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ABSTRACT

We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass
transfer in eccentric binaries, assuming conservation of total system mass and orbital angular momen-
tum. Assuming a delta function mass transfer rate centered at periastron, we find rates of secular
change of the orbital semi-major axis and eccentricity which are linearly proportional to the magni-
tude of the mass transfer rate at periastron. The rates can be positive as well as negative, so that the
semi-major axis and eccentricity can increase as well as decrease in time. Adopting a delta-function
mass-transfer rate of 10−9M⊙ yr−1 at periastron yields orbital evolution timescales ranging from a
few Myr to a Hubble time or more, depending on the binary mass ratio and orbital eccentricity. Com-
parison with orbital evolution timescales due to dissipative tides furthermore shows that tides cannot,
in all cases, circularize the orbit rapidly enough to justify the often adopted assumption of instanta-
neous circularization at the onset of mass transfer. The formalism presented can be incorporated in
binary evolution and population synthesis codes to create a self-consistent treatment of mass transfer
in eccentric binaries.
Subject headings: Celestial mechanics, Stars: Binaries: Close, Stars: Mass Loss

1. INTRODUCTION

Mass transfer between components of close binaries is
a common evolutionary phase for many astrophysically
interesting binary systems. Indeed, mass ejection and/or
accretion is responsible for many of the most recogniz-
able phenomena associated with close binaries, such as
persistent or transient X-ray emission, neutron star spin-
up, and orbital contraction or expansion. Theoretical
considerations of these and other associated phenomena
in the literature probe these systems quite effectively,
yet they often do not consider the effects of any eccen-
tricity associated with the binary orbit. This can be of
particular importance for binaries containing a neutron
star or a black hole, where mass loss and natal kicks
occurring during compact object formation may induce
a significant eccentricity to the binary (e.g. Hills 1983;
Brandt & Podsiadlowski 1995; Kalogera 1996). After the
formation of the compact object, tides tend to circularize
the orbit on a timescale which strongly depends on the
ratio of the radius of the compact object’s companion
to the orbital semi-major axis. Because of this, orbits
are usually assumed to circularize instantaneously when
a binary approaches or begins a mass transfer phase.

Despite our generally well developed understanding of
tidal interactions in close binaries, quantitative uncer-
tainties in tidal dissipation mechanisms propagate into
the determination of circularization timescales. For ex-
ample, Meibom & Mathieu (2005) have shown that cur-
rent theories of tidal circularization cannot explain ob-
served degrees of circularization of solar-type binaries in
open clusters. Circularization of high-mass binaries, on
the other hand, is currently thought to be driven predom-
inantly by resonances between dynamic tides and free
oscillation modes, but initial conditions play an impor-
tant role and an extensive computational survey of rel-
evant parts of the initial parameter space has yet to be
undertaken (Witte & Savonije 1999, 2001; Willems et al.

2003).
Furthermore, assumptions of instantaneous circular-

ization immediately before or at the onset of mass trans-
fer are in clear contrast with observations of eccentric
mass transferring systems. In the most recent catalog of
eccentric binaries with known apsidal-motion rates com-
piled by Petrova & Orlov (1999), 26 out of the 128 listed
systems are semi-detached or contact binaries. Among
these mass-transferring systems, 9 have measured eccen-
tricities greater than 0.1. In addition, many high-mass X-
ray binaries are known to have considerable orbital eccen-
tricities (Raguzova & Popov 2005). While mass transfer
in these systems is generally thought to be driven by
the stellar wind of a massive O- or B-star, it has been
suggested that some of them may also be subjected to
atmospheric Roche-lobe overflow at each periastron pas-
sage of the massive donor (e.g. Petterson 1978).

Huang (1956), Kruszewski (1964), and Piotrowski
(1964) were the first to study the effects of mass transfer
on the orbital elements of eccentric binaries. However,
their treatment was restricted to perturbations of the or-
bital motion caused by the variable component masses.
Matese & Whitmire (1983, 1984) extended these early
pioneering studies to include the effects of linear momen-
tum transport from one star to the other, as well as any
other possible perturbations caused by the mass trans-
fer stream in the system. However, these authors derived
the equations governing the motion of the binary compo-
nents with respect to a reference frame with origin at the
mass center of the binary, which is not an inertial frame.
Their equations therefore do not account for the accel-
erations of the binary mass center caused by the mass
transfer (see § 3.3).

More recent work on mass transfer in eccentric binaries
has mainly focused on smoothed particle hydrodynamics
calculations of the mass transfer stream over the course of
a few orbits, without any consideration of the long-term
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evolution of the binary (Layton et al. 1998; Regös et al.
2005).

