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ABSTRACT

Collisons and close encounters between two massive (1 < M/Mg < 100) main-sequence stars have been
studied using smooth-particle hydrodynamics (SPH). The stars are represented by Eddington standard models,
which have the density profile of a polytrope with n = 3 but mass-dependent binding energy and adiabatic
index 4/3 < T'; < 5/3. The equation of state is that of an ideal gas plus thermal radiation. We have performed
a large number of calculations to obtain extensive coverage of the parameter space. In particular, the stellar
masses, relative velocity, and collision impact parameter are all varied over wide ranges, representative of the
conditions encountered in dense stellar systems such as galactic nuclei. We give approximate scaling relations
and fitting formulae for the amount of mass loss and for the critical impact parameters for capture or
merging. The more massive stars, which have smaller ratios of specific binding energy to the square of escape
velocity, are more easily disrupted in collisions. In the limit of small relative velocity, our results for the tidal
capture radius agree closely with those of linear perturbation theory, although some nonlinear effects are
always apparent. As the relative velocity increases, the orbital energy of the colliding stars can only be dissi-
pated by shock heating, and the critical capture radius decreases much faster than predicted by linear theory.
We also calculate cross sections and rates of stellar capture, merging, and mass loss in a dense star cluster. We
find that the average fractional mass loss per collision in a cluster does not depend sensitively on the stellar
velocity dispersion. Even when the velocity dispersion is as large as several times the typical escape velocity
from a star, collisions are not very disruptive on the average, with only a few percent of the mass liberated per
collision. Our results should be useful for future dynamical studies of dense stellar systems incorporating the
effects of stellar collisions and close dissipative encounters.

Subject headings: celestial mechanics, stellar dynamics — galaxies: nuclei — globular clusters: general —
hydrodynamics — stars: interiors — stars: mass loss

stars with a wide range of masses are likely to be involved in
these collisions.

In the cores of globular clusters, although the density p <
10° Mg, pc™! and velocity dispersion ¢ ~ 10-50 km s~ ' are
typically smaller than in galactic nuclei, close stellar encoun-
ters may also be dynamically important (see, e.g., Spitzer 1987,
chap. 6). In addition, they are expected to produce a variety of
interesting observable objects at rates far exceeding those in
the rest of the Galaxy. In particular, low-mass X-ray binaries
and millisecond pulsars are thought to result from close
encounters between a MS or red-giant star and a neutron star
(Davies, Benz, & Hills 1992; Di Stefano & Rappaport 1992;
Rasio & Shapiro 1991). Collisions between two MS stars could

1. INTRODUCTION AND MOTIVATION

Stellar densities and velocity dispersions in dense systems
such as galactic nuclei can reach values such that close stellar
encounters and physical collisions play an important role in
their dynamical evolution. There is now direct observational
evidence for the existence of star clusters with densities
p ~ 10%-10° M, pc~ 2 and three-dimensional velocity disper-
sions ¢ ~ 102-10° km s~ ! in the nuclei of nearby galaxies. For
example, recent HST Planetary Camera images of M32 have
revealed a dense, unresolved nucleus with density p > 4 x 10°
M pc~ 2 and velocity dispersion ¢ > 100 km s~ ! (Lauer et al.
1993). In M31, the central velocity dispersion ¢ ~ 380 km s~ *,

and the density p 2 10" M pc~> (Dressler & Richstone 1988;
Kormendy 1988). In M87, the central velocity dispersion is
even higher, ¢ > 600 km s~ !, comparable to the escape veloc-
ity from the surface of a main-sequence star, and the mass
within the central few parsecs is greater than 10° M (Dressler
1989; Lauer et al. 1992). These recent observations of galactic
nuclei also indicate the likely presence of a massive black hole
at the center (see Dressler 1989 and Kormendy 1993 for
reviews). Theorists have suggested in fact that most galaxies
probably contain a central massive black hole (Rees 1990). If
this is the case, then the stellar density and velocity dispersion
are even higher near the black hole, and physical collisions
between stars are inevitably important. Main-sequence (MS)
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be responsible for the formation of blue stragglers (Hills & Day
1976; Leonard 1989), which are now being discovered in large
numbers in the cores of dense clusters (Paresce et al. 1991,
1993; Guhathakurta et al. 1993). Collision rates in globular
clusters can be increased considerably by the presence of even a
small population of primordial binaries, for which there is now
clear observational evidence (see Hut et al. 1992 for a recent
review).

In all dense stellar systems, two-body relaxation drives
secular core collapse, which causes the central velocity disper-
sion and stellar density to rise. Consequently, stellar collisions
will inevitably become important for the final dynamical evolu-
tion of these systems. Collisions and close encounters between
stars can affect the dynamical evolution of a stellar cluster in
several distinct ways. When the local velocity dispersion
exceeds the typical escape velocity from the surface of a star
(~600 km s~ ! for a solar-type MS star), the time between
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collisions can be shorter than the relaxation time and the
dynamical evolution is drastically affected (see, e.g., Binney &
Tremaine 1987, chap. 8). But even when the velocity dispersion
is smaller than the escape velocity, collisions can lead to dissi-
pation of the kinetic energy of the cluster (when a merger
results), or can provide an energy source to the cluster (when a
binary forms in a dissipative encounter). In addition, massive
stars formed from mergers tend to speed up the evolution of
the cluster following mass segregation. Collisions are also very
important in star clusters containing a central massive black
hole. In particular, they are expected to drive the cusp density
profile away from the familiar »~7/# power law appropriate for
point masses (Bahcall & Wolf 1976; Frank & Rees 1976;
Lightman & Shapiro 1976; see Shapiro 1985 for a recent
review). The gaseous debris liberated from stellar collisions
could also provide fuel for accretion onto massive black holes
in quasars and other active galactic nuclei.

Early studies of stellar collisions in galactic nuclei focused on
trying to explain the luminosity of quasars as arising from
disruptive stellar collisions (Gold, Axford, & Ray 1965; Spitzer
& Saslaw 1966; Spitzer & Stone 1967) or from supernovae
triggered by the rapid build-up of massive stars in successive
collisions (Colgate 1967). While it is now accepted that stellar
collisions are probably not the energy source of active galactic
nuclei, they could provide an important route for the forma-
tion of supermassive black holes in these systems (Begelman &
Rees 1978; Rees 1984). Indeed, highly disruptive stellar colli-
sions between massive stars could dissolve the stellar core into
a gas cloud, which eventually collapses to a black hole. Alter-
natively, stellar collisions and mergers could lead to the
runaway formation of a central supermassive star or the pro-
duction of a cluster of neutron stars and stellar-mass black
holes, which ultimately can collapse to a massive black hole
(Zel’dovich & Podurets 1965; Rees 1984; Shapiro & Teukolsky
1985; Quinlan & Shapiro 1989).

Recently, Fokker-Planck simulations of the dynamical evol-
ution of galactic nuclei have been performed (David, Durisen,
& Cohn 1987a, b; Quinlan & Shapiro 1990; Murphy, Cohn, &
Durisen 1991). The results of these studies depend sensitively
on their treatment of stellar collisions. So far, however, all
treatments were based on rather crude approximate models
similar to those introduced in the pioneering works by Spitzer
& Saslaw (1966; see also Murphy et al. 1991) and Sanders
(1970). In these models, the outcome of a collision is deter-
mined on the basis of very simple “rules” obtained from
energy and momentum conservation. Important hydrody-
namic effects, such as shock propagation, are neglected
entirely, and a simple one-dimensional geometry is adopted.
Clearly, a reexamination of the effects of stellar collisions in
galactic nuclei, based on state-of-the-art hydrodynamic calcu-
lations in three dimensions, appears highly desirable.

Early hydrodynamic calculations of stellar collisions were
restricted to the axisymmetric, head-on case (Mathis 1967;
DeYoung 1968; Seidl & Cameron 1972), with further simplify-
ing approximations often necessary. It is only recently that
fully three-dimensional calculations have become possible,
using either the smooth particle hydrodynamics (SPH) method
(Benz & Hills 1987, 1992; Cleary & Monaghan 1990; Davies et
al. 1992; Goodman & Hernquist 1991; Rasio & Shapiro 1991)
or more traditional finite-difference methods such as PPM
(Ruffert & Miiller 1990; Ruffert 1992). All of these studies have
focused on globular clusters, where the stars involved are low-
mass (M < 0.8 M) MS stars or red giants and the impact

Vol. 412

velocities are nearly parabolic. In the simulations of main-
sequence star collisions by Benze & Hills (1987, 1992), the
colliding stars were modeled as n = 3/2 polytropes with adia-
batic index I'; = 5/3. This model is only appropriate for very
low-mass stars with convective envelopes (M < 0.4 M,). For
higher mass MS stars with radiative envelopes (M 2 1 M),
the density profile is closer to that of an n = 3 polytrope.
Moreover, radiation pressure can become important in the
equation of state, so that the adiabatic index I'; is between 4/3
and 5/3.

