themselves, with relaxation playing only a minor role.
This is illustrated in Fig. 6 for another W0 = 3 cluster. For these
runs, we have assumed that all collisions result in complete mergers.
In contrast to gravitational two-body encounters, such mergers do
not redistribute energy between stars; they continuously dissipate
orbital energy, leading to shrinkage of all inner Lagrange radii with
no rebound.

To get a more precise description of the structure of a cluster
while it undergoes core collapse and runaway VMS formation, we
look at successive radial profiles of the stellar density and velocity
dispersion. To have a sufficient resolution of the central regions,
which are the most affected by the dynamical evolution, we use our
highest resolution simulation, model K8-29, with 9 × 106 particles
(the largest number that would fit into the memory of available
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Figure 5. Evolution of Lagrange radii for various clusters with W 0 = 3.
From the least to the most collisional (initially): with solid lines (black in
colour version), K3-33; with long dashes (blue) K3-37; with short dashes
(magenta) K3-64; with dotted lines (red) K3-61. The top horizontal and right
vertical axis indicate time and radius in physical units for model K3-33. The
evolution of this cluster is driven by two-body relaxation until late into core
collapse, at which point the collisions kick in. The core-collapse time is thus
very similar to the value one would obtain for point-mass dynamics.

Figure 6. Evolution of Lagrange radii for model K3-52. This cluster is
strongly collisional from the beginning. The core collapse is driven mostly
by mergers and occurs on a time-scale much shorter (when measured in
FP units). The dashed lines show the evolution of the same system without
relaxation (K3-53). Core collapse still occurs, although on a slightly longer
time-scale.

Figure 7. Evolution of the density profile for all stars with masses between
0.2 and 120 M� (i.e. excluding the runaway object) in simulation K8-29.
For each profile in the sequence, we indicate the time and mass of the most
massive star in the cluster at this time. The FP time-unit is T FP � 4.72 ×
109 yr. A central subcluster with a cuspy density profile forms. Its profile is
compatible with a power-law of exponent −1.75 but it is not a Bahcall &
Wolf (1976) cusp (see Figs 8–10 and text).

computers). The initial structure is a W0 = 8 King model. Fig. 7
shows the evolution of the total stellar mass density. The core col-
lapse is characterized by the formation a small central density peak,
growing inside the initial constant-density core. In comparison with
the core collapse of single-mass models, the evolution shown here
is relatively unremarkable and does not appear to proceed in a self-
similar manner. In particular, the contracting core does not leave
behind a ρ ∝ R−γ region with γ � 2.23 (Freitag & Benz 2001;
Baumgardt et al. 2003, and references therein). The central density
profile in deep core collapse is better fitted with γ � 1.75. It may be
tempting to interpret this value of the exponent by the formation of
a Bahcall–Wolf cusp (Bahcall & Wolf 1976), similarly to what two-
body relaxation creates in a stellar system dominated by a central
massive object. This would not be correct, however, as the following
figures make clear. When we look at the evolution of the distribution
of stars with masses in the range between 3 and 120 M� in Fig. 8,
we see a much stronger evolution than for the overall distribution
because lighter stars, which form an essentially static background,
are so much more numerous. Fig. 9 yields a detailed picture of the
distribution of stars in various mass ranges during the late stages of
the core collapse (while the VMS is quickly growing). Clearly, only
the spatial distribution of stars more massive than 10 M� signifi-
cantly changes and the central density peak is mostly made of stars
more massive than 30 M�. These objects do not form a γ � 1.75
cusp but rather a distribution of varying slope.

In Fig. 10 are plotted the velocity dispersion profiles for the same
ranges of stellar masses as in Fig. 9. Most importantly, this figure
shows that, inside a region roughly corresponding to the initial core
[R core(0) = 0.12 pc], relaxation has produced partial energy equipar-
tition with stars above 10 M� having cooled to lower velocities by
heating up lighter stars. This is particularly dramatic for the stars
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Figure 8. Similar to Fig. 7 but we only plot the density of stars with masses
between 3 and 120 M�. This figure confirms that the most massive stars are
responsible for the central detached cusp seen in Fig. 7. However, it seems
that the innermost part of the density profile is more concentrated than a
ρ ∝ R−1.75 cusp (see Fig. 9).

Figure 9. Density profiles for various stellar masses in the same simulation
as in Figs 7 and 8. To investigate the structure of the cluster during the
runaway phase, we have averaged the density profiles for 18 snapshots within
the given time interval. The various curves correspond to different ranges
in stellar mass. It is clear that only stars more massive than 10 M� (with
a number fraction of only ∼5 × 10−3) contribute to the formation of the
cusp and that its profile is steeper than ρ ∝ R−1.75. The line with slope -2
is plotted as a guide. Note that the radius and density scales and ranges are
different from those of Figs 7 and 8.

Figure 10. Similar to Fig. 9 but for the 1D velocity dispersion σ v (plotted
on a linear scale). As a result of (partial) energy equipartition, the most
massive stars are considerably cooler than other stars in the central regions.
The dotted line is the initial velocity dispersion (W 0 = 8 King model). The
dash–dotted line indicates the Keplerian dispersion σK = √

G MVMS/(3R)
corresponding to a central object with M VMS = 1000 M�. One sees that
the sphere of influence of the runaway star (inside which σ v � σ K) is not
resolved.

in the 30–120 M� bin, which exhibit an inverse temperature gradi-
ent. Around R = 0.2 the velocity dispersion for these massive stars
has in fact increased above the initial value, because the stars with
higher orbital velocity are less affected by dynamical friction and
have stayed in place while others were sinking. In this figure, we
also plot the Keplerian velocity for a M VMS = 1000 M� central
object, σK = √

G MVMS/(3R). Clearly, we cannot resolve the radius
of influence (the central region dominated by the central object’s
gravity) for any range of stellar mass. Only within the radius of
influence would one expect a Bahcall–Wolf cusp to develop. The
evolution of the central density and velocity dispersion (for another
simulation) is depicted in Fig. 11. We see how the central density
steadily increases while (in contrast with the single-mass core col-
lapse) the velocity dispersion drops, a result of energy equipartition.
Both effects contribute to making collisions more and more likely.
Furthermore, the decrease in velocity dispersion ensures that disrup-
tive collisions will be unlikely unless the central velocity dispersion
is initially very high.