Hence, there is ample observational and theoreti-
cal motivation to revisit the study of eccentric mass-
transferring binaries. In this paper, our aim is to derive
the equations governing the evolution of the orbital semi-
major axis and eccentricity in eccentric mass-transferring
binaries, assuming conservation of total system mass and
orbital angular momentum. In a subsequent paper, we
will incorporate the effects of mass and orbital angular
momentum losses from the system.

Our analysis is based on the seminal work of
Hadjidemetriou (1969b) who was the first to derive the
equations of motion of the components of eccentric mass-
transferring binaries while properly accounting for the
effects of the variable component masses on the stars’
mutual gravitational attraction, the transport of linear
momentum from one star to the other, the accelerations
of the binary mass center due to the redistribution of
mass in the system, and the perturbations of the orbital
motion caused by the mass-transfer stream. While the
equations of motion derived by Hadjidemetriou (1969b)
are valid for orbits of arbitrary eccentricity, the author
restricted the derivation of the equations governing the
evolution of the semi-major axis and eccentricity to or-
bits with small initial eccentricities.

The paper is organized as follows. In § 2 and § 3 we
present the basic assumptions relevant to the investiga-
tion and derive the equations governing the motion of
the components of an eccentric mass-transferring binary
under the assumption of conservative mass transfer. The
associated equations governing the rates of change of the
semi-major axis and the orbital eccentricity are derived
in § 4, while numerical results for the timescales of or-
bital evolution due to mass transfer as a function of the
initial binary mass ratio and orbital eccentricity are pre-
sented in § 5. For comparison, timescales of orbital evo-
lution due to dissipative tidal interactions between the
binary components are presented in § 6. § 7 is devoted to
a summary of our main results and a discussion of future
work. In the appendices, lastly, we derive an equation
for the position of the inner Lagrangian point in eccen-
tric binaries with non-synchronously rotating component
stars (Appendix A), and present an alternative deriva-
tion for the equations governing the secular evolution
of the orbital semi-major axis and eccentricity assuming
instantaneous mass transfer between two point masses
(Appendix B).

2. BASIC ASSUMPTIONS

We consider a binary system consisting of two stars in
an eccentric orbit with period Porb, semi-major axis a,
and eccentricity e. We let the component stars rotate

with angular velocities ~Ω1 and ~Ω2 parallel to the orbital

angular velocity ~Ωorb, and assume the rotation rates to
be uniform throughout the stars. We also note that the

magnitude of ~Ωorb varies periodically in time for eccentric
binaries, but its direction remains fixed in space. Because
of this, the stars cannot be synchronized with the orbital
motion at all times.

At some time t, one of the stars is assumed to fill its
Roche lobe and begins transferring mass to its compan-
ion through the inner Lagrangian point L1. We assume

this point to lie on the line connecting the mass centers
of the stars, even though non-synchronous rotation may
cause it to oscillate in the direction perpendicular to the
orbital plane with an amplitude proportional to the de-
gree of asynchronism (Matese & Whitmire 1983). Since
the donor’s rotation axis is assumed to be parallel to the
orbital angular velocity, we can safely assume that the
transferred mass remains confined to the orbital plane.

We furthermore assume that all mass lost from the
donor is accreted by its companion, and that any orbital
angular momentum transported by the transferred mass
is immediately returned to the orbit. The mass transfer
thus conserves both the total system mass and the orbital
angular momentum.

We also neglect any perturbations to the orbital motion
other than those due to mass transfer. At the lowest
order of approximation, these additional perturbations
(e.g., due to tides, magnetic breaking, or gravitational
radiation) are decoupled from those due to mass transfer,
and can thus simply be added to obtain the total rates
of secular change of the orbital elements.

3. EQUATIONS OF MOTION

3.1. Absolute Motion of the Binary Components

Following Hadjidemetriou (1969b), we derive the equa-
tions of motion of the components of an eccentric mass-
transferring binary with respect to a right handed inertial
frame of reference OXY Z which has an arbitrary posi-
tion and orientation in space (see Fig. 1). We let Mi be
the mass of star i at some time t at which mass is trans-
ferred from the donor to the accretor, and Mi + δMi the
mass of the same star at some time t + δt, where δt > 0
is a small time interval. With these notations, δMi < 0
corresponds to mass loss, and δMi > 0 to mass accretion.
We furthermore denote the point on the stellar surface
at which mass is lost or accreted by Ai. For the donor
star, Ai corresponds to the inner Lagrangian point L1,
while for the accretor, Ai can be any point on the star’s
equator. For the remainder of the paper, we let i = 1
correspond to the donor and i = 2 to the accretor.