In contrast to globular clusters, galactic nuclei may very well
contain younger, more massive MS stars with hyperbolic rela-
tive velocities. In addition, because of their higher stellar
density and velocity dispersion, successive stellar collisions and
mergers will likely result in the buildup of very massive stars
(Colgate 1967; Sanders 1970; Quinlan & Shapiro 1990).
Although globular clusters consist mainly of low-mass MS
stars, more massive stars could also form in their cores by the
process of successive mergers. These could result from single
stars going through successive collisions, or from the resonant
interaction between binaries (Goodman & Hernquist 1991).
The recent observation that about 15% of blue stragglers in
globular clusters may have masses above twice the turn-off
mass (Sarajedini 1993) provides some evidence that these pro-
cesses might indeed occur. Close encounters between massive
MS stars could also be important for the dynamical evolution
of young open clusters (Pols 1993), and could play a role
during the formation of stellar groups and associations. Much
denser clusters containing young massive stars have also been
observed recently in the Large Magellanic Cloud (see Meylan
1993).

In this paper we use the SPH method to calculate collisions
and close encounters between high-mass MS stars. We model
the stars as Eddington standard models (i.e., constant ratio of
radiation pressure to gas pressure throughout the star; see § 2).
This model is appropriate for MS stars with masses in the
range 1 My < M < 100 M. Our goal is to obtain a thorough
understanding of the physics of stellar collisions and close dis-
sipative encounters for MS stars in this mass range. In particu-
lar, we seek to answer two questions: (1) Given the stellar
masses, relative velocity, and impact parameter of the colliding
stars, what is the qualitative outcome of an encounter? (2) How
much mass is lost in the process?

Our paper is organized as follows. In § 2, we discuss some
qualitative features of our stellar model and the collision pro-
cesses, and derive some simple approximate scaling relations.
In § 3, we discuss our numerical method, including the set-up
of the initial conditions, mass-loss criterion, and the determi-
nation of the critical capture radius. In § 4, we present our
numerical results, including fitting formulae for important
quantities. In § 5, we apply our results to typical star clusters,
obtaining cross sections and rates for various processes. In § 6
we briefly summarize our findings.

2. QUALITATIVE OVERVIEW OF STELLAR COLLISIONS

In this section we introduce our model of a MS star, define
the key physical parameters, and derive some approximate
scaling relations. We also discuss qualitatively the various pos-
sible outcomes of close stellar encounters.

We specify a given stellar encounter by four parameters: the
masses of the two stars M, and M, (or, the mass of the more
massive star M, and the mass ratio g = M,/M, < 1), the rela-
tive velocity at infinity v,, and the periastron distance r,

o3
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(corresponding to the trajectory that the two stars would flow
if they were point masses). We determine the stellar radii from
the approximate mass-radius relation R oc M-8, More realistic
mass-radius relations for MS stars take the form R oc M?, with
é ~ 0.5-0.8, but our results are not very sensitive to the partic-
ular choice of exponent.

2.1. The Eddington Standard Model

The Eddington standard model of a MS star (see, e.g.,
Clayton 1983) is characterized by a constant ratio f of gas
pressure to total pressure throughout the star, so that

_ pkT

HUm M,

P

gas

= P,

Poo= % aT*=(1-p)P, @2.1)

where p,, is the mean molecular weight, m, is the proton mass,
a is the radiation constant and k is Boltzmann’s constant. The
pressure-to-density relation that determines the density profile
of the star in hydrostatic equilibrium is then

P = K(p)p*? ,

(k3 -pn
o= (o) 5

Therefore the density profile is that of a n = 3 polytrope. It is
convenient to define a nondimensional “mass parameter” «
via

(2.2a)
with

(2.2b)

M

o

i s (2.32)

<

c

where M, is given by a combination of fundamental constants
according to

k2 nZ -1/2 32
Here ag = GmZ/hc is the dimensionless gravitational “fine
structure ” constant and oG **m, = 1.85 M. For a given mass
parameter a, the value of f is uniquely determined by the
equation

1 — B2
(—?ﬁ)— . 2.4)

Thus radiation pressure is important only for very massive
stars (¢ = 10, i.e., M/Mg 2 50 for u, ~ 0.6). Using the virial
relation, the total energy of a star of mass M and radius R is
given by

7.89

2.5)

where W is the gravitational potential energy.

Although the density profile of the standard model is that of
a n =3 polytrope, the adiabatic index I', governing pertur-
bations is given by

r o oP\ 32— 248 —3p°
Y7 \op)s 24218

(see, e.g., Clayton 1983). Hence in general, 4/3 < I'; < 5/3. For
high-mass stars f < 1 and I'; ~ 4/3, while for low-mass stars,
B ~1and I'y ~ 5/3. The adiabatic index I' = 1 + 1/n govern-

2.6)
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ing the polytropic equilibrium density profile (P oc p"), is 4/3 in
all cases.
2.2. Disruption Velocity and Mass Loss
When two identical stars collide head-on, the minimum rela-
tive velocity at infinity v, required for compete disruption is

given approximately by the condition that the total energy in
the center of mass frame be zero,

M 3 GM?
TD§=2|E|=5ﬂ R 2.7
This condition gives
GM\'/?
va= (6'3’”2(T> = 3p)""0u
M 1/2 R\~ 1/2
~ 1070/}1/2(&2) ('R—O> kms™!, (2.8)

where v, is the escape velocity from one star. Clearly, high-
mass stars (which have small ) have smaller ratios of v, to v,
and hence can be disrupted more easily than lower mass stars.

For collisions between stars of different masses, the dis-
ruption velocity v, is higher since for a given relative velocity,
less kinetic energy is available in the center-of-mass frame to
disrupt the stars. In addition, because of the difference in the
stellar radii, a smaller fraction of the stellar volume participates
in the impact. Therefore, when the mass ratio is small, the stars
can avoid disruption even at very high impact velocity. This
expectation is confirmed by our numerical results (see § 4).

Since the more massive star has a smaller specific binding
energy and a lower density (poc M/R®oc M™14 for
R oc M°-8), most of the material lost in a collision comes from
the more massive star (M,). The ejected material must carry
away energy per unit mass ~ f,GM,/R,, corresponding to the
specific binding energy of the more massive star. For two stars
colliding with relative velocity at infinity v > v, the avail-
able kinetic energy is ~uv2, where u is the reduced mass.
Therefore, the mass fraction that can be lost must be
~uv> [(B,GM/R,) c v%/B,. On the other hand, even if
Vo < V., the relative velocity at impact is ~v,,.. Recoil shocks
are created and lead to the ejection of some shock-heated gas.
The amount of mass loss in this regime is nearly independent
of v, but depends on the initial stellar structure. Combining
both limiting regimes, we expect the fractional mass loss f,,;, =
M,/ (M, + M,) in a head-on collision to behave approx-
imately as

02
fml(rp= 0) >~ le + Dml X —= >
By
where C,; and D,, are constants which depend only on the
initial structure of the stars.

For off-axis collisions, the results are much more difficult to
predict. No simple analytic expression can be obtained without
the help of numerical results. In § 4, we shall discuss our
numerical results and derive fitting formulae for mass loss in
general stellar collisions.

2.9)

2.3. Critical Impact Parameter for Capture

Stellar collisions can lead to a variety of qualitatively differ-
ent outcomes, depending on the relative velocity, the perias-
tron separation, and the masses of the stars involved. The two
stars can form a bound system after a first dissipative encoun-
ter. This bound system should eventually merge into a single
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object, although in some cases a detached binary could be
formed. Alternatively, the two stars can also remain on a
hyperbolic orbit after the encounter, even though some orbital
energy has been dissipated and some mass has been lost.

There are two basic mechanisms for forming bound systems
or mergers in stellar encounters. One mechanism is tidal dissi-
pation, where part of the orbital energy is transferred to small-
amplitude stellar pulsations (Fabian et al. 1975). The capture
process in this tidal regime has been studied by many authors
(Press & Teukolsky 1977; Lee & Ostriker 1986; McMillan,
McDermott, & Taam 1987; Ray, Kembhavi, & Antia 1987;
Kochanek 1992). The other mechanism is shock dissipation in a
direct physical collision.

For a given relative velocity v, there is a maximum perias-
tron separation for the formation of a bound system. This
capture radius r,, decreases as v, increases. FOr v, < v, 7'eap
may be large enough that there is no physical collision between
the stars, and tidal dissipation alone determines whether the
stars become bound after their first encounter. In this tidal
regime, the capture radius r,, scales approximately as

—0.18
rcap C Vg, >

(2.10)

for n = 3 polytropes with adiabatic index I'; = 5/3 (Press &
Teukolsky 1977; Lee & Ostriker 1986). For low-mass standard
models, I'y ~ 5/3 and we expect the results of linear pertur-
bation theory to be applicable. Moreover, since the mass dis-
tribution in the standard model is very centrally concentrated,
we might expect equation (2.10) to hold approximately even for
near-grazing-incidence encounters, where only the outer
regions of the two stars collide.

In nearly head-on collisions, when r, < R; + R,, the domi-
nant mechanism for dissipating orbital energy is shock heating,
which is more efficient in dissipating orbital energy than tidal
interaction. Thus we expect the dependence of r.,, on v,, to
steepen in this regime (“ collision regime ). This expectation is
confirmed by our numerical results (see § 4).