2.4 Collisional runaway sequences

We first describe results obtained in the sticky-sphere approximation
for collisions. We will then present the differences introduced by the
more realistic collision treatment based on SPH results.

A typical runaway history for a cluster which is not initially col-
lisional is depicted in Fig. 12, where we follow five stars partic-
ipating in collisions, including the runaway merger product. The
parameters of the cluster are such that it undergoes core collapse in
∼2.5 Myr. Only a few collisions happen before deep core collapse,
at which time one star detaches itself from the rest of the population
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Figure 11. Evolution of the central density (ρ c, dashed line, left scale) and
3D velocity dispersion (σ 3 c, solid line, right scale) for model K3-37. Note
how the central parts cool down during core collapse as a result of partial
equipartition between the massive stars and the lighter ones.

Figure 12. Collisional history for run K3-33. We represent the evolution
of the five particles that have experienced the largest number of collisions.
The top panel represents the radius (distance from the cluster centre) where
the collision occurred. The bottom panel shows the evolution of the mass.
A circled dot indicates that the star has merged with a larger one (usually
the runaway star). Note that there are few collisions until t � 2.5 Myr, that
is, the moment of core collapse, at which time one star starts growing very
quickly.

Figure 13. Collisional history for run K3-52. Collisions occur from the
beginning of the evolution and many stars grow in an orderly way until one
detaches itself from the others and starts growing in a runaway fashion. See
text for explanations.

by growing in a rapid succession of mergers. Two characteristics
of this runaway growth are its steepness and the fact that no other
star experiences significant mass increase. The initial central veloc-
ity dispersion in this cluster is σ 0 � 52 km s−1, a value for which
we expect the sticky-sphere approximation to be accurate. Fig. 13
is an example of runaway in a cluster which is initially strongly
collisional. In this case, many stars experience numerous collisions
and start growing from the beginning of the evolution. Neverthe-
less, only one of these objects experiences a very fast growth at the
moment of (collision-driven) core collapse. Here σ 0 � 1200 km s−1

but the escape velocity from a 1000 M� VMS on the MS is Vesc �
3000 km s−1, so gravitational focusing is still effective, producing
the steep increase of cross section with MVMS required for runaway.
Because relative velocities are still significantly lower than Vesc,
we do not expect strong collisional mass loss but the critical dmin

for merger becomes significantly smaller than R1 + R2, making
mergers less frequent than assumed here.

To study which stars contribute to the build-up of the VMS, we
draw merger trees. Four examples are presented in Figs 14 and 15.
The first is for two clusters with W0 = 3 and N∗ = Np = 3 × 105,
the second for W0 = 3 and N∗ = Np = 3 × 106. In each figure, panel
(b) shows the case of a smaller, initially more collisional cluster. In
all cases, we follow the VMS growth up to 2000 M�. The cluster
in Fig. 14(a) has RNB = 0.4 pc, leading to collapse in t cc = 2.9 Myr,
just in time to produce collisional runaway before the massive stars
would have left the MS. In this situation, typical of clusters which
first become collisional in deep collapse, the merger tree has a very
simple structure, with most branches lacking substructure: the stars
that merge with the VMS (the trunk) are not themselves collision
products. Furthermore, a large majority of these impactors have
masses around the tip of the IMF, between 60 and 120 M�. These
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Figure 14. Merger trees for simulations of clusters with W 0 = 3, N ∗ =
N p = 3 × 105. Panel (a): RNB = 0.4 pc (model K3-23). Panel (b): RNB

= 0.03 pc (model K3-9). We follow the growth of the runaway star to
∼2000 M�. The horizontal axis indicates the mass of stars taking part in the
collisions. The sequence of mergers is represented in the vertical direction
from top to bottom. The right ‘trunk’ is the growing VMS. The radius of the
discs is proportional to that of the corresponding star. In case (a), the cluster
is not initially collisional (the collision time for a 120-M� star is much
larger than its MS lifetime) and most collisions occurs in deep collapse and
feature stars of mass 60–120 M� that have segregated to the centre. Most of
them are not themselves merger products. In case (b), the cluster is initially
collisional and, although the runaway also occurs in core collapse, most stars
contributing to it have experienced earlier collisions.

stars add up to 92 per cent of the VMS mass. The distribution of the
number of contributing stars (the tips of the branches, that is, stars
that are not themselves collision products) is bimodal with one peak
between 0.2 and 1 M� and another covering the 40–120 M�; it re-
flects the MF in the central regions (GFR04). This is to be contrasted
with Fig. 14(b), obtained for a much more collisional cluster with
RNB = 0.03 pc, which enters the runaway phase at t � 0.064 Myr.
Here most stars merging with the VMS were themselves produced
by previous mergers and the contribution of lighter stars is larger,
although the 60–120 M� range still contributes 78 per cent of the
VMS mass. The cause of the difference is that, in the more compact
cluster, collisions occur from the beginning, when the cluster is not
segregated yet; in the larger cluster, virtually all collisions take place
in the high-density core formed by the concentration of high-mass
stars. The two clusters in Fig. 15, with 3 × 106 stars and sizes of
RNB = 0.2 pc and 0.1 pc are both relatively collisional, as required
for this W0 value and this number of stars to experience core col-
lapse in less than 3 Myr (see Fig. 1); thus, they exhibit complex
merger trees. Again, in the more compact cluster, low-mass stars
play a larger but not predominant role, with some 90 per cent of the
VMS mass originating in stars more massive than 60 M�. Merger
trees for W0 = 8 clusters exhibit the same general characteristics
and variety. In particular, the same kind of bimodal distribution in
the masses of the contributing stars can be observed, with more stars
in the 0.2–1 M� range for clusters with shorter initial t coll/t rlx.