Because of the mass loss/gain, the center of mass of
star i at time t + δt is shifted from where it would have
been had no mass transfer taken place. To describe this
perturbation, we introduce an additional right-handed
coordinate frame OiXiYiZi with a spatial velocity such
that its origin follows the unperturbed orbit of star i, i.e.,
the origin of OiXiYiZi follows the path the center of mass
of star i would have taken had no mass transfer occurred.
Thus, at time t, the center of mass of star i lies at the
origin of Oi, while at time t+δt it has a non-zero position
vector with respect to Oi. We furthermore let the Zi-axis
of the OiXiYiZi frame point in the direction of the or-
bital angular momentum vector, and let the frame rotate
synchronously with the unperturbed orbital angular ve-
locity of the binary in the absence of mass transfer. The
direction and orientation of the Xi-axes are then chosen
such that at time t the Xi-axis points along the direction
from the mass center of star i to the mass center of its
companion.

To describe the shift in the mass center of star i due to
the mass loss/gain, we denote the position vector of Oi

at times t and t + δt with respect to the inertial frame

by ~R
i

and ~R′
i, respectively. The position vector of the
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Fig. 1.— Schematic representation of the reference frames and position vectors adopted in the derivation of the equations of motion of
the components of an eccentric mass-transferring binary. The Z- and Z1-axes of the OXY Z and O1X1Y1Z1 frames are perpendicular to
the plane of the page and are therefore not drawn. The geometry of the system at time t is shown in black, while the geometry at time t+δt
is shown in gray. The solid line connecting the origin of the O1X1Y1Z1 frame at time t to the origin of the frame at time t + δt represents
the path the donor would have taken had no mass transfer occurred. The dashed line, on the other hand, represents the perturbed motion
of the donor’s mass center (small solid circles) due to the mass transfer. A similar perturbation is imparted to the motion of the accretor.
For clarity, this perturbed motion and the O2X2Y2Z2 reference frame connected to the accretor (see text) are omitted from the figure. The
dotted line illustrates a possible path of a mass element transferred from the donor to the accretor. The element leaves the donor at the
inner Lagrangian point L1 (asterisk) and accretes onto the companion at the point A2 (open star).

center of mass of star i at times t and t+ δt is then given

by ~Ri and ~R′
i + δ~r ′

i , where δ~r ′
i is the position vector of

the center of mass of star i at time t + δt with respect
to Oi. Moreover, we denote by ~rAi

and ~r ′
Ai

the vectors
from Oi to the position where the point Ai on the stellar
surface would be at times t and t + δt, respectively, had
no mass been lost/accreted. The various position vectors
at time t + δt are related by

(Mi + δMi)
(

~R′

i + δ~r ′

i

)

= Mi
~R′

i + δMi

(

~R′

i + ~r ′

Ai

)

,

(1)
which, at the lowest order of approximation in δMi and
δ~r ′

i , yields

δ~r ′

i =
δMi

Mi
~r ′

Ai
. (2)

As expected, the displacement of the center of mass of
star i due to the mass loss/gain is directed along the line
connecting the center of mass of the star and the mass
ejection/accretion point.

We furthermore denote with ~ρ ′
Ai

the vector from the
center of mass of star i at time t + δt to the position
where the point Ai would be at time t + δt, had no mass
been transferred between the binary components, and
with δ~ρ ′

Ai
the perturbation of this vector caused by the

mass transfer. It then follows that ~ρ ′
Ai

= ~r ′
Ai

− δ~r ′
i and

thus, by definition, δ~ρ ′
Ai

= δ~r ′
i . At the lowest order of

approximation in δMi and δ~r ′
i , equation (2) therefore

also yields

δ~ρ ′

Ai
=

δMi

Mi
~r ′

Ai
. (3)

The definitions of and the relations between these various
position vectors are illustrated schematically in Fig. 1.

Next, we denote the absolute velocity of the center
of mass of star i with respect to the inertial frame of

reference at times t and t+ δt by ~Vi and ~V ′
i , respectively,

and the absolute velocity of the ejected/accreted mass

element by ~WδMi
. The linear momentum ~Q1 of star 1 at
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time t is then given by
~Q1 = M1

~V1, (4)

and the total linear momentum ~Q′
1 of star 1 and the

ejected mass element at time t + δt by
~Q′

1 = (M1 + δM1)~V
′

1 − δM1
~WδM1

. (5)

Similarly, the total linear momentum ~Q2 of star 2 and
the mass element to be accreted at time t is given by

~Q2 = M2
~V2 + δMi

~WδMi
, (6)

and the linear momentum ~Q′
2 of star 2 at time t + δt by

~Q′

2 = (M2 + δM2)~V
′

2 . (7)

At time t+ δt the velocity of the center of mass of star
i can be written as

~V ′

i = ~V ′

Oi
+

(

~Ω′

orb + δ~Ω′

orb

)

× δ~r ′

i , (8)

where ~V ′
Oi

is the absolute velocity of the origin of

OiXiYiZi at time t + δt, ~Ω′

orb is the orbital angular ve-
locity of the binary at time t + δt in the absence of mass

transfer, and δ~Ω′

orb is the perturbation of the orbital an-
gular velocity at time t + δt due to the mass loss/gain of
the binary components.