3. NUMERICAL METHOD AND INITIAL SET-UP

Our numerical calculations are based on the smooth-
particle hydrodynamics (SPH) method (Lucy 1977; Gingold &
Monaghan 1977; see Hernquist & Katz 1989 and Monaghan
1992 for recent reviews). This method is well suited to the study
of close stellar encounters in three dimensions. Indeed, the
SPH method is completely Lagrangian, wastes no computa-
tional resources on empty regions and adapts easily to large
distortions of the fluid. Our code has been adapted from that of
Rasio & Shapiro (1991, 1992) to allow for the treatment of
more general equations of state. Since our goal in this study is
to obtain extensive coverage of a large, multidimensional
parameter space, we are restricted to a relatively small number
of SPH particles and low spatial resolution. All our calcu-
lations were done with a total of about 800 SPH particles, with
the number of particles for each star proportional to its mass.
This relatively small number of particles is not sufficient to
study the finer details of the hydrodynamics, but it is adequate
for the determination of all global quantities of interest such as
energy dissipation and mass loss, to within an accuracy of
about 10% (see Steinmetz & Miiller 1993). To obtain signifi-
cantly better spatial resolution, a much larger number of SPH
particles, or the use of a three-dimensional finite-difference
code would be needed. However, the computation time would
then make it prohibitively expensive to obtain good coverage
of the parameter space.
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We use time-dependent, individual particle smoothing
lengths h; to ensure that the spatial resolution remains accept-
able throughout a calculation. This is especially important
when using a limited number of particles. The value of h; is
adjusted at every time step so that the number of neighbors
that every particle interacts with remains approximately equal
to 64. The gravity is calculated by a convolution algorithm,
based on fast Fourier transforms (FFT) on a 1283 grid, which is
readjusted at every time step to the mass distribution in the
system. A typical run (integrating past the first periastron
passage only) takes about 3 CPU hours on an IBM 3090-600J]
supercomputer. In some cases, we have continued the integra-
tion up to the second periastron passage, which requires con-
siderably longer CPU time. Energy and momentum
conservation is monitored throughout the integration as a
measure of numerical accuracy. In all of our calculations, this
conservation was maintained to within a few percent.

In presenting our results, we adopt units such that G =
M, = R, =1, where M, and R, are the mass and radius of the
more massive of the two stars. The corresponding units of
velocity and time are

GM1 1/2 M1 1/2 R1 -1/2
= =436.7 — — kms™!
fo < R, ) Mg Re e

R:li 1/2 M -1/2 R 3/2
to = =1.594 x 103 — —L
° (GM1> ) &)

The escape velocity from the more massive star M is v, ; =
212y, The unit of temperature is

GM u,m M\, \( R\ 7!
T — 1M%m =1. 7, 1 Imoay 1 . .
° —Elen 1.61 x 10 (Me)(0.7)<Ro K. (32

(3.1)

3.1. SPH Equations

The SPH equations we used here are the same as those given
in Rasio & Shapiro (1991). However, the equation of state
includes both ideal gas pressure and radiation pressure. In the
units defined above, this equation of state can be written in
dimensionless form as P = P, + P,,4, Where

gas rad>
P =3pug, =pT,
gas ip gas P (3‘3)

_ 1 _ 1274
Prad = 3PUraa = SalT .

Here u,,, are u,,q4 are the specific thermal energy and radiation
energy.

In this work, we integrate the evolution equation for the
specific energy u = u,,, + u,q4, rather than using the entropy
equation. Note that for a polytropic equation of state, the
entropy equation of SPH is to be preferred (Rasio & Shapiro
1992), since the quantity A; = P,/p! provides a measure of the
specific entropy, which is conserved for adiabatic processes
(such as free expansion). Using the entropy equation of SPH
then automatically guarantees the conservation of specific
entropy in the absence of shocks. However, for a more general
equation of state, the expression for the specific entropy can be
complicated, and we find it more convenient to integrate the
energy equation,

du; P, 1
i Zm(; +3 I'Iij>(v,- —v) V,W;. (34)

Here I1;; is the artificial viscosity and Wj; is the SPH kernel (see
Rasio & Shapiro 1991, 1992, for details). Using equation (3.4),
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we update the total specific energy u for each SPH particle at
every time step. Then the specific thermal energy u,, and radi-
ation energy u,,4 are obtained by solving the two equations

Ugss _ (3)“_& -
Uraa 2 d% ’ 8
The first equation in this set was obtained by eliminating T
from the two expressions (3.3). In practice, we solve equation
(3.5) by iteration, using the values of u,,, and u,,4 at the pre-
vious time step as initial guesses. We find that this procedure is
very efficient, taking usually just a few iterations to converge.
Although we integrate the energy equation of SPH to evolve
the system, we can nevertheless calculate the total entropy of
the system as

S = Zmi(sgas.i + srad,i) + SO ’/
i /

(3.5)

urad =u.

(3.6)

where S, is an arbitrary constant chosen so /hat S=0att=0.
This quantity provides a measure of the amount of shock dissi-
pation during an encounter. The gas entropy and radiation
entropy per unit mass for particle i are g/» en by

3k Pl
Sgui = 3 —2In CL 5,3) ,
2 Um mp /pi
(3.72)
4aT} |
S =T,
rad,i 3 pi

or, in dimensionless form [with s, and s, in units of
k(m,)~ " and S in units of kg My (g, m,) ™1,
3

sgas,i

2
4 /1 2 u?adi 14
Srad,i = 3 ay/ <T) .

3.2. Initial Conditions and Set-up

We specify the stellar masses by giving the mass parameter
o, (cf. eq. [2.3]) of the more massive component, and the mass
ratioq = M,/M, = a,/a; < 1. The values of f for the two stars
are then fixed using equation (2.4). The initial trajectory is
specified by the periastron separation r, and relative velocity at
infinity v,. For nearly head-on collisions, the two stars are
placed at t = 0 a distance d ~ 2(R; + R,) apart. This initial
separation is large enough that tidal effects can be ignored in
constructing the initial data. For more distant encounters (with
r, 2 Ry + R,), the two stars are placed further apart initially.

The stars are constructed by placing SPH particles on a
cubic lattice and adjusting the particle masses according to the
density of a n = 3 polytrope (i.e., m; oc p;). The initial values of
the specific energies u, u,,, and u,,, are obtained from equa-
tions (2.2) and (3.3). This procedure has the advantage of main-
taining good spatial resolution throughout the star, including
near the stellar surface (Rasio & Shapiro 1991). It leads to a
more accurate determination of mass losses, since most of
escaping gas originates from the outer regions of the stars.
Using equal-mass particles and representing the density profile
by varying the number density of particles would result in
much lower spatial resolution in these outer regions and can
lead to large errors in the determination of mass losses.

3.3. Mass Loss Criteria

The method we use for determining the amount of gas lost in
stellar collisions is similar to that explained in Rasio & Shapiro

2y,
I 3p.~2’3) ’

(3.7b)
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(1991). First we need to group the particles into different com-
ponents. This is done as follows. For each particle i and each
component n, we calculate the specific enthalpy of the particle
with respect to the component as

1 P,
h}n) = 5 (Ui et v(&:,)z + u; + j + ¢i . (3.8)

Here »®), is the center-of-mass velocity of the nth component
and ¢; is the gravitational potential at r;. Particle i is assigned
to the component for which A is minimum. If A" is positive
for all components, the particle is part of the escaping gas.
Clearly this method must proceed by iterations. In the limit
where the various components are well spatially separated and
in steady state, the criterion is exact.

In a few cases of very-hyperbolic, nearly head-on collisions
that we have calculated, some components are still rapidly
expanding at the end of the calculation, and it is difficult to
determine whether they are gravitationally bound (see § 4). In
those cases we had to supplement the above criterion by calcu-
lating approximately the total energy of each component in its
center of mass frame as

EQ =3 [3mv; — v&)° + m;u; + 3m; ¢] . (3.9)
When E® < 0, we assume that the component will eventually
recontract and form a bound object, with no mass lost in the
process. Otherwise, we expect it to remain a freely expanding
gas cloud, and the mass of this component is then included as
part of the mass lost from the system.

To determine how sensitive our results for mass losses are to
the number of SPH particles, we have repeated a typical calcu-
lation with an increasing number of particles and improving
spatial resolution. Specifically, the amount of mass loss in a
head-on collision between two stars with a = 1 and v, = 1.187
was recalculated several times with different numbers of par-
ticles. The results are the following: for N = 2000 particles,
with 32 neighbors per particle, the fractional mass loss f,,; ~
11.5%; for N = 4000, with 32 neighbors, f,, ~ 10.0%; for
N = 8000, with 64 neighbors, f,, ~ 9.30%; for N = 16,000,
with 64 neighbors, f,,; ~ 8.92%; and for N = 32,000, with 64
neighbors, f,,, ~ 8.85%. We conclude that a calculation using
N = 8000 particles allows us to determine the fractional mass
loss to an accuracy of about 1% of the total mass.