It is instructive to examine the various time-scales involved in the
runaway process. This is done in Figs 16 and 17 for the same four

Figure 15. Merger trees for the simulation of a cluster with W 0 = 3,
N ∗ = N p = 3 × 106. Panel (a): RNB = 0.2 pc (model K3-37). Panel (b):
RNB = 0.1 pc (model K3-36). We follow the growth of the runaway star to
∼2000 M�. Both clusters have initial central collision times for 120-M�
stars shorter than 3 Myr, hence the relatively complex merger trees. The
more compact cluster, case (b), is more collisional which explains a stronger
contribution of low-mass stars.

simulations as in Figs 14 and 15. In these diagrams, we follow the
VMS, merger after merger, making use of two ordinate axis, one to
indicate its mass, the other to monitor important time-scales. Those
are the time to the next collision �t coll, the time left on the MS �t MS

(if the star were left to evolve without further collision), and the MS
thermal relaxation time, that is, the Kelvin–Helmholtz (K–H) time.
The latter is approximated here by t KH = GM2

∗(R∗L ∗)−1 where L ∗
is the luminosity of the star (close to the Eddington limit for VMS;
see, e.g. Baraffe, Heger & Woosley 2001; Schaerer 2002). From
100 to 104 M�, t KH increases slowly from ∼104 to 6 × 104 yr. Here
we do not truncate at M VMS = 2000 M�, but show instead the full
extent of the simulations. However, in all but the first case (Fig. 16a),
we stopped the simulation before the VMS left the MS, when the
average interval between mergers was still much shorter than the
remaining MS lifetime.

Because it corresponds to a core-collapse time just slightly shorter
than 3 Myr, the first simulation of the four is one of the exceptional
few for which we could afford to integrate until stellar evolution
caught up with collisions, as indicated by the convergence of the
�t coll and �t MS curves. In most other cases, �t MS still exceeded
�t MS by orders of magnitude – suggesting many more collisions
to come – when we decided to terminate the simulation. From the
merger trees and the curve showing MVMS as function of the collision
number, there is only little sign of a decrease with time, as massive
stars that have segregated to the centre are progressively depleted.
Such trend can be seen for the runs with 3 × 105 stars (in particular
if one draws the complete merger tree past M VMS = 2000 M�), but
is not perceptible for a cluster of 3 × 106 stars whose central parts
constitute a larger reservoir of massive stars. Indeed among 3 × 105

stars forming a W0 = 3 cluster, there is only about 1600 M� of stars
more massive than 60 M� in the core.

An essential result is that, in the vast majority of cases the
K–H time is (much) longer that the average time between successive
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Figure 16. Evolution of mass and various time-scales during the runaway for the same simulations as in Fig. 14. We plot the time between successive collisions,
an estimate of the K–H time-scale tKH of the collision product (assuming normal MS M–R relation and luminosity), the time left until exhaustion of hydrogen
at the centre (from our simple ‘minimal rejuvenation’ prescription), as well as the mass of the star (right scale). No use is made of tKH during the simulations.
We plot it here to show than in the vast majority of cases, the interval between collisions is (much) shorter than tKH so that the star would probably be out of
thermal equilibrium, with a swollen structure.

Figure 17. Mass and time-scales evolution during the growth of the runaway star for the same simulations as in Fig. 15. See caption of Fig. 16 for explanations.

collisions. This means that the VMS is unlikely to relax to thermal
equilibrium, that is, to the MS after it has merged with an impactor
and before the next collision. In principle, then, it may be kept in a
swollen state by repeated collisions and our assumptions of MS M–R
relation and continuous nuclear burning (to set �t MS) are probably
incorrect during runaway growth. This suggests a very different pic-
ture concerning the evolution of the VMS in the runaway phase and
the termination of the growth. The VMS may grow larger and larger
until it is so diffuse that it lets the smaller stars fly through it with-
out the ability to stop them, hence bringing back the ‘transparency
saturation’ (Colgate 1967; Lightman & Shapiro 1978). Another im-
portant effect is that the central nuclear reactions are very likely
switched off in a merger product which expands as a result of shock

heating (e.g. Lombardi et al. 2002, 2003), so the stellar evolution
of the VMS may be suspended. Of course these effects will persist
only as long as �t coll < t KH. When the collisions eventually become
rarer – from exhaustion of stars to collide with or because stellar
evolution from normal massive stars drives core re-expansion at t �
3 Myr – the VMS returns to the MS and to nuclear burning. Given
the complexity of interplay between repeated collisions and VMS
structure (itself determining the probability and outcome of further
collisions), it seems impossible to make any simple prediction as to
what the final VMS mass would be when it eventually leaves the
MS. In future works, this situation may be studied by combining a
stellar dynamics code with on-the-fly SPH simulation to follow the
VMS structure collision after collision (Baumgardt & Nakasato, in
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Figure 18. Collision parameters for a cluster with relatively low velocity
dispersion (same simulation as in Figs 15a and 17a). For each collision (dot),
we indicate the ‘impact parameter’, in units of the stellar half-mass radii,
and the relative velocity at large separation, in units of V (h)

∗ ; see equation 13
of Paper I). Circled dots indicate mergers involving a star with a mass larger
than 120 M� (i.e. the runaway object). The lines indicate the condition for
merger (equation 13 of Paper I) for [M 1, M 2]/M� = [1, 1] (solid line),
[1, 10], (dots), [0.1, 1], (short dashes), [0.1, 60], (long dashes) and [60, 60],
(dot–dashed). Only below these lines should the collisions result in mergers.

preparation). For the time being, these aspects have to be considered
as one central source of uncertainty regarding the outcome of the
runaway phase.

Putting aside the possible complications due to the non-MS struc-
ture of the VMS, we can look at the changes in the runaway process
introduced by a more realistic treatment of collisions between MS
stars, as allowed by the SPH results. Figs 18 and 19 show when and
why the sticky sphere approximation may become questionable.
These diagrams show the impact parameter and relative velocity
for all collisions that happened in two cluster simulations, one with
σ 0 � 110 km s−1 (Fig. 18), the other with σ 0 � 635 km s−1 (Fig. 19).
For lower velocity dispersion, a large majority of encounters hap-
pened with parameters leading to merger according to equation (13)
of Paper I. In particular, all collisions but one in which the run-
away object took part were in this regime. They had relative ve-
locities smaller than 0.1 V∗ and would have produced less than 1–
3 per cent mass loss (Freitag & Benz 2005). Consequently, treating
all collisions as perfect mergers is certainly a very good approx-
imation for system with comparable or lower velocity dispersion,
including any reasonable globular cluster. In the high-velocity situ-
ation, a significant fraction of the collisions (featuring the runaway
object or not) should have left the stars unbound rather than produced
a single merged object, suggesting that using the SPH prescription
to set the impact parameter for merger may affect the results. On
the other hand, most collisions occurred at less than V∗ and would
have produced no more than a few per cent mass loss.