In the limit of small δt, taking the difference between

the linear momenta ~Q′
i and ~Qi, dividing the resulting

equation by δt, and noting that the absolute velocity ~VOi

of the origin of OiXiYiZi at time t is equal to ~Vi, yields

Mi
d~VOi

dt
= ~Fi + Ṁi

~UδMi
. (9)

Here, ~Fi = d ~Qi/dt is the sum of all external forces acting

on star i, Ṁi = dMi/dt is the mass loss/accretion rate
of star i, and

~UδMi
= ~WδMi

− ~VOi
− ~Ωorb × ~rAi

(10)

is the relative velocity of the ejected/accreted mass el-
ement with respect to the ejection/accretion point Ai.
In the derivation of equation (10), we have made use of
equations (2) and (8) and restricted ourselves to first-

order terms in the small quantities δMi and δ~Ω′
orb.

The absolute acceleration of the center of mass of star
i with respect to the inertial frame OXY Z is given by

d2 ~Ri

dt2
= ~γOi

+ ~γrel,i + ~γcor,i, (11)

where ~γOi
= d~VOi

/dt is the acceleration of the origin of

OiXiYiZi with respect to OXY Z, ~γrel,i = (M̈i/Mi)~rAi

is the relative acceleration of the center of mass of star i
with respect to Oi, and ~γcor,i = 2 (Ṁi/Mi) (~Ωorb × ~rAi

)
is the Coriolis acceleration of the center of mass of star i
with respect to Oi

1. The expressions for ~γrel,i and ~γcor,i

follow from the observation that d~ρ ′
Ai

/dt = (Ṁi/Mi)~rAi
,

which one obtains by dividing equation (3) by δt in the
limiting case of small δt. The equation of motion for the
mass center of star i with respect to the inertial frame
OXY Z then becomes

Mi
d2 ~Ri

dt2
= ~Fi + Ṁi

(

~UδMi
+ 2 ~Ωorb × ~rAi

)

+ M̈i ~rAi
. (12)

1 The centrifugal acceleration does not play a role since it is
proportional to δ~r ′

i which vanishes for small δt.

3.2. Relative Motion of the Binary Components

We can now obtain the equation describing the rela-
tive motion of the accretor (star 2) with respect to the
donor (star 1) by taking the difference of the equations of
motion of the stars with respect to the inertial frame of
reference. For convenience, we first decompose the sum
of the external forces acting on each star as

~Fi = −
GM1 M2

|~r|
2

~Ri

|~Ri|
+ ~fi, (13)

where G is the Newtonian constant of gravitation, and
~fi the total gravitational force exerted on star i by the
particles in the mass-transfer stream. It follows that

d2~r

dt2
=−

G (M1 + M2)

|~r|3
~r +

~f2

M2
−

~f1

M1

+
Ṁ2

M2

(

~vδM2
+ ~Ωorb × ~rA2

)

−
Ṁ1

M1

(

~vδM1
+ ~Ωorb × ~rA1

)

(14)

+
M̈2

M2
~rA2

−
M̈1

M1
~rA1

,

where ~r = ~R2 − ~R1 is the position vector of the accretor

with respect to the donor, and ~vδMi
= ~WδMi

− ~Vi is
the velocity of the ejected/accreted mass element with
respect to the mass center of the mass losing/gaining
star.

Equation (14) can be written in the form of a perturbed
two-body problem as

d2~r

dt2
= −

G (M1 + M2)

|~r|
3 ~r + S x̂ + T ŷ + W ẑ, (15)

where x̂ is a unit vector in the direction of ~r, ŷ is a
unit vector in the orbital plane perpendicular to ~r in the
direction of the orbital motion, and ẑ is a unit vector
perpendicular to the orbital plane parallel to and in the

same direction as ~Ωorb. The functions S, T , and W are
found by taking the dot product of the perturbing force
arising from the mass transfer between the binary com-
ponents and the unit vector in the x̂, ŷ, and ẑ directions,
respectively. These vector components are

S =
f2,x

M2
−

f1,x

M1
+

Ṁ2

M2

(

vδM2,x − |~Ωorb||~rA2
| sin φ

)

−
Ṁ1

M1
vδM1,x +

M̈2

M2
|~rA2

| cosφ −
M̈1

M1
|~rA1

|, (16)

T =
f2,y

M2
−

f1,y

M1
+

Ṁ2

M2

(

vδM2,y + |~Ωorb||~rA2
| cosφ

)

−
Ṁ1

M1

(

vδM1,y + |~Ωorb||~rA1
|
)

+
M̈2

M2
|~rA2

| sinφ, (17)