3.4. Determining the Capture Radius

The orbital energy after the first periastron passage can be
calculated as

4 — /v'z_

MM,
orb — 2 s

(3.10)
r

where M} and M/ are the masses of the two components after
the encounter (M| < M, and M) < M, in general), y' =
M M},/(M;, + M%), and v, is the relative velocity of the two
components. If E,, <0, a bound system has formed. The
capture radius r.,, is determined by the condition E;, =0
after the first periastron passage, or, equivalently, by AE =
uv? /2, where AE is the amount of orbital energy dissipated.
Using this procedure, we can determine r.,, for encounters
with v, < v, to within an accuracy of about 10%, given our
numerical resources. For very small relative velocity, r.,, > R,
+ R, and the amount of energy dissipated is very small and
difficult to determine accurately. The smallest relative velocity
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for which we have calculated r.,, is v,, = 0.173. To determine
Teap accurately for smaller v,, would require calculations with
much larger numbers of particles. For very high-velocity colli-
sions (v, > v,,), the capture radius is also difficult to deter-
mine numerically, since these collisions are highly disruptive,
and it takes a very long integration time to be able to dis-
tinguish between a bound or unbound final state (see § 4.1).

4. NUMERICAL RESULTS

4.1. Qualitative Outcome of a Collision

The qualitative outcomes of all our simulations are sum-
marized in Figures la-le. In these plots, each point corre-
sponds to an encounter with given r, and v, with different
symbols used to distinguish the various types of outcomes. The
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solid lines show the boundary of the region in parameter space
where a bound system is formed. These lines were determined
using the criteria discussed in § 3.4. Each plot corresponds to a
different combination of stellar masses (specified in terms of a,
and g). We have performed calculations with ¢ = 1, 0.5,0.2, 0.1,
and for a; = 1, 10 (M;/M ~ 5, 50 for pu,, ~ 0.6-0.7; see eq.
[2.3]). These values of masses reflect a reasonable range of
parameter space, since only at very high mass (M 2 50 M)
can radiation pressure start to play a role in the hydrostatic
equilibrium of the stars.

4.1.1. Collisions Between Stars of Equal Masses

Figure 1a summarizes our results for all collisions between
two identical MS star with o = 1, i, with M, = M, ~ 5 M
(for u,, ~ 0.67). These represent solar-type stars with I'; ~ 5/3
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F1G. 1.—Summary of our results for the qualitative outcome of encounters with relative velocity v,, [in units of (GM,/R,)"2] and periastron distance r,. Bach dot
corresponds to a different calculation. Various possible outcomes are specified by different symbols (defined in the figure; see text for details). The different plots
correspond to different combinations of the mass parameter «, (defined in eq. [2.3]) and the mass ratioq = M o/M, < 1. The solid lines show the boundary of the
region where collisions lead to the formation of a boundary system (merger or binary). The dashed lines are from our numerical fitting formula (eq. [4.6]) for the
critical capture radius r,,,. (@) Collisions of equal-mass stars with «, = a, = 1; (b) @, = a, = 10; (c) Collisions of unequal-mass stars: the more massive star has

o, = 10, the mass ratio is ¢ = 0.5; (d) «; = 10,g = 0.2;(¢e) &, = 10,4 = 0.1.
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and negligible radiation pressure (f = 0.9849). Figure 1b corre-
sponds to o = 10 for both stars, i.e, M; = M, ~ 50 M. These
are massive MS stars in which radiation pressure is important
(B =0.6721, T'; = 1.468). They are much easier to disrupt in a
close encounter (cf. eq. [2.8]).

We have carried out calculations for v, ranging from 0.173
to 3.873 (in the units given by eq. [3.1]), corresponding to
relative velocity from ~75 km s~ ! to ~1700 km s~ ! The
values of r,/(R; + R,) range from 0 to 1.25. For small enough
r,, the stars merge during their first encounter. Collisions
leading to such immediate merging of the two stars are rep-
resented by solid round dots in Figure 1 and are labeled
“merger.” In Figure 2, we show a typical example of such a
collision for two stars with o = 1. Density contours in the
orbital plane are shown at different times. The initial trajectory
has v,, = 2.828 and r, = 0.155. Shock heating of the gas in this
nearly head-on collision leads to rapid adiabatic expansion of
the merged object for t > 2. Some of the material is accelerated
to beyond the escape velocity and is lost from the system.
Because of angular momentum conservation, the merged

Fic. 2.—Typical encounter leading to one-stage merging. Both stars have
a = 1, and the initial orbit has v,, = 2.828 and r, = 0.155R,. Time ¢ is in units
of (R3/GM )2, In each frame, L indicates the length scale, with —L < x/R,
y/R, < L. Density contours in the orbital plane are shown. The 16 contours,
spaced logarithmically, cover four decades down from the maximum (the solid-
line contours cover the first two decades), i.e., the density of the nth contour is

given by p,/p ., = 10774,
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object rotates rapidly and sheds some mass from its equator as
it recontracts. About 30% of the total mass is lost eventually,
and more than half of the initial orbital angular momentum is
carried away by the escaping material. As a result, in the end of
the calculation, the merged object has a ratio of rotational
kinetic energy to gravitational binding energy T/|W| < 0.1,
well below the maximum value of ~0.14 for stability (see, e.g.,
Tassoul 1978).

For larger r,, a smaller fraction of the orbital energy is dissi-
pated and the stars remain on a hyperbolic orbit, although
their internal structure may be perturbed quite significantly
and some mass may be lost. We have labeled this type of
outcome as “two stars” and represented it by solid squares in
Figure 1. In Figure 3, we show a typical example of such an
encounter. All parameters are the same as in Figure 2 except
that r, = 0.336R, is slightly larger. The outer regions of the
two stars collide and are eventually disrupted with a total mass
loss of about 15%. The stellar cores expand somewhat due to
shock heating, but they start recontracting adiabatically imme-
diately after the encounter and ultimately retain their identity.

For a narrow range of intermediate values of r,, a bound
system in a highly elliptical orbit is formed after the first
encounter. Subsequent periastron passages are likely to

F1G. 3—Typical encounter between two identical stars with « = 1 leading
to “two stars” in the end. Here v, = 2.828 and r, = 0.336R,. Conventions are
asin Fig. 2.
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become more nearly head-on impacts since r, decreases as a
result of dissipation. However, in general, it is computationally
very costly to follow the dynamical evolution through a com-
plete orbit and we must terminate the integration soon after
the first periastron passage. We label such cases as “binary ” in
Figure 1 and indicate them as open circles. We emphasize,
however, that these may only be short-lived binaries and that
we expect eventual merging in most cases (see § 4.4). In a few
cases where the first orbital period is sufficiently short we have
extended our integration past the second periastron passage to
confirm that this merging takes place. An example of such a
two-stage merging process is illustrated in Figure 4. The two
stars have a =1 and the initial orbit has v, = 1.187, r, =
0.5R;.

To better understand some of the results, we have plotted in
Figure 5 the evolution of various global quantities during the
encounter depicted in Figure 4. This evolution proceeds most
rapidly near periastron. Figure S5a shows the evolution of the
various energies of the system. Conservation of total energy is
maintained to within a few percent. Figure 5b shows the total
entropy in the system, calculated using expressions (3.6) and
(3.7). This quantity provides a measure of shock dissipation in

Vol. 412

the gas. Figure 5S¢ shows the maximum density in the system
(solid line) and the maximum temperature (dashed line) as com-
pared to their initial values. These provide a measure of com-
pression in the system. Clearly, most of the entropy is
generated during the first impact, when the system is com-
pressed to high density and temperature, and in the subsequent
nonadiabatic recontraction of the two stars. Note that at the
end of the dynamical evolution, the merged object has a much
smaller density than that of the initial MS stars, but the tem-
perature has changed very little. We find this to be a generic
result in all collisions. Although the merged object is not in
thermal equilibrium (the Kelvin-Helmhotz time is much longer
than the dynamical time), nuclear burning may still be possible
immediately after the dynamical phase. During the impact, the
temperature can rise to somewhat higher values due to shock
heating and compression. This may lead to more rapid nuclear
burning. However, the duration of the high-temperature phase
is very short and the nuclear energy generation has negligible
effect on the hydrodynamics (see also Mathis 1967; Rozyczka
et al. 1989). In Figure 5d we plot the mass fraction of the
escaping material as a function of time. We see clearly that
most of the escaping material is liberated during the impacts,

t=0 t=15
t=2 t=25

FiG. 4—Typical encounter leading to a two-stage merging. Both stars have a = 1, and the initial orbit hasv,, = 1.187 and r, = 0.5R,. After the first periastron
passage, the two stars become bound in an elliptical orbit. On the second periastron passage, they merge into a single object. Conventions are as in Fig. 2. Here L = 5

remains unchanged throughout.
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FiG. 5—Evolution of various global quantities during the collision N ((:')j\\"z';'= 00

depicted in Fig. 4. (a) Various energies (in units of GM%/R,): the long-dashed
line is the internal energy, the short-dashed line is the kinetic energy, the dotted
line is the gravitational potential energy and the solid line is the total
(conserved) energy. (b) Total entropy [in units of ky M ,(u,,m,)~'] of the gas,
calculated from egs. (3.6) and (3.7). (c) The solid line shows the maximum mass
density in the system, in units of the initial maximum density; the dashed line
shows the maximum temperature in units of the initial maximum temperature.
(d) The fraction of the total mass that appears to be escaping, determined as
explained in § 3.3.

when strong recoil shocks result in rapid acceleration of the
gas. For this particular collision, about 6% of total mass is lost.