To assess the impact of mass loss on the runaway mechanism, we
have performed a few runs for which we assumed that all collisions
result in a merger with some constant fractional mass loss δM , vary-

Figure 19. Same as Fig. 18 but for a cluster with high velocity dispersion:
model K3-55. For this case, a large fraction of collisions would actually be
fly-bys and the assumption of perfect mergers is questionable.

ing the value of δM . We show runaway growth sequences for δM =
0, 0.05 and 0.10 in Fig. 20. One sees that δM � 0.10 is required to
prevent the growth of a star more massive than a few 100 M�. As
typical impactors have a mass around M imp ≈ 100 M�, it is obvi-
ous why a VMS of 1000 M� can only be grown through a sequence
of merger if δM < 0.1. The fact that we assume all mass lost to
originate from the hydrogen envelopes also shortens the remaining
MS lifetime of the collision product and prevents reaching M VMS �
M imp/δM .

SPH simulations show mass loss of at most a few percent for
V ∞

rel < V∗, so reaching δM ≈ 0.1 (on average) would require really
extreme conditions. The cluster with the highest velocity dispersion
for which we have performed a simulation using the SPH prescrip-
tions is model K3-51, with σ0 � 1270 km s−1. It has the same pa-
rameters as the sticky-sphere run K3-61 and we obtain the runaway
VMS growth in a qualitatively similar fashion, although about four
times more collisions are required to attain a given MVMS. The most
noticeable difference is that the time required to enter the runaway
phase t ra is also about four times longer than in the sticky-sphere
approximation (see left-most open triangle in Fig. 2). This is obvi-
ously a consequence of the collisions being about four times less
efficient at driving collapse in this collision-dominated cluster. In
cases with lower velocity dispersion, using the SPH prescription
make very little change to the conditions required to achieve fast
collapse and collisional runaway or to the runaway itself.

In Fig. 21, we plot the cumulative fractional mass loss for all
collisions that took place in four simulations for clusters with initial
central velocity dispersions ranging from σ0 = 28 to 1420 km s−1.
We see that all collisions yield δM < 10 per cent for σ0 � 100 km s−1

with an average 〈δM 〉 < 1 per cent. The cluster with the highest σ

0 experiences a few completely disruptive collisions but only in-
volving stars less massive than 2 M�. Even in this extreme case,
〈δM 〉 is only of the order of 5 per cent. For collisions involving a
star more massive than 120 M�, the average mass loss is as low as
0.3 per cent.
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Figure 20. Role of mass loss in the runaway process. For the three simulations presented here, we used the same initial model with W 0 = 3, N ∗ = 3 × 105

and RNB = 0.3 pc (models K3-13, K3-14 and K3-15). All collisions are assumed to result in merger with a constant fractional mass loss δ M ≡ δM/M , that is,
M merger = (1 − δ M )(M 1 + M 2) where M 1, M 2 are the masses of the colliding stars. This prescription is artificial in that a collision with a light star will cause
more damage than one with a more massive star. For case (a), with no mass loss, the simulation was interrupted before the runaway object evolved off the MS
because mergers constantly rejuvenate the star. With some mass loss, stellar evolution can catch up with collisional growth and terminate it. For simplicity, in
these cases, we did not assume an IMBH was formed at the end of the VMS MS, but a 7-M� BH instead, which was not allowed to collide with other stars.

Figure 21. Cumulative distribution of fractional mass loss in collisions for
four cluster simulations using the SPH prescription. In all four cases, runaway
VMS formation happened. The average fractional mass losses for these runs
are 0.2, 0.4, 0.5 and 4.9 per cent.

The only case for which we find a qualitatively different evolution
when using SPH-generated collision recipes instead of pure merg-
ers, is for W0 = 3, N∗ = 108 and RNB = 0.2 pc. In K3-55, assuming
pure mergers, we found runway, thanks to collisional rejuvenation
that kept the VMS on the MS for more than 4 Myr. With collisional
mass loss and a large fraction of collisions not resulting in merg-
ers, the (orderly) growth of stars stopped at t � 3.5 Myr, before any
runaway star detached from the mass spectrum (runs K3-65 and
K3-56).

Because a realistic treatment of collisions has so little impact on
most results pertaining to the cluster evolution and runaway VMS

growth, it is no surprise that we find them essentially unchanged
if, instead of our SPH-based prescription, we implement the simple
fitting formulae published by Rauch (1999), which were derived
from a smaller set of SPH simulations.

2.5 Non-standard simulations

2.5.1 Other IMFs

GFR04 established that, for any realistic IMF and all cluster models
we tried for which t rc(0) > 0, the segregation-driven core collapse
occurs at t cc|rlx � 0.15 t rc(0). By ‘realistic’ IMF we mean one that is
sufficiently broad, with μ ≡ M ∗,max/〈M∗〉 > 50, and not too steep.
This includes the ‘Kroupa’ IMF (Kroupa, Tout & Gilmore 1993),
which contains significantly fewer high-mass stars than the Salpeter
IMF (with dN∗/dM∗ ∝ M−2.7

∗ for M∗ > 1 M�). Although this is
actually an effective IMF for stars forming the Galactic field, with
clusters probably having a Salpeter-like IMF beyond 1 M� (Kroupa
& Weidner 2003; Weidner & Kroupa 2004), we used it in order to
investigate the possible effects of a smaller fraction of massive stars.
We find that the runaway growth of a VMS happens essentially in
the same way as with the Salpeter IMF. The only noticeable, and
not unexpected, difference is that because stars around 100 M� are
so much rarer, the average impactor mass decreases much more
quickly during the VMS growth, as can be seen in the merger tree
shown in Fig. 22.

We have also simulated clusters with a reduced stellar mass range.
The single-mass case lacks realism and was only considered in
Paper I as a test-case to compare with Quinlan & Shapiro (1990).