W =
f2,z

M2
−

f1,z

M1
, (18)

where φ is the angle between x̂ and the vector from the
center of mass of the accretor to the mass accretion point
A2, and the subscripts x, y, and z denote vector com-
ponents in the x̂, ŷ, and ẑ directions, respectively. In
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working out the vector products ~Ωorb ×~rA2
, we assumed

that A2 is located on the equator of the accreting star2.
The terms contributing to the perturbed orbital motion

can be categorized as follows: (i) term proportional to ~fi

represent gravitational perturbation on the binary com-
ponents caused by mass elements in the mass-transfer
stream; (ii) terms proportional to Ṁi represent linear
momentum exchange between the mass donor and accre-
tor; and (iii) terms proportional to M̈i represent shifts in
the position of the mass centers of the mass donor and
accretor due to the non-spherical symmetry of the mass
loss or gain. In the limiting case where both stars are
treated as point masses (|~rA1

| → 0 and |~rA2
| → 0), the

only non-zero terms in the perturbed equations of motion
are those due to gravitational perturbations of the mass
transfer stream and the transport of linear momentum.

3.3. Comparison with Previous Work

The most recent study on the orbital evolution of ec-
centric mass-transferring binaries has been presented by
Matese & Whitmire (1983, 1984, hereafter MW83 and
MW84, respectively). These authors extended the work
of Huang (1956), Kruszewski (1964), and Piotrowski
(1964) by accounting for the effects of linear momen-
tum transport between the binary components, as well
as possible perturbations to the orbital motion caused
by the mass transfer stream. However, they also derived
the equations describing the motion of the binary com-
ponents with respect to a frame of reference with origin
at the mass center of the binary, which, for mass trans-
ferring systems, is not an inertial frame of reference. The
equations therefore do not account for the accelerations
of the binary mass center caused by the mass transfer.
Here, we demonstrate that if the procedure adopted by
Matese & Whitmire is developed with respect to an in-
ertial frame of reference that is not connected to the bi-
nary, the resulting equations are in agreement with those
derived in § 3.2.

The core of Matese & Whitmire’s derivation is pre-
sented in Section II of MW83. While the authors choose
to adopt a reference frame with origin at the binary mass
center early on in the investigation, the choice of the
frame does not affect the derivation of the equations of
motion up to and including their equation (24). In par-
ticular, equation (13) in MW83, which, in our notation,
reads

~pi = Mi
~̇Ri − Ṁi~rAi

, (19)

is valid with respect to any inertial frame of reference
with arbitrary position and orientation in space. The
same applies to equation (1) in MW84:

~̇pi = −GM1M2

~Ri − ~R3−i

|~Ri − ~R3−i|3
+ ~fi + ~Ψi. (20)

In these equations, ~pi is the linear momentum of star i,

and ~Ψi = Ṁi( ~̇Ri + ~vδMi
) is the amount of linear mo-

mentum transported by the transferred mass per unit

2 For brevity, we refer to the point A2 as lying on the stellar
surface. Though, in practice, it can lie at any point near the star
where the transferred mass can be considered to be part of the
accretor. For instance, if an accretion disk has formed around the
accretor, it would be equally valid to write A2 as the point where
the transferred mass impacts the outer edge of the accretion disk.

time (see equation (3) of MW84). Substitution of equa-
tion (19) into equation (20) then yields

Mi
~̈Ri =−GM3−i

~Ri − ~R3−i

|~Ri − ~R3−i|3

+
~fi

Mi
+

Ṁi

Mi

(

~vδMi
+ ~̇rAi

)

+
M̈i

Mi

~RAi
, (21)

and thus

d2~r

dt2
=−

G (M1 + M2)

|~r|
3 ~r +

~f2

M2
−

~f1

M1

+
Ṁ2

M2

(

~vδM2
+ ~̇rA2

)

−
Ṁ1

M1

(

~vδM1
+ ~̇rA1

)

+
M̈2

M2
~rA2

−
M̈1

M1
~rA1

, (22)

where ~r = ~R2 − ~R1. Setting ~̇rAi
= ~Ωorb ×~rAi

, this equa-
tion is in perfect agreement with equation (14) derived
in § 3.2.

In MW83 and MW84, the authors incorrectly set
~R1 = −M2 ~r/(M1 + M2) and ~R2 = M1 ~r/(M1 + M2)
in equation (21), which is valid only when the origin of
the frame of reference coincide with the mass center of
the binary. For a mass-transferring binary, such a frame
is, however, not an inertial frame and can therefore not
be used for the derivation of the equations of motion of
the binary components. Instead of equation (22), Matese
& Whitmire therefore find equations (7)–(8) in MW84,
which lack the terms associated with the acceleration of
the binary mass center due to the mass transfer.