At very high velocity (v, > v.), @ nearly head-on collision
can lead to the rapid and complete disruption of both stars and
the formation of either a single or two separate expanding gas
clouds. This happens more readily for very massive stars,
which are more easily disrupted (see eq. [2.8]). We have
observed such outcomes for several collisions between two
stars with a = 10. They are labeled as “one cloud” or “two
clouds” in Figure 1b. We note that because of the highly dis-
ruptive nature of these collisions, the distinction between those
two types of outcome can be difficult to make. Figure 6 shows
an example of such a highly disruptive collision between two
stars with a = 10. The initial trajectory has v, = 3.87 (v, /v; =
1.93), and r, = 0.3. At the end of the calculation (t = 40), the
system has expanded by more than factor of 100 and still
shows no sign of recontraction. In Figure 1b, this particular
case was labeled “ two clouds.”

FiG. 6—Typical high-velocity collision between two identical stars with
o = 10, leading to complete disruption (“two clouds”). Here v, = 3.87 and
r, = 0.3R,. Conventions are as in Fig. 2. At the end the calculation (¢ = 40), the
system has expanded by a factor of ~ 100, and the two gas clouds are still
expanding.

4.1.2. Collisions Between Stars of Unequal Masses

Figures 1c—1le summarize our results for collisions between
two stars of different masses. The more massive star has a mass
parameter o, = 10 (M, ~50 M, for u, ~0.7, and B, =
0.672). The mass ratios considered are g = 0.5, 0.2, and 0.1. The
corresponding masses of the smaller star are M,/M , =~ 25, 10,
5 and the values of § are ff, = 0.819, 0.948, 0.985, respectively.
The impact velocities used in our calculations range from
v, = 0.173 to v, = 3.8 (in the units given in eq. [3.1]), and
r,/(R; + R,) ranges from O to 1.4.

Collisions between stars of unequal masses show important
new qualitative features, because the less-massive star is also
smaller and denser (recall that the mean density p oc M/R> oc
M~'%). For relatively small v, and r, (0, S Veser T S Ry
+ R,) the smaller star can penetrate further into the more
massive star before losing its identity and merging with the
surrounding gas. In Figure 7, we show a typical example of
such a collision between two stars of unequal masses (a; = 10,
g = 0.2). The initial trajectory hasv,, = 0.5and r, = 0.5R,. We
see clearly that the smaller star can travel through the outer
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t=0.5

Fi1G. 7—Typical collision between two different stars leading to a merger.
The more massive star has «; = 10, and the mass ratio ¢ = 0.2. Here v, = 0.5
and r, = 0.5R,. Conventions are as in Fig. 2. Here L = 3 remains constant
throughout.

regions of the more massive star for several dynamical time.
Both stars expand and, eventually, the smaller star settles
down and merges with the core of the more massive star.

For very high relative velocity (v, > v.), the smaller star
can traverse the more massive, lower density star without
losing its identity, even for very small impact parameters
(Colgate 1967; Sanders 1970; Benz & Hills 1992). However, as
it passes through the massive star, the lower mass star still
suffers significant shock heating. As a result, it undergoes adia-
batic expansion and may eventually become unbound. We
have labeled this type of outcome “star + cloud” in Figures
1c-le. In Figure 8 we show an example of this type for o, = 10
and g = 0.1. The initial trajectory has v, = 2282 and r, =
0.4R,. The smaller and denser star penetrates through the
outer envelope of the more massive star and disrupts it. Most
of the mass loss comes from this initial disruption. After it
emerges from the massive star, the smaller star expands adia-
batically and becomes an unbound gas cloud. The more
massive star also expands as a result of the encounter, but is
not completely disrupted. About 14% of the total mass is lost
in this collision, with about two thirds of the lost material
coming from the envelope of the massive star. The more

F1G. 8—Typical collision leading to the complete disruption of one star
(“star + cloud ”). Here the more massive star has a;, = 10, ¢ = 0.1, and the
initial orbit has v, = 2.828 and r, = 0.4R,. The smaller star penetrates the
more-massive star and emerges as an unbound gas cloud. Conventions are as
in Fig. 2.

massive star reaccretes some of the material from the expand-
ing gas cloud so that its final mass is about 0.95M ,.

Figure 9 shows the evolution of various global quantities
during the g = 0.1 collision depicted in Figure 8. Before the
encounter, the smaller star was about 25 times denser than the
massive star. After the encounter, since the smaller star is dis-
rupted, the maximum density in the system is now at the center
of the more massive component. The final central density of the
massive component is about 4 times smaller than it was ini-
tially. In contrast, the central temperature is hardly changed, as
already observed in the cases of equal-mass collisions (§ 4.1.1).

In all our calculations of head-on collisions between unequal
mass stars, we have never observed a case in which the smaller
star could pass through the more massive star and not be
disrupted as a result—the smaller star always suffers enough
shock heating while passing through the massive star to
become unbound. This is in contrast to the results of Benz &
Hills (1992) for n = 3/2(I'; = " = 5/3) polytropes with g = 0.2.
The different behavior may result from the higher central con-
centration of the n =3 polytrope (p./p = 54.2 for an n =3
polytrope, while p./p = 6.0 for n = 3/2). Indeed, even for a
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F1G. 9.—Similar to Fig. 5, but for the collision depicted in Fig. 8

[9)]

mass ratio as small as g = 0.1, although the mean density of
the smaller star is about 25 times larger than that of the more
massive star, the central density of the massive star is still
larger than the mean density of the smaller star. Therefore, it
seems unlikely that the smaller star could pass through the
core of the massive star without being disrupted. Note that this
conclusion depends to some extent on the mass-radius relation
of the stars. If we choose R oc M®-55 (more appropriate for very
massive MS stars), then for g = 0.1, the mean density of the
smaller star is only 4.5 times that of the more massive star.
Thus it is even more unlikely than the smaller star can pen-
etrate through the core of the more massive star without being
disrupted. While it may still be possible for an even smaller star
to survive a head-on collision with relative velocity v, > v,
(Colgate 1967), we do not explore this possibility here. Finally,
we note that, in the case of small mass ratio, although the mean
densities of the two stars are very different, their specific
binding energies are comparable (they mainly differ by a factor
of B; see eq. [2.5]). For example, the specific binding energies of
a1l Mg star and a 50 M, star differ by less than a factor of 2.
Therefore, representing the low-mass star by a point mass (as
done by Benz & Hills 1992) may not be a good approximation.

4.2. The Capture Radius

As discussed in § 2, for a given relative velocity v, there
exists a critical periastron separation r,, for the formation of a
bound system. In Figure 1, the solid lines show the variation of
Teap (determined as explained in § 3.4) as a function of v,,. In
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Figure 10, we plot these r.,,~v,, curves on a logarithmic scale
for two mass combinations:a; = 1,4 = landa; = 10,4 =0.1.
The curves for other mass combinations that we have calcu-
lated lie between the two curves shown in Figure 10.

42.1. The Tidal Regime

It is interesting to compare our results for the capture radius
with the predictions of linear perturbation theory of tidal
capture. The orbital energy dissipated in a star of mass M, and
radius R,, during a tidal encounter with a star of mass M, and
radius R, is approximately given by

GM? (R,\®
AEi e(M ) z.f <_ s
tid 1 Rl rp

where r, is the periastron distance and f is a dimensionless
factor of order unity (Fabian et al. 1975). A similar expression
can be obtained for AE,;; (M ,). Clearly, tidal dissipation in the
more massive star is dominant. The critical radius for capture

@.1)

Teap is determined by the condition that AE,, ~ uv? /2, which
gives
r ql/6
—ER U6 L - 1/3 4.2)

R, + R, 1+ "=

More detailed calculations of tidal capture using linear pertur-
bation theory indicate that foc r, *, i.e., AEgq, oc 7, '* (Press &
Teukolsky 1977; Lee & Ostriker 1986). This implies r,, o
v,%-18, For two identical n = 3 polytropes with adiabatic index
I, = 5/3, the result of Lee & Ostriker (1986) can be fitted
approximately by the following expression:

-0.18

TeapLO) _ 0.575(";*’) — 061202018 . (43)
R 1 + Rz v

A standard model MS star with « = 1 has the density profile

of an n = 3 polytrope and an adiabatic index I'y = 1.644 ~

5/3. Therefore we expect that our values of r.,,, for low-velocity
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FiG. 10—The capture radius r.,, as a function of relative velocity v,
determined using the method of § 3.4. The dotted line is foro; = 1, ¢ = 1, and
the dashed line is for o, = 10, g = 0.1. The solid lines show our fitting formula
(eq. [4.4]). The long-dashed line on the left shows the tidal capture radius
obtained from linear perturbation theory (eq. [4.3]). For small v, to the left of
the first vertical line, tidal dissipation dominates in the capture process (“ tidal
regime”), while for larger v, shock dissipation dominates (“collision
regime ”). At very high velocity, collisions are very disruptive and the numeri-
cal values for r,, , are not well determined (see text).
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collisions between two stars with o = 1 should approach those
given by equation (4.3). Indeed, for encounters with v, = 0.178
(the smallest value we considered), the critical capture radius
Teap = Ry + R,. Although the outer envelopes of the stars
collide, shock dissipation is negligible since the density profiles
(n = 3 polytrope) are so centrally concentrated. In Figure la
and Figure 10, we see that our numerical curves do indeed
appear to converge to the Lee-Ostriker result (eq. [4.3]) for
small v . For v, = 0.173, the two results differ by about 10%,
but the power-law scaling of our curves in the low-velocity
limits is very close to that of equation (4.3). Limited numerical
resolution makes it difficult to determine r_,, for a collision
with smaller v, (see § 3.4).