If the Salpeter IMF only extends from 0.2 to 10 M�, the aver-
age stellar mass is 0.58 M� and μ = 10/0.58 � 17. The results of
GFR04 suggest t cc|rlx � 0.7 t rc(0) for W0 = 3. For such a cluster, we
find t ra � 1.2 t rc(0) (run K3-20). The 10-M� stars leave the MS after
t ∗ = 25 Myr; these two nearly equally longer time-scales combine
to give conditions for runaway in the (N∗, RNB) plane that are very
close to those for our standard IMF. Hence, the details of the upper
end of the IMF have little effect on the conditions for the onset of run-
away collisions. Of course, if the maximum stellar mass in the IMF
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Figure 22. Merger tree for the runaway growth of a VMS in model K3-61,
a cluster with steep Kroupa IMF extending from 0.01 to 120 M� (see text).

is lower, a larger number of mergers are required to grow a VMS but
there is about 3 times more mass in stars in the range 5–10 M� in a
Salpeter IMF truncated at 10 M� than in the range 60–120 M�
if the IMF extends to 120 M�. In simulation K3-20, the clu-
ster entered the runaway regime at t ra � t cc|rlx = 20 Myr, allow-
ing a VMS to reach 1500 M� when we stopped the computation.

2.5.2 Conditions for collisional runaway in MGG-9

Portegies Zwart et al. (2004) have performed N-body simulations
of the clusters MGG-9 and MGG-11 in M 82 using ∼130 000 to
∼600 000 particles. Following McCrady, Gilbert & Graham (2003),
they assume for MGG-9 an initial mass of 1.8 × 106 M� and a half-
mass radius of 2.6 pc. Unlike the case of MGG-11 for which there are
indications of a lower cut-off of the IMF at ∼1 M� (which yields
〈M∗〉 � 3 M�), the observational data for MGG-9 is compatible
with a normal cluster Kroupa IMF extending from 0.1 to 100 M�
(Kroupa 2001): dN∗/dM∗ ∝ M−α

∗ with α = 1.3 below 0.5 M� and
α = 2.3 for higher masses (〈M∗〉 � 0.64 M�). To get the total
cluster mass as estimated observationally from its size and velocity
dispersion, some 2.7 × 106 stars are required. Because this number
is too high for present-day direct N-body simulations, Portegies
Zwart et al. (2004) adopted a 1 M� cut-off. They considered King
models with W0 ranging from 6 to 12; none of them led to collisional
runaway, in contrast to their MGG-11 models.

In light of GFR04, this is a surprising result. From its position in
fig. 1 of Paper I, the MGG-9 model is expected to undergo quick
core collapse and runaway collisions if its initial concentration cor-

Figure 23. Conditions for collisional runaway for models of the clusters
MGG-9 and MGG-11 in M 82 (McCrady et al. 2003). This diagram is adapted
from Fig. 3 of Portegies Zwart et al. (2004). Their dynamical friction time
tdf is approximately equal to 4.7 × 10−3 T FP for models with 〈M∗〉 = 3 M�
and 1.3 × 10−3 T FP for 〈M∗〉 = 0.64 M�. c is the initial concentration
parameter; corresponding W 0 values are given on the right of the diagram.
Round points are for simulations by Portegies Zwart et al. (〈M∗〉 = 3 M�),
squares for our MGG-9 MC runs (〈M∗〉 = 0.64 M�). Solid symbols indicate
that the model underwent collisional runaway. The models on the left side
(low tdf values) are for MGG-11, the ones on the right for MGG-9. The
solid and dash–dotted lines indicate where results of GFR04 predict mass-
segregation-driven core collapse to happen at t = t ∗ = 3 Myr for the two
different IMFs.

responds to W0 � 8.5. We have run three simulations of this cluster
with Np = N∗ = 2.7 × 106 for W0 = 8, 9 and 12 (MGG9-K8,
MGG9-K9 and MGG9-K12a). The model with the lowest concen-
tration does not experience runaway but the other two do. We did
not try to simulate MGG-11. If the average stellar mass is as high as
3 M�, the number of stars in that cluster is of the order of ∼105, too
small for robust MC treatment with a broad IMF and W0 � 3. We
note, however that the condition for runaway suggested by GFR04,
t cc|rlx < t ∗ = 3 Myr, predicts that many more of the MGG-11 models
considered by Portegies Zwart et al. should have experienced col-
lisional runaway (see Fig. 23). This disagreement indicates again
that our simple t cc|rlx criterion only applies to systems containing
a sufficiently large number of stars. In particular, for relatively low
N∗, binaries can form through three-body processes and suspend
core collapse before collisions occur. Furthermore, systems of very
high concentration and (relatively) low number of stars, contain a
very low number of high-mass stars in their core, initially. Hence, a
clean mass-segregation-induced core collapse of the type found in
our MC simulations may not be possible.

2.5.3 Loss-cone effects

The MC treatment of collisions is based on the assumption that the
two neighbouring particles picked up at a given step as potential
collision partners are members of the same (local) distribution. In
this approach, one does not actually test whether the orbits of the
two particles would lead them to collide with each other. Instead, it
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is based on the average collision probability between such stars in
an imaginary volume over which the properties of the stellar pop-
ulation (density, mass spectrum, velocity distributions. . .) should
be homogeneous. For this method to yield accurate collision rates,
the cluster properties must be relatively constant over the range of
radii used to estimate the local stellar density.3 A more subtle con-
dition, in cases where one particle has unique properties and cannot
be thought of as a typical member of some continuous distribution,
is that its orbit should allow it to explore a significant fraction of
this imaginary volume (for which the stellar density and collisions
times are computed) so that its collision probability is also relatively
homogeneous.

Unfortunately, these conditions may cease to be fulfilled when
the runaway star has grown to such a mass that it basically stays
at the centre of the cluster with little radial motion in comparison
with the size of the orbits of nearby stars. The situation then becomes
similar to that of a massive (or intermediate-mass) BH at a the centre
of a galactic nucleus (or globular cluster). While the VMS grows
by merging with stars coming into physical contact with it, the
(I) MBH destroys stars venturing into the Roche zone and accretes
(some of) their material. In both cases, stars must come very close to
the cluster centre, that is, have very small pericentre distance Rperi,
so the collision or disruption rate is dominated by stars on high-
eccentricity orbits. How these orbits are repopulated by two-body
relaxation is known as the ‘loss-cone replenishment problem’ (Frank
& Rees 1976; Lightman & Shapiro 1977). The basic difficulty is that
relaxation may cause large relative changes in Rperi in only a small
fraction of the relaxation time, that is, the time over which the energy
of the orbit would be strongly affected. To give an illustration, for
a Keplerian orbit of eccentricity e ≈ 1, The ‘pericentre relaxation
time’ is of the order of t r,peri � (1 − e)t rlx where trlx is the usual
(energy) relaxation time. Let Porb be the orbital period of the star
(from one pericentre passage to the next). For regions of phase space
where P orb � t r,peri, the loss cone is empty, while in the opposite
regime it is full (since relaxation replenishes loss-cone orbits as
quickly as stars are removed through interactions with the central
object). According to standard loss-cone theory, in most situations,
the disruption rate is dominated by stars at the boundary between
the two regimes. Hence, to include loss-cone physics correctly into
stellar dynamical models, one should in principle resolve the effects
of relaxation on time-scales much shorter than trlx, actually as short
as Porb for stars in the critical regime. The MC scheme used here does
not allow this directly because the time-step δt of a given particle
can only be a function of its present radial position R, not of its
eccentricity. Furthermore, δt(R) must be an increasing function of R
so that setting δt = Porb at any given R would impose time-steps at
least as short as this for all particles interior to R. To handle the loss-
cone problem in a satisfying way despite of this, an approximate
treatment of the effect of relaxation on time-scales shorter than δt
has been devised; it is described in detail in Freitag & Benz (2002).
But this approach, as all standard loss-cone theories, is based on
the assumption that the central object is rigorously fixed at R =
0; in other terms, no account is made of its ‘wandering’ through
Brownian motion.