4. ORBITAL EVOLUTION EQUATIONS

4.1. Secular Variation of the Orbital Elements

In the classical framework of the theory of osculating
elements, the equations governing the rate of change of
the orbital semi-major axis a and eccentricity e due to
mass transfer are obtained from the perturbing functions
S and T as (see, e.g., Sterne 1960; Brouwer & Clemence
1961; Danby 1962; Fitzpatrick 1970)

da

dt
=

2

n(1 − e2)1/2
[Se sin ν + T (1 + e cos ν)], (23)

de

dt
=

(1 − e2)1/2

na

×

{

S sin ν + T

[

2 cos ν + e
(

1 + cos2 ν
)

1 + e cos ν

]}

, (24)

where n = 2π/Porb is the mean motion and ν the true
anomaly. These equations are independent of the per-
turbing function W which solely appears in the equations
governing the rates of change of the orbital inclination,
the longitude of the ascending node, and the longitude
of the periastron.

After substitution of equations (16) and (17) for S and
T into equations (23) and (24), the equations governing
the rates of change of the semi-major axis and eccentric-
ity contain periodic as well as secular terms. Here we
are mainly interested in the long-term secular evolution



6 Sepinsky, Willems, Kalogera, & Rasio

of the orbit, and so we remove the periodic terms by
averaging the equations over one orbital period:

〈

da

dt

〉

sec

≡
1

Porb

∫ Porb/2

−Porb/2

da

dt
dt, (25)

〈

de

dt

〉

sec

≡
1

Porb

∫ Porb/2

−Porb/2

de

dt
dt. (26)

The integrals in these definitions are most conveniently
computed in terms of the true anomaly, ν. We therefore
make a change of variables using

dt =
(1 − e2)3/2

n(1 + e cos ν)2
dν. (27)

For binaries with eccentric orbits, the resulting integrals
can be calculated analytically only for very specific func-
tional prescriptions of the mass-transfer rate Ṁ1 (e.g.,

when Ṁ1 is approximated by a Dirac delta function cen-
tered on the periastron, see § 5). In general, the integrals
must be computed numerically.

4.2. Conservation of Orbital Angular Momentum

Since the perturbing functions S and T depend on
the properties of the mass transfer stream, calculation
of the rates of secular change of the orbital semi-major
axis and eccentricity, in principle, requires the calcula-
tion of the trajectories of the particles in the stream
(cf. Hadjidemetriou 1969a). As long as no mass is lost
from the system, such a calculation automatically incor-
porates the conservation of total angular momentum in
the system. Special cases of angular momentum conser-
vation can, however, be used to bypass the calculation
of detailed particle trajectories. Here, we adopt such a
special case and assume that any orbital angular momen-
tum carried by the particles in the mass-transfer stream
is always immediately returned to the orbit, so that the
orbital angular momentum of the binary is conserved.

The orbital angular momentum of a binary with a
semi-major axis a and eccentricity e is given by

Jorb = M1M2

[

Ga(1 − e2)

M1 + M2

]1/2

, (28)

so that

J̇orb

Jorb
=

Ṁ1

M1
+

Ṁ2

M2
−

1

2

Ṁ1 + Ṁ2

M1 + M2
+

1

2

ȧ

a
−

e ė

1 − e2
, (29)

where a dot indicates the time derivative.
In the case of eccentric orbits, substitution of equa-

tions (23) and (24) into equation (29) leads to

J̇orb

Jorb
=

Ṁ1

M1
+

Ṁ2

M2
−

1

2

Ṁ1 + Ṁ2

M1 + M2

+
(1 − e2)1/2

n a (1 + e cos ν)
T. (30)

As we shall see in the next section, by setting Ṁ1+Ṁ2 =
0 and < J̇orb/Jorb >sec= 0 and substituting equa-
tion (17) for T , equation (30) allows us to calculate the
ŷ-component of the final velocities of the accreting par-
ticles as a function of their initial velocities without re-
sorting to the computation of the ballistic trajectories of
the mass transfer stream.

In the limiting case of a circular orbit, equation (29)
is usually used to derive the rate of change of the semi-
major axis of circular binaries under the assumption of
conservation of both total mass (Ṁ1 = −Ṁ2) and orbital

angular momentum (J̇orb = 0):

da

dt
= 2a(

M1

M2
− 1)

Ṁ1

M1
. (31)

The assumption of orbital angular momentum conser-
vation over secular timescales (< J̇orb/Jorb >sec= 0)
is a standard assumption in nearly all investigations
of conservative mass transfer in binary systems (e.g.,
Soberman et al. 1997; Pribulla 1998), which is valid over
long timescales provided there is no significant storage of
angular momentum in the spins of the components stars,
the accretion flow, and/or the accretion disk. In future
work, we will investigate the consequences of both mass
and orbital angular momentum losses from the binary on
the evolution of the orbital elements.