When r, < R, + R,, the differences between our numerical
results and those obtained from linear theory increase, indicat-
ing the breakdown of the linear approximation. At small r,,
linear theory tends to underestimate the tidal energy dissi-
pation by a factor of a few. This fact was also demonstrated by
Rasio & Shapiro (1991) using SPH simulations of polytropes,
and by Kochanek (1992) and Kosovichev & Novikov (1992)
using the affine model of Carter & Luminet (1985). However,
note that r_,, is not very sensitive to the exact amount of tidal
dissipation. Indeed, since AEq, oc r, '*, even if AE,,, is under-
estimated by a factor of 2, the value of r,, is hardly changed.
Thus the linear theory can still give reasonably accurater,,,,.

Our results for the capture of stars with @ = 10 show larger
deviations from those of Lee & Ostriker (1986). This is in part
because I'; = 5/3 is assumed in their calculation, while I'; =
1.468 for a standard model with o = 10. The value of I'; affects
the structure of the stellar pulsation modes which are excited
during a tidal interaction. New calculations of the tidal capture
mechanism using the method of Press & Teukolsky (1977) for
polytropes with I'; < 5/3 would be useful.

cap

4.2.2. The Collision Regime

For encounters with larger relative velocity v, tidal dissi-
pation is not sufficient to form a bound system and we find that
Teap < Ry + R,. In this collision regime, shock dissipation is
the dominant mechanism for capture. In Figure 10, we see that
as v,, increases and r.,, decreases, the dependence of r,, on v,
becomes much steeper than in the tidal regime. Our numerical
calculations provide a smooth transition from the tidal regime
to the collision regime. For very high relative velocity (v, >
2.4, or vy, /v, > 1.7), it can be difficult to determine precisely
the final outcome of a collision, especially for r, near r,,. This
is because of the nearly complete disruption of the stars (see the
discussion at the end of § 4.1.1 and Fig. 6). Although our results
for r.,, are uncertain in this limit, this is rather unimportant
since very little mass is left in the bound, merged object.

4.2.3. Fitting Formulae

Our numerical results for the capture radius r,, can be fitted
approximately by the following relation:

Feap 0.173\" »
Rl + R2 - Acap(aly q)( voo > ( . a)
with
v 1/2
n=0.18 + (f) , (4.4b)

where v, is in the units of equation (3.1) and 4, is a dimen-
sionless coefficient depending on the masses of the two collid-

Vol. 412
TABLE 1
FITTING PARAMETERS?
oy
PARAMETER 1 10 10 10 10
PR 0.9849 0.6721 0.6721 0.6721 0.6721
q=M,/M,....... 1 1 0.5 0.2 0.1
P 0.95 1.10 1.18 1.30 1.38
Crap covenvennenennnn 0.06 0.06 0.05 0.02 0.002
Doy, 0.0120 0.0120 0.0127 0.0125 0.010
App ceeveneneanenns 0.50 0.50 0.55 0.67 0.90
AA 0.075 0.075 0.12 0.13 0.14

o, is the mass parameter (defined in eq. [2.3]) of the more massive star
(«; = 1 corresponds to a mass M; ~ 5 M, for p,, = 0.6-0.7). The value of §
is determined from eq. (2.4). The parameter A4, is used in the critical capture
radius r,, (eq. [4.4]), C,, and D, are used in the expression for the fraction-
al mass loss from head-on collisions (eq. [4.7]), A, and AA,, appear in eq.
(4.10), which is used in the fitting formula for the fractional mass loss in
off-axis collisions (eq. [4.9]).

ing stars. The values of 4, are listed in Table 1 for different
mass combinations. The exponent # in equation (4.4) has been
chosen so that the limiting scaling of equation (4.3) is recovered
in the v, <1 limit (“tidal regime™). At the same time, the
steepening of the r.,, versus v, relation in the high velocity
collision regime due to higher efficiency of shock heating in
dissipating the orbital energy can be modeled by the depen-
dence of  on v, introduced in expression (4.4b). In Figure 1,
the fitted curves are shown as dotted lines. We find that expres-
sion (4.4) can fit all our numerical results to within about 10%
for v, < 2.4. At higher relative velocity, the hydrodynamics is
more complicated and equation (4.4) no longer applies.

The dependence of the coefficient A4.,, on the masses of the
two stars (Table 1) can be fitted quite accurately by the expres-
sion

Acap(ah q) = Acap(ab q= 1)/‘10.10 . (4‘5)

From Table 1, we see that A, (a;, ¢ =1)~ 1, and that it
increases with o;. While we give no theoretical justification for
this simple expression, we point out that this power-law scaling
with g is very different from that expected from simple tidal
break-up considerations. Indeed, setting r_,, equal to the criti-
cal binary separation for “Roche lobe overflow” would give
Feap/Ry o (1 + @)1, 01 Agy oc (1 4+ 9)/(1 + %), a much
steeper dependence than indicated by our numerical results.
The dependence of 4,,, on g for a; = 10is illustrated in Figure
11.

4.3. The Mass-Loss Fraction
4.3.1. Head-on Collisions

In § 2.2, we have discussed some qualitative features of mass
losses from head-on collisions. Clearly, an expression such as
equation (2.9) is a rather crude approximation which ignores
some of the complicated hydrodynamic processes leading to
mass losses. Nevertheless, we might expect the fractional mass
loss in a head-on collision to exhibit a similar dependence on
v2 /B, (as in eq. [2.9]); we also expect the mass loss fraction to
depend on the reduced mass poc 2g/(1 + g), reflecting the
available energy uv2, and also on the mass ratio g, reflecting
the fraction of effective collision region of the stars. Thus we
have attempted to fit our numerical results by the following
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2\ vi1 2 v2
fm.(rp=0)=cml(a1,q>+Dm,(a1,q)<‘l’,;'°> (:j’—q) 0. @6)

where the exponents v,, v,, and v; are constants, and C,,, D,
depend only on the masses of the two stars.

Our numerical results for mass losses are illustrated in
Figure 12 for various mass combinations. Figure 12a shows
Jm(r, = 0) as a function of v, for two identical stars with
oa =10 or a = 1, while Figure 12b compares the results for
different mass ratios when the more massive star has fixed
o, = 10. Fitting these numerical results with the expression
(4.6), we obtain

2\1.4 2 0.4
fml(rp = 0) = le(al’ q) + Dml(al’ q)<;;.:> <1__:1q> qo.z s

@.7)

with the values of the coefficients C,, and D, given in Table 1
for various combinations of masses. In Figure 12, the lines
show the results of our fitting formula equation (4.7) using the
parameters in Table 1. This fit is accurate to within about 20%
(i.e., Of mi/fun < 20%) when f,, 2 5%, while the error on f,,, can
be a few percent of the total mass when f,,, < 5% (recall that
the typical numerical error bar for mass loss is df,,; ~ 1%, see
§ 3.3).

We note from Table 1 that the coefficient D, ~ 0.012,
almost independent of the masses. At the same level of approx-
imation, we can fit the coefficient C,, approximately as C,,; ~
0.06¢"%(29)°*/(1 + ¢)°*. Combining these expressions, we get

2\1.4 4
Sty = 0) = |:0.06q + 0.012(%”) ](1—2_:1—‘1)0 2. (48)

Fi1G. 12—Mass-loss fraction in head-on collisions. The dots show our
numerical results. The lines are from our fitting formula, expression (4.7), with
parameters given in Table 1. (@) Equal-mass collisions with «; = 10 and a; =
10 and a; = 1. (b) Collisions with different mass ratios, ¢ = 1, 0.5, 0.2, 0.1,
where the more-massive star has «; = 10.

We find that equation (4.8) can be used to predict the mass loss
fraction in any head-on collision to within an accuracy of
about 30%.