In summary, our present code allows us to follow the growth of a
VMS using two opposite simplifying assumptions. (i) The ‘standard
collisional treatment’ which computes collision probabilities with
the ‘nS coll V ∞

rel’ formula assuming a small central homogeneous box,

3 In the innermost parts of the cluster, this density is computed from the
volume of the spherical shell containing 17 nearby particles (Hénon 1973).

ignoring small-number effects and the small amplitude of the VMS
motion. (ii) The ‘loss-cone approach’ which neglects this motion
altogether but looks at the possibility of collision between the VMS
and a given star with (approximate) account of the specific orbit of
the star and its evolution (due to relaxation) on appropriately small
time-scales. A limitation of the second approach, as implemented
in the MC code is that it only works for interactions with the central
object leading to disappearance of the star in one pericentre passage.
In consequence, here, we can only allow mergers but not fly-by
collisions.

In Fig. 24, a comparison is made of the results of both treatments
for a cluster with W0 = 8, N∗ = Np = 1.45 × 106 and RNB =
0.96 pc. Obviously, after the first few collisions, the growth of the
VMS becomes much slower with the loss-cone approach, probably
as a result of loss-cone orbits being rapidly depleted in the innermost
region. In this situation, stellar evolution has a chance to catch up
with mergers and to terminate the growth of the VMS as the interval
of time between successive collisions decreases. For this particular
cluster model, when stellar evolution is allowed, the runaway star
still grows to more than 3000 M� before it leaves the MS (models
K8-16 and K8-17). This happens around t = 3 Myr but, thanks
to collisional rejuvenation, the effective age of the VMS (its MS
lifetime) is only 1.4 Myr. If the collision rate is so reduced after the
onset of runaway growth, clusters which experience core collapse

Figure 24. Growth of the runaway star. We compare the results of simula-
tions using standard collision treatment (with sticky sphere approximation)
with runs for which the runaway star is considered as a fixed central ob-
ject and the loss-cone effects are taken into account following the treatment
of Freitag & Benz (2002). All runs are for a cluster with W 0 = 8, N ∗ =
N p = 1.45 × 106 and RNB = 0.96 pc. The curves in solid line are for the
normal collision treatment (K8-14 and K8-15). The dashed curves are cases
for which a central fixed star of 120 M� is present from the beginning (K8-
11, K8-12, K8-17). To obtain the two dash–dotted curves, we introduced a
central stellar object in a cluster which had evolved to deep core collapse
using normal collision prescription (and no central object). The simulations
with normal collision treatment were interrupted during the runaway phase
(models RA095 and RA096). Stellar evolution was not taken into account
except in one run with loss-cone treatment (K8-17), in which case the VMS
left the MS at t = 2.8 Myr when its mass had reached 3700 M�.
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within just a little less than 3 Myr can probably not form a VMS
more massive than a few hundred M� before growth is interrupted
by the evolution of the VMS or normal high-mass stars off the MS.

The correct VMS growth rate, assuming the same M–R relation
and collision physics, is very likely between what is found with our
two different treatments of the central object. Which approach is
the most accurate is difficult to tell. The effects of the wandering
of the central object on rates of interaction with stars remain to be
combined with the loss-cone theory (see Young 1977; Magorrian
& Tremaine 1999; Sigurdsson 2003, for short discussions). Consid-
ering length scales pertaining to the interactions of the VMS with
the cluster indicates that they take place in a complex regime. We
take as an example, simulation K8-29 for which we have the best
data about the central conditions in the runaway phase. The MC
simulation indicates that the VMS has a wandering radius Rwand of
a few 10−4 (in N-body units or pc) by the time it has grown heavier
than 1000 M�. This value is in agreement with a simple analysis
based on the assumption of energy equipartition with the surround-
ing stars, M VMSV wand ≈ 〈M∗〉σ v, with 〈M∗〉 ≈ 50 M�, and equal
amount of kinetic and potential energy in the cuspy density back-
ground of these stars, ρ(R) ∝ R−1.5. However, even though the mo-
tion of a massive object in a background of lighter particles interact-
ing with it gravitationally obeys energy equipartition approximately
(Chatterjee, Hernquist & Loeb 2002; Dorband, Hemsendorf & Mer-
ritt 2003; Laun & Merritt 2004), the energy dissipation introduced
by collisions can lead to non-equipartition, so the agreement may
be fortuitous. In any case, the wandering radius of the VMS is still
much larger than its radius (∼50 R� � 10−6 pc) so it cannot, in
principle, be considered strictly fixed at the centre. On the other
hand, the central number density (estimated inside R = 1.2 × 10−3

for 18 successive snapshots) is n0 � 1.5 × 108, corresponding to
an average distance between stars of 〈d〉 = n−1/3

0 � 2 × 10−3 and
the influence radius of the VMS is formally Rh = GMVMS/(3σ 2

v) ≈
10−3 (Frank & Rees 1976). These scales are significantly larger than
Rwand, pointing to the breakdown of our standard collision treatment
already when M VMS � 1000 M�. The two approaches we have
tried make strong simplifications of a situation that can probably
only be treated correctly by direct orbital integration using, for in-
stance, some hybrid numerical code in which the central region of the
cluster is integrated with a direct N-body scheme, while the outer
region is modelled in the FP approximation.