5. ORBITAL EVOLUTION TIMESCALES

In order to assess the timescales of orbital evolution
due to mass transfer in eccentric binaries, we observe
that, for eccentric binaries, mass transfer is expected to
occur first at the periastron of the relative orbit, where
the component stars are closest to each other. We there-
fore explore the order of magnitude of the timescales as-
suming a delta function mass transfer profile centered at
the periastron of the binary orbit

Ṁ1 = Ṁ0 δ (ν) , (32)

where Ṁ0 < 0 is the instantaneous mass transfer rate,
and δ(ν) is the Dirac delta function.

We calculate the rates of secular change of the orbital
semi-major axis and eccentricity from equations (23)–
(27), and neglect any gravitational attractions exerted
by the particles in the mass-transfer stream on the com-
ponent stars. Hence, we set

f1,x = f2,x = 0, (33)

f1,y = f2,y = 0. (34)

Substituting equations (17), (27), and (32) – (34) into

equation (30) for < J̇orb/Jorb >sec= 0 then yields a re-
lationship between the initial and final ŷ-component of
the velocities of the transferred mass and the initial and
final positions of the transferred mass given by

qvδM2,y + vδM1,y = na(1 − q)

(

1 + e

1 − e

)1/2

− |~Ωorb,P ||~rA1,P |

− q|~Ωorb,P ||~rA2
| cosφP

(

1 −
dφ

dν

∣

∣

∣

∣

ν=0

)

, (35)

where the subscript P indicates quantities evaluated
at the periastron of the binary orbit, q = M1/M2 is
the binary mass ration, and we have used the relation
dδ(ν)/dν = −δ(ν)/ν. Assuming the transferred mass
elements are ejected by star 1 at the L1 point with a ve-
locity ~vδM1

equal to the star’s rotational velocity at L1,
we write

vδM1,x = 0, (36)

vδM1,y = −|~Ωorb,P ||~rA1,P |. (37)
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Moreover, under the assumption that each periastron
passage of the binary components give rise to an ex-
tremum of φ(ν), the derivative dφ/dν|ν=0 is equal to zero
in equation (35), so that

vδM2,y = |~Ωorb,P |

[

|~rA1,P |
(1 − q)

q
+ |~rA2

| cosφP

]

. (38)

For a binary with orbital period Porb = 1 day, eccen-
tricity e = 0.2, and component masses M1 = 2 M⊙ and
M2 = 1.44 M⊙, with |~rA1,P | the distance from star 1 to
L1 (See Appendix A), and |~rA2

| cosφP ≈ 2.9 × 105 km
(the circularization radius around a compact object
for these binary parameters; see Frank, King, & Raine
(2002)), the accreting matter has a ŷ-velocity component
of the order of ∼ −45 kms−1.

After substitution of equation (27) and equations (33)–
(35), the integrals in equations (25) and (26) for the rates
of secular change of the orbital semi-major axis and ec-
centricity can be solved analytically to obtain

〈

da

dt

〉

sec

=
a

π

Ṁ0

M1

1

(1 − e2)1/2

[

qe
|~rA2

|

a
cosφP

+ e
|~rA1,P |

a
+ (q − 1)(1 − e2)

]

, (39)

〈

de

dt

〉

sec

=
(1 − e2)1/2

2π

Ṁ0

M1

[

q
|~rA2

|

a
cosφP

+
|~rA1,P |

a
+ 2(1 − e)(q − 1)

]

. (40)

We note that for a delta-function mass transfer rate given
by equation (32) the x̂-component of the velocities ~vδM1

and ~vδM2
does not enter into the derivation of theses

equations due to the sin ν term in equations (23) and
(24). Furthermore, in the limiting case of a circular orbit,

equation (39) reduces to equation (31), provided that Ṁ1

in that equation is interpreted as the secular mean mass
transfer rate 〈Ṁ1 〉sec = Ṁ0/(2π). In Appendix B, we
present an alternative derivations to equations (39) and
(40) in the limiting case where the stars are treated as
point masses.

The rates of secular change of the semi-major axis and
orbital eccentricity are thus linearly proportional to the
magnitude of the mass transfer rate at periastron. Be-
sides the obvious dependencies on a, e, q, and M1, the
rates also depend on the ratio of the donor’s rotational
angular velocity Ω1 to the orbital angular velocity Ωorb,P

at periastron through the position of the L1 point, ~rA1
. A

fitting formula for the position of the L1 point accurate to
better than 4 % over a wide range of q, e, and Ω1/Ωorb,P

is given by equation (A15) in Appendix A. While the fit-
ting formula can be used to obtain fully analytical rates
of secular change of the semi-major axis and eccentric-
ity, we here use the exact solutions for the position of L1

obtained by numerically solving equation (A13) in Ap-
pendix A. For a detailed discussion of the properties of
the L1 point in eccentric binaries, we refer the interested
reader to Sepinsky et al. (2007).