4.3.2. Off-axis Collisions

The numerical results for mass losses from collisions with
r, # 0 are much more complicated. In Figure 13a-13e, we
show the fractional mass loss f,,; as a function of periastron
distance r, for different relative velocities v,, and five different
combinations of masses. We see that the behavior of £, can be
quite complex. In particular, f,,, does not always decrease
monotonically as r, increases. This arises mainly from two
different effects. One is that, as we noted before, for some inter-
mediate values of r,, a short-lived detached binary forms after
the first periastron passage and merging takes place only after
a subsequent periastron passage. In these cases, shock heating
is enhanced and more mass is lost than in a one-stage merging.
The same behavior has been noticed by Benz & Hills (1987) in
their simulations of collisions between n = 3/2 polytropes. The
effect is especially pronounced for low-velocity collisions such
as those shown in Figure 13b for two equal-mass stars with
oy, = 10 and v, = 0.173. The second effect is that, for r, # 0,
the high-density central region of one star tends to collide with
the low-density envelope of the other. In such cases, a signifi-
cant fraction of the infall kinetic energy of the colliding fluid
elements still remains after the impact, and the net impulse

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...412..593L&amp;db_key=AST

T 14125159310

3A0

I'I_

606 LAI, RASIO, & SHAPIRO Vol. 412
L A N — T T ]
a,=1, g=1 (a): a,=10, q=1 (b)7
0.5 - 05 v,=3.87 3
o v.=3.87 v.=2.83 ]
_ av.=2831 _ v.=173 |
= . v.=1.19{ A v.=1.19
z T Ot v.=0.173 3
IR Sl _ T oosf==m——~ 3
0.05 - I ]
0 0.2 e 00l ———5 0.4 0.6
r,/ (R +R,) r./(R;+R;)
1r T ELALELELA BLELELELEE BRSNS B
i a,=10, q=0.2 (d)
0.5_—
;:-‘\: .
“_‘E 0.15—
0.05F
LA B B L B EL AL  BA
a,=10, q=0.1 (e) |
e v.=3.80
s v.=2.83
gn' 0.1 T ]
E ]
\
0.05 \ m
\ O\
o ISR TE S AT ST SN BTSN ST AR SN TSN |\1 P N

r,/(R,+R,)

F1G. 13.—Fractional mass loss f,,(r,) for general off-axis collisions of stars with different combinations of masses. The dots show our numerical results, with
different symbols indicating different values of the relative velocity v,,. The dashed lines are from our fitting formulae, expressions (4.7), (4.9), and (4.10) with

parameters given in Table 1.

imparted by the higher density fluid elements can easily eject
the lower density fluid elements in the other star. This effect is
dominant for high-velocity collisions between unequal masses,
such as the a; = 1, ¢ = 1 collisions with v, = 3.87 in Figure
13a, a; = 10, g = 1 collisions with v, = 2.83 in Figure 13b, and
oy, = 10, g = 0.2 collisions with v, = 2.83 in Figure 13f.

Combining all the numerical results for mass losses in off-
axis collisions into a simple analytical fitting formula is clearly
a difficult task. However, there is at least one generic feature
reflected in Figure 13 that we can model easily: in all cases,
there is a characteristic periastron distance r,,, below which f,,
remains approximately constant and equal to f,(r, = 0). For
7, 2 T fun decreases rapidly in most cases. This motivates a fit
to a Fermi-Dirac-type function,

f ml(r P = 0)
€Xp [(rp - rml)/Arml] +1 ’

Joulry) = 4.9)

where Ar,, is a parameter measuring the width of the tran-
sition around r = r,,. The dependence of the parameters r,,
and Ar_, on v is shown in Figure 14 for different values of g.
Their dependence on the mass parameter a is too weak to be
determined numerically given our numerical accuracy. Thus
we assume that r; and Ar_ are functions of g and v, only. The
dashed lines in Figure 13 show the variation of £, as predicted
by equation (4.9). We used the values of r,,,;, and Ar,, given in
Figure 14, and calculated f,,(r, = 0) from equation (4.7). We
see that equation (4.9) provides a reasonable estimate of the
mass losses, although it does not reproduce all the details of
our numerical results.

The critical mass-loss radius r,,, and the parameter Ar,, are
somewhat related to the critical capture radius r.,, discussed in
§ 4.2. Indeed, for a near-grazing collision leading to “two
stars ” (see § 4.1), only the outer layers of the stars suffer physi-
cal collision and mass loss is relatively small. Instead, for a
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FiG. 14—Variation of the fitting parameters r,,,, and Ar,, (cf. eq. [4.9]) with
relative velocity. The dots show the best choices of r; and Ar,, that fit the
mass loss with expression (4.9) for different mass ratios. The lines show the fit
to the dependence of r,, and Ar,, on v, with expressions (4.10).

nearly head-on collision leading to a merger, the entire volume
of the stars undergo shock heating and, as a result, more mass
is lost. Thus, in analogy with expression (4.4) for r_,,, we have
tried to fit the variation of r,; and Ar_, in Figure 14 with the
expressions

Pl 0.173\?
ml 4.10:
Rl +R2 Aml( vw > ( a)
and
Ar,, 0.173)\°
—T = AA 4.10b
R; + R, ml( 2 ) ’ ( )
where
1
o0=—(1 L2y .
10( + vy5°) (4.10c)

The coefficients A, and AA,, are functions of the mass ratio
only. Their values are given in Table 1 and the corresponding
fitted curves for r,, and Ar,,, are plotted in Figure 14.

The set of expressions (4.7)—(4.10) together with Table 1 pro-
vides a simple recipe for predicting the mass loss fraction in
any collision between two MS stars. The overall accuracy of
these fitting formulae for £, is about 30%, except when f,; is
small (< 5%), in which case the absolute error in f;, remains a
few percent of the total mass. These results should prove very
useful for incorporating approximately the effects of mass
losses from stellar collisions in dynamical simulations of dense
stellar systems.

4.4. Merger or Binary?

For sufficiently large velocity v, 2 1, we have seen that
capture necessarily involves physical collision between the two
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stars. In this case, the stars merge during the first periastron
passage (“one-stage merging”) and r,, = r.,,. However, for
small enough relative velocity, tidal capture can occur with no
physical collision at all. In this case, a highly eccentric, initially
detached binary is formed. The final fate of the binary depends
on the dissipation of orbital energy during successive perias-
tron passages. Since the periastron distance keeps decreasing
from one periastron passage to the next, and since the stellar
radii keep increasing in response to the dissipation, we expect
the stars to collide and merge eventually. The critical radius for
merging in this regime is therefore = (R, + R,). In general, we

write the critical periastron distance for merger, r,,,,, as
Tmeg = MiN [re,, . C(Ry + Ry)], (4.11a)
or
CR; +R,), if v, <Up,;
Torg = { Ry +Ry), mrg (4.11b)
Teap > if UV = Unrg -

Here C is a constant of order unity, and v,,, is defined by
setting C(R; + R;) = 7p(Unyy)-

In a few cases, we have carried out a calculation through a
two-stage merger process. One example was shown in Figure 4
for two identical stars. Another example, for two stars of differ-
ent masses (¢; = 10, g = 0.5) and with small relative velocity
(v, = 0.173), is shown in Figure 15. The initial periastron
separation r, = R; = 0.64(R; + R,). This example clearly
demonstrates that C > 0.64, based on the merging after the
second close passage. We expect the actual value of C to be
considerably larger, since final merging may take place only
after a large number of close passages if the energy dissipated
during each close passage is very small. In the following dis-
cussion, we adopt C = 1 for definiteness.

An estimate of r,,,,, when v, < v, has been given by Lee &
Ostriker (1986). For equal mass n = 3 polytropes, they find
Tmrg(LO) ~ 0.53R. This result comes from considering the
maximum angular momentum that a stable merged configu-
ration can sustain, and assumes that no mass or angular
momentum is lost from the system. However, our numerical
results show that some mass and angular momentum is always
lost during a merger (cf. § 4.1.1). Of particular importance is
that the specific angular momentum of the escaping material is
always larger than that of the entire system initially, leading to
an efficient reduction of the ratio T/| W | for the bound com-
ponent. The result of Lee and Ostriker is therefore too conser-
vative.

5. APPLICATIONS TO STELLAR CLUSTERS

Using the results of § 4, we now estimate various cross sec-
tions and rates related to collisions between MS stars in a
dense cluster.

5.1. Cross Sections

Consider a star of mass M, and radius R, approaching
another star of mass M, and radius R,, with relative velocity
v,. The impact parameter b is given by

2
b* = (R, + R2)2<x12, + X, 5'2_) > (5.1a)
where we have defined
=—T'p 5.1b
=R, +R, G10)
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FIG. 15—Two-stage merging for a collision between two stars of unequal masses with v,, = 0.173 and r, = R,. The more massive star hasa, = 10, and the mass
ratio g = 0.5. This collision has the largest value of r,/(R, + R,) = 0.65 among all the cases where we could demonstrate that merging occurs eventually.

Conventions are as in Fig. 2.

In equation (5.1), the velocity is in units of (GM,/R,)"/?, and we
have taken 2G(M; 4+ M,)/(R, + R,) ~v% , =2. Various
cross sections can be calculated:

1. The cross section g, for physical collision (encounters
withr, < R, + R,)is given by

c 2
__..L.z. =1+ - .
11.'(R1 + RZ) Vo
2. The cross section g, for capture (ie., formation of a

bound system) is obtained by setting r, = r.,, (see eq. [4.4]).
Thus

(5.2)

g 2

_ Ycap  _ “ )
R, + R, Xeap T Xcap o (5.3a)
with
r 0.173\"
=—S 4 (——]), 5.3b
xcap Rl + Iz1 cap( Uw ) ( )

where 7 is given in equation (4.4) and A_,,, is given in Table 1,
or, more approximately, by expression (4.5). In the limit of low
velocity, v, < 1, this cross section has the same scaling as that

of tidal capture (Press & Teukolsky 1977; Lee & Ostriker
1986)

[
cap ~ 1'46q—0.lv—2.18,

(R, + R,)* ® (54)

for v,<1.