3 S U M M A RY A N D D I S C U S S I O N

3.1 Summary of results

This work is a continuation of our study of the dynamical evolution
of young, dense stellar clusters. Our goal is to determine under which
conditions an IMBH can form at the centre of such systems. We
are exploring the collisional runaway route. This scenario applies
to clusters in which the accumulation of massive MS stars (M∗ �
10–120 M�) at the centre, through the relaxation-driven process of
mass segregation, leads to the Spitzer instability, thus triggering core
collapse, before these stars evolve to become compact objects, that
is, within ∼3 Myr. As the central density of massive stars increases
and their velocity dispersion decreases, direct collisions between
stars must occur, leading to the possibility of successive mergers
and the runaway formation of one VMS (M∗ � 400 M�). Such a
VMS is a possible IMBH progenitor.

In GFR04, we have established the cluster conditions required
for the core collapse to be sufficiently rapid. In the present work,
we have investigated the next stage by implementing stellar colli-

sions. We have followed the core collapse and collisional runaway
using a MC simulation code specially devised to account for stel-
lar collisions in a realistic way [ME(SSY)∗∗2]. In GFR04, two-body
relaxation was the only physical process considered in most simu-
lations so that, as expected, up to statistical fluctuations, the results
did not depend on the physical size of the cluster or on the number
of stars (provided there are enough for the core to be resolved). The
significant free parameters were the initial structure of the cluster
(profiles of density, velocity and, in some cases, mass segregation)
and the IMF. Here, two more ingredients, collisions and stellar evo-
lution, are introduced, which break this degeneracy. For instance,
the ratio of the physical central velocity dispersion to the escape
velocity from a star (hence N∗ R∗/Rh) determines gravitational fo-
cusing and the outcome of collisions and, more importantly, the ratio
t coll/t rlx.

We have computed more than 100 models, varying the cluster size
(Rh in the range 0.03–5 pc), mass (N∗ = 105 − 108) and concentra-
tion. For the latter parameter, we have considered King models with
W0 = 3 and W0 = 8. For most simulations we have used a Salpeter
IMF extending from 0.2 to 120 M�. We treated collisions either in
the sticky-sphere approximation or by making use of prescriptions
for merger conditions and mass loss derived from a large set of SPH
simulations. We used up to 9 × 106 particles (one simulation) but,
because of the large number of simulations and the relatively large
amount of CPU time required to track the runaway growth (requir-
ing very short time-steps), we had to perform most high-N∗ runs
using a number of particles lower than N∗. Taking advantage of
the statistical nature of the MC algorithm, our code scales physical
processes so that each particle may represent a given (fixed) num-
ber of stars, not necessarily one. This feature may legitimately be
questioned when a runaway happens as one expects only one star
to experience it. However, by varying the number of particles (but
keeping N∗ fixed) for a few cluster simulations, we have checked
that using Np < N∗ does not appear to produce spurious results
(such as, e.g. preventing the runaway).

We found that runway VMS formation occurs in all cases for
which the core-collapse time is shorter than the MS lifetime of mas-
sive stars, as predicted in GFR04. Furthermore, for very massive
clusters (�107 M�), the core collapse is facilitated (and sometimes
driven) by collisions themselves, an effect which extends the run-
away domain to clusters of larger size than predicted by an analysis
based solely on relaxation. Such systems have velocity dispersions
in excess of 300 km s−1 but we find that the collisional mass loss
and the reduced merger cross section cannot prevent runaway, even
at ∼1000 km s−1.

We never observe the formation of more than one VMS. Only in
clusters that are initially collisional do collisions produce a high-
mass tail in the stellar mass spectrum. Most of the mass eventually
incorporated into the VMS originates in stars near the top of the IMF.
Typically, for clusters that are not initially collisional, �90 per cent
of the VMS mass is contributed by stars in the 60–120 M� range.
This is due to the larger cross section of massive stars and, more
importantly, to the fact that collisions take place in the collapsed
core, which is dominated by these stars. In such clusters, most stars
that experience a collision do so only once, namely when they merge
with the growing VMS. In very dense clusters where collisions are
happening from the beginning of the evolution, the contribution
of lighter stars is slightly higher and a significant fraction of stars
that merge with the VMS have experienced at least one previous
collision.

Changing the parameters of the IMF modifies the condition
for rapid core collapse but has little qualitative effect on the
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runaway process itself. In particular, clusters with a field Kroupa
IMF (Kroupa et al. 1993), which has an exponent α = 2.7 for mas-
sive stars, do experience runaway in essentially the same way as
those with a Salpeter IMF (α = 2.35), despite a much smaller total
number of massive stars. If the upper cut-off of the IMF is signifi-
cantly lower than the assumed M max = 120 M�, core collapse will
take longer but for M max � 30 M�, this is over-compensated by a
longer MS lifetime. From one simulation we performed for M max

= 10 M�, we predict that the region of parameter space leading to
runaway is similar to what we found for M max = 120 M�.

We found that in most circumstances, once the runaway has
started, the average time between successive mergers becomes much
shorter than the MS thermal relaxation time-scale for the VMS,
tKH. Hence, its structure and response to further collisions may be
greatly affected by its prior collision history. Modelling the com-
plex interplay between stellar dynamics, collisions, stellar structure
and stellar evolution which should eventually determine the final
mass of the VMS is presently not possible. Among the effects with
potentially strong bearing on the runaway process is the depletion
of loss-cone orbits that may come into play before the VMS has
reached ∼1000 M� as, being more massive than surrounding stars,
it becomes confined to a very small central region of the cluster.
Assuming a strictly fixed central object and using the approximate
treatment of loss-cone physics built into our MC code (for the study
of MBHs in galactic nuclei), we have found a significant reduction
in the VMS growth rate (after the first 2–4 mergers) but, in the few
cases considered, the VMS still grew to a few thousand M� be-
fore evolving off the MS and the average time between collisions,
although 3–10 times longer, remained below tKH most of the time.

Our simulations allow us to establish the conditions for the onset
of runaway collisions and to study the early VMS growth. If globular
clusters are formed with a concentration equal or higher than a
W0 = 8 King model (and if primordial binaries cannot prevent the
runaway process), a significant fraction �20 per cent; see fig. 1 of
Paper I) may experience this phase in the first few million years
of their dynamical evolution. Typically, a cluster containing ∼106

stars at this concentration needs to have a half-mass radius smaller
than Rh � 2 pc to experience runaway, but a proto-galactic nucleus
with 108 stars has to be more compact than Rh � 0.8 pc.