To explore the effects of mass transfer on the orbital
elements of eccentric binaries, we calculate the rates of
secular change of the semi-major axis and eccentricity
and determine the characteristic timescales τa = a/ȧ and

τe = e/ė. While the actual timescales are given by the
absolute values of τa and τe, we here allow the timescales
to be negative as well as positive in order to distinguish
negative from positive rates of secular change of the or-
bital elements. We also note that since |~rA1,P | ∝ a (see
Appendix A), the timescales do not explicitly depend on
the orbital semi-major axis a except through the ratio
|~rA2

|/a of the radius of the accretor to the semi-major
axis. For convenience, we therefore assume the accre-
tor to be a compact object with radius |~rA2

| << a. The
timescales are found to be insensitive to terms containing
|~rA2

|/a in equation (39) and (40). Varying |~rA2
| from 0

to 0.01a changes the timescales by less that 10%. In what
follows, we therefore set |~rA2

| = 0. An implicit depen-
dence on a may then still occur through the amplitude
Ṁ0 of the mass transfer rate at periastron. Since incor-
porating such a dependence in the analysis requires de-
tailed modeling of the evolution of the donor star, which
is beyond the scope of this investigation, we here restrict
ourselves to exploring the timescales of orbital evolution
for a constant Ṁ0. The linear dependence of 〈ȧ〉sec and

〈ė〉sec on Ṁ0 in any case allows for any easy rescaling of
our results to different mass transfer rates.

In Fig. 2, we show the variations of τa and τe as
functions of q for Ṁ0 = −10−9 M⊙ yr−1 and e =
0.0, 0.1, . . . , 0.9. In all cases, the donor is assumed to
rotate synchronously with the orbital angular velocity at
the periastron, and the accretor is assumed to be a neu-
tron star of mass M2 = 1.44 M⊙. The timescales of the
secular evolution of the semi-major axis show a strong
dependence on q, and a milder dependence on e, unless
e & 0.7. The timescales for the secular evolution of the
orbital eccentricity always depend strongly on both q and
e. These timescales can furthermore be positive as well
as negative, so that the semi-major axis and eccentricity
can increase as well as decrease under the influence of
mass transfer at the periastron of the binary orbit.

From Fig. 2, as well as equations (39) and (40), it can
be seen that, for a given ratio of the donor’s rotational
angular velocity to the orbital angular velocity at peri-
astron, the line dividing positive from negative rates of
secular change of the orbital elements is a function of
q and e. This is illustrated further in Fig. 3 where the
timescales of orbital evolution are displayed as contour
plots in the (q, e)-plane. The thick black line near the
center of the plots marks the transition values of q and
e where the rates of secular change of a and e transition
from being positive (to the left of the thick black line) to
negative (to the right of the thick black line). Varying
Ω1/Ωorb,P between 0.5 and 1.5 changes the position of
the transition line by less than 10% in comparison to the
Ω1/Ωorb,P = 1 case displayed in Figures 2 and 3.

In the limiting case of a circular orbit, the orbit ex-
pands when q < 1 and shrinks when q > 1, in agreement
with the classical result obtained from equation (31). For
non-zero eccentricities, the critical mass ratio separat-
ing positive from negative values of 〈ȧ〉sec decreases with
increasing orbital eccentricities. This behavior can be
understood by substituting the fitting formula for the
position of the L1 point given by equation (A15) in Ap-
pendix A into equation (39) and setting 〈ȧ〉sec = 0. How-
ever, we can fit the critical mass ratio separating expand-
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Fig. 2.— Orbital evolution timescales for a delta function mass transfer profile centered at the periastron of the binary orbit with an
instantaneous mass transfer rate of Ṁ0 = −10−9 M⊙ yr−1. The timescales are calculated under the assumption that the donor rotates
synchronously with the orbital angular velocity at periastron, and that the accretor is a 1.44 M⊙ neutron star. Shown at left (right) are the
timescales for the evolution of the semi-major axis (eccentricity) as a function of the mass ratio, q, for a range of eccentricities, e. Regimes
where the timescale is negative correspond to a decrease of the semi-major axis (eccentricity), while regimes where the timescale is positive
correspond to an increase of the semi-major axis (eccentricity).

Fig. 3.— Contour plot of the orbital evolution timescales for the semi-major axis and eccentricity in the (q, e)-plane for the same set of
assumptions as adopted in figure 2. Timescales for the evolution of the semi-major axis are shown on the left; timescales for the evolution
of the orbital eccentricity on the right. The different shades of gray designate regions of the (q, e) parameter space with timescales (in Gyr)
in the ranges labeled in the plots. The thick black line near the center of each plot designates the transition point where the rate of change
of the semi-major axis or orbital eccentricity changes from positive (to the left of the thick black line) to negative (to the right of the thick
black line).

ing from shrinking orbits with a simpler formula given