3. The merger cross section o, is obtained by settingr, =
(cf. eq. [4.11]). Thus

Ocol »
(v} =
e {acap ’
Here we have taken C =1 in expression (4.11), and v,,, is
determined by setting 6., = 6,p-

4. The cross section for mass loss g, is defined as in Benz &
Hills (1987),

T'mrg

if vy <Upgs

if v, >0 (5.3)

mrg *

il

ml

J fi(r)27b db

= (R, + Ry)? j ” fm,(xp)<2xp + v%)dxp . (56
0 ©
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The usefulness of this definition will become apparent in § 5.2.
One can use the results shown in Figure 13 to calculate this
cross section numerically. However, it is more convenient to
use our fitting formula, expression (4.9). This gives

aml _ n_Z Axrznl i
n(Rl + R2)2 _fml(rp - 0)xml|:xml<1 + 3 x,2n| + vgo >
5.7)
where we have used the identity
? Y(x) ¢ n? (dy
———dx ~ — | f .
J; e""f+1dx 0tp(x)dx+6 ix)._. or ¢{>1
(5.8)

Notice from Table 1 that Ax,,/x,, = AA,/A,., ~ 0.2, so that
equation (5.7) becomes

Omi _ i
(R, + R,) = foulr, = O)xm.(l.lxml s ) . (59

In this expression, f,,,(r, = 0) is given by equation (4.7) together
with Table 1 (or eq. [4.8]) and x,, is given by equation (4.10)
with parameters given in Table 1.

5.2. Rates

We now consider a star cluster containing different types of
stars. The velocities of each type of stars is described by a
Maxwell-Bolzmann distribution. The rate of a certain process
(e.g., capture) between two types of stars (designated by sub-
scripts 1 and 2) per unit volume can be written

nyn,
=———{0,0,>,
P1+6,, Op0)
with

where n; (i = 1, 2) is the number density of stellar type i, and
01, is unity if stellar type 1 and 2 are identical and zero other-
wise. The distribution f(v,) of the relative velocity between
stars of type 1 and 2 is also Maxwellian,

3\ 302
f(voo) - (E) Urms €XP <" 2U2 > B

rms.

(5.11)

where v2, = vZ,., + vZ,, is the sum of the squares of the
velocity dispersions for stellar types 1 and 2.

Using the results of § 5.1, we can now calculate rates for
various processes between stellar types 1 and 2 by substituting
the corresponding cross sections into equation (5.10). For con-
venience, we define a nondimensional rate X, by

$oVs)p

2 .
i n(Rl + Rz)zvrms

i

(5.12)

Using equations (5.2) and (5.10), we find that the collision rate
is simply given by

3\'"?(1 1
Ta=4 =) (z+5).
=) G

For other quantities, we evaluate expression (5.12) numerically.
In Figure 16, the variation of X for collision, capture, merger

(5.13)
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FiG. 16.—Nondimensional rate Z, (eq. [5.13]) for various processes is
shown as a function of the relative velocity dispersion Ums [iN units of
(GM,/R,)"*]. Results are shown for the case of «, = 10 and g = 1. The solid
line shows X, for physical collision, the dotted line X, for capture, the
dashed line X, for merger, and the long-dashed line X,,, for mass loss. The
dotted-dashed line shows our approximate analytic expression for 2. (eQ.

[5.15]).

and mass loss is shown as a function of velocity dispersion v,
for two identical types of stars with «; = &, = 10 (To avoid the
divergence near v,,,, = 0, we have actually plotted 12, X).

In the limit of v,,,; < 1, the nondimensional capture rate can
be obtained analytically. We find

Ecap = 2‘19Acap v;ni.ls H (514&)
with
1
Acap = F > fOr vrms < 1 . (5.14b)

Expression (5.14) gives the tidal capture rate, and it is close to
the result from linear perturbation theory (see § 4.2). For arbi-
trary v, we can also obtain an approximate analytic expres-

sionforZ ,,

Tap 21901y 270

rms

o \1/2
’ i ‘1 rms .
n =018 + <_8 )

Expression (5.15) reduces to expression (5.14) in the limit of
Urms < 1. In Figure 16, expression (5.15) is shown together with
the more accurate numerical results. We see that there is good
agreement, to within about 20% for all v,,. The stellar capture
rate is therefore given approximately by

(5.15a)
with

(5.15b)

nin,
I-‘cap = 1 + 512 n(Rl + RZ)ZUrmsanp

~ 2 2197(R, + Ry)2q O togh T

5.16
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FiG. 17.—Average fractional mass loss per collision F_, (defined in eq.
[5.18]) as a function of relative velocity dispersion v, [in units of
(GM,/R,)""*] for different mass combinations. The solid line is for a, = 10,
q = 1, the dotted line for a, = 10, g = 0.5, the short-dashed line for «; = 10,
g = 0.2, the long-dashed line for a; = 10, g = 0.1, and the dotted-dashed line
fora, =landg = 1. .

For equal-mass solar-type MS stars, expression (5.16) gives

2 2
Fep =3 x 10“5<—6L_—3> (£>
10° pc Ry

v ~1.35
X <T0—0Trr';is__1-> pc3yr 1, (5.17)

where we have evaluated #' for v,,,, = 100 km s~ *.

The merger rate can be obtained similarly. In Figure 16, we
see that for high velocity dispersion (v, = 0.3), it is nearly
identical to the capture rate, while for low velocity dispersion,
it is approximately equal to the collision rate (Recall that we
have set C = 1 in eq. [4.11]). The turn-over is around v, ~
0.3.

The average fractional mass-loss rate per unit volume, due
to collisions between stars of type 1 and type 2, I',, can be
calculated using equation (5.10) together with expression (5.9)
for the mass-loss cross section. However, it is more convenient
to define F,,, the average fractional mass loss per collision
between stellar types 1 and 2, by

F r ml
! I‘col

™M

'ml

S
9 o)
~ 22t b Sotrp = 0)xyy

2 302
X (1.1xml + ;2—>v§0 exp (— 502 )de . (5.18)

o) rms.

The variation of F as a function of v, is plotted in Figure 17
for different mass combinations. Notice that F_, does not
increase monotonically as v,,,, increases. In the limit of v, <
1, more encounters result in a mass-loss fraction comparable to
that in a head-on collision, f,(r, = 0), i.e., X, oc v;*" increases
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as v, decreases (see eq. [4.10]). On the other hand, in this limit,
Jmi(r, = 0) is nearly independent of v, with

fml(rp = 0) &~ ml(rp = 0’ Vo = O) = le

(see eq. [4.7]). Therefore, the value of F, in this regime is
mainly determined by the mass-loss fraction in a head-on colli-
sion, and F,; ocv,O! decreases as v,,, increases. In the
opposite limit v, > 1, the dominant factor is the rapid
increase in f,(r, = 0) oc v%;°, causing F, to increase with v,,,.
However, since the proportion of encounters leading to negli-
gible mass loss increases as v, increases (i.e., x,, decreases), the
value of F,, must increase more slowly than f,(r, = 0). From
equations (4.7), (4.10), and (5.18), we find that, approximately,
F o ocv:872% where & ~ 0.1(1 + v}/2). For 1 S v, <3, we
expect F,, to increase much more slowly than f, (r, = 0). In
fact, Figure 17 shows that the average mass loss fraction per
collision remains very small. For example, for collisions between
two identical stars with a = 10, F,, varies from about 2% to
5% for velocity dispersion 0 < v,,,, < 3. In contrast, for a single
head-on collision (Fig. 12), the mass loss fraction f,, varies
from about 6% to 50% for 0 < v, < 3.

6. SUMMARY

We have studied numerically the physics of collisions and
close encounters between massive MS stars (1 Mg S M < 100
M) represented by Eddington standard models. We have
found that a variety of qualitatively different outcomes are
possible depending on the orbital parameters of the encounter
as well as the masses of the two stars. We have tried to present
our numerical results in a simple, convenient form. For indi-
vidual encounters, our main quantitative results are as follows:

1. For given impact velocity and given stellar types, the
capture radius r_,, is given approximately by equations (4.4)
and (4.5), together with Table 1. For small relative velocity,
tidal dissipation dominates, and r,,, is close to the value deter-
mined from linear perturbation theory (e.g., Lee & Ostriker
1986). However, our result for r,, is about 10% higher, indi-
cating that linear theory underestimates the tidal dissipation.
For high relative velocity [v,, = 0.2(GM/R)'/?], shock dissi-
pation dominates and the critical capture radius r,,, decreases
faster than predicted by linear theory as v, increases.

2. The fractional mass loss in a stellar collision is given
approximately by equation (4.7) or (4.8) for head-on collisions,
and by equations (4.9) and (4.10) for off-axis collisions. These
fitting formulae, quoted for arbitrary velocity and impact
parameter, provide a reasonable estimate of the mass-loss frac-
tion in any collision, with an overall accuracy of about 30%.

3. All dissipative encounters leading to capture after the first
periastron passage are likely to result eventually in a merger.
The critical periastron distance for merger is given approx-
imately by equation (4.11). Our results indicate that the merger
rate is somewhat higher than estimated in previous work.

We have determined the cross sections and rates for various
processes occurring in star clusters (egs. [5.13]-[5.17]). The
average mass-loss per collision (eq. [5.18] and Fig. 17) does not
depend sensitively on the velocity dispersion of the cluster,
although for an individual head-on collision, the mass losses
increase rapidly with impact velocity. Our results indicate that
even for a star cluster with a velocity dispersion as high as
several times the typical escape velocity from a MS star (~600
km s~ 1), stellar collisions are not very disruptive on average.
This is in contrast to what has been assumed in several studies
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of galactic nuclei. Thus a reevaluation of the role played by
stellar collisions in these systems seems desirable.
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