3.2 Discussion

Many aspects of the runaway collision scenario and how we have
approached it in our numerical simulations have been discussed
already. In particular, the choice of physical ingredients considered
and the uncertainties and simplifications involved in their treatment
have been presented in Paper I. In the results section of the present
paper, we have discussed other important uncertain aspects of the
process, namely the impact of collisions on the structure and growth
of the VMS and the possible effects of loss-cone depletion. In this
last subsection, we consider the role of interstellar gas.

3.2.1 Role of residual gas in young clusters

Because the runaway scenario presented here has to operate within
the first few Myr of the cluster life, it has, in fact, to be considered in
the framework of cluster formation, which takes place on a similar
time-scale. No only does it mean, as mentioned above, that stars
below 2–3 M� may still be on the pre-MS, with much larger radii
than adopted here, but, more importantly, that a significant amount of
residual gas may be present. Observations show that when a cluster

forms, not more than 30 per cent of the gas is eventually turned into
stars (Lada 1999) but that clusters like R136 or NGC 3603, as young
as 1–2 Myr, are already devoid of gas (e.g. Stolte et al. 2004). In
such clusters, the expulsion of gas (originally the dominant mass
component) is driven by the ionizing radiation and winds of OB
stars and occurs impulsively. A large fraction of the stars are then
lost from the cluster and the remaining bound cluster swells quite
dramatically (Kroupa, Aarseth & Hurley 2001; Boily & Kroupa
2003a,b), an event likely to terminate the collisional phase after
∼1 Myr rather than ∼3 Myr. In clusters with an escape velocity
much higher than the typical expansion velocity of the ionized gas,
that is, ∼10 km s−1, complete expulsion of the gas probably only
occurs when the first supernova explodes.

The faster evolution due to the much smaller size of the cluster in
the embedded phase counterbalances the possible reduction in the
time available for collisional runaway. Assuming that, when gas is
expelled, the mass of the cluster Mcl (including gas) is reduced by
a factor of ∼4 and its size Rh expands ∼10 times, the true initial
relaxation time (t rlx ∝ σ 3

vn−1 ∝ M3/2
cl R3/2

h ) should be of the order
of four times shorter than what is inferred from observations of the
gas-free cluster. Furthermore, the collision time (t coll ∝ σ vn−1 ∝
M−1/2

cl R5/2
h ) may have been some 1000 times shorter, suggesting

that a large fraction of clusters may actually be collisional at birth.
The standard theory of star formation, which assumes spherically

symmetric accretion of gas on to the protostar, fails for stars more
massive than 10 M� (Yorke 2004; Bally & Zinnecker 2005). This
problem led to the proposal that the truly primordial IMF may not
extend past 10 M� and that mergers may be – at least partially
– responsible for the formation of more massive stars (Bonnell,
Bate & Zinnecker 1998; Bonnell & Bate 2002; Bally & Zinnecker
2005). This would also naturally explain why these massive stars are
preferentially found in the central regions of clusters that are pos-
sibly too young to have experienced relaxational mass segregation
(Bonnell & Davies 1998; de Grijs et al. 2002). To occur on a suf-
ficiently short time-scale, collisions require central stellar densities
orders of magnitude higher than what is observed in those young
clusters but similar to what it may have been in the embedded phase.

Realistic simulations of embedded clusters should include the role
of gas, since its mass is likely to be more than twice that in stars.
Especially important are the increased velocity dispersion and accre-
tion from the ambient gas. The pioneering SPH/N-body simulations
of very early cluster evolution could only handle up to a few hun-
dred stars (Bonnell, Vine & Bate 2004; Bate & Bonnell 2005). Our
MC results (run K3-20 presented in Section 2.5.1) suggest that, in
much larger systems, collisions would lead to the formation of just
one (very) massive star rather than a continuous spectrum spreading
from 10 to ∼100 M�. However, this result applies to clusters driven
to core collapse by mass segregation. When the cluster is initially
collisional, more stars should take part in collisions and a high-mass
spectrum may develop in a more orderly way (see Fig. 13). Also,
the collisional phase may be terminated before a runaway collision
sequence starts through gas expulsion by massive stars.

3.2.2 Gas retention in galactic nuclei

Our predictable result that evolution of the massive stars off the
MS terminates the evolution towards core collapse stems from our
assumption that all gas released by the stars is completely (and in-
stantaneously) lost from the cluster. If the gas is not totally expelled,
there may be no core re-expansion. The core may instead remain
very dense. This opens the possibility for a longer-term collisional
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evolution but now there will be plenty of stellar BHs around that
may destroy MS stars.

Over a long time-scale, it is possible that star formation will
convert the gas into new stars (Sanders 1970; Quinlan & Shapiro
1990). All this becomes obviously quite intricate but would have to
be included to treat realistically proto-galactic nuclei. Nowadays,
multi-phase dynamical simulations, including interstellar gas (pos-
sibly in two phases), stars and dark matter, and the matter and energy
exchanges between these components, are commonly performed to
investigate the formation and evolution of galaxies (e.g. Mihos &
Hernquist 1996; Abadi et al. 2003a,b; Springel & Hernquist 2003).
These works are based on the use of collisionless N-body codes
coupled with SPH. Including detailed gas dynamics in models of
relaxing clusters is extremely challenging because the gas should
possess a complex, non spherically symmetric structure, evolving
on time-scales much shorter than trlx (Coker, Melia & Falcke 1999;
Williams, Baker & Perry 1999; Rockefeller et al. 2004; Cuadra et al.
2005).

Note that, in clusters with very high velocity dispersions, where
collisions may significantly contribute to gas production, some of
it will probably be retained. Indeed this can be seen in the extreme
situation of a completely disruptive collision (a rare occurrence; see
Freitag & Benz 2005). In this case, the total energy of the colliding
stars is their kinetic energy at (relatively) large separation minus
the sum of their individual binding energy (a positive quantity, by
definition). None of the stars can have a velocity higher than the
cluster’s escape velocity Vesc and because the binding energy is
positive, the energy available per unit mass of stellar gas has to be
smaller than 1/2 V 2

esc so at least some gas must stay in the cluster
to conserve energy.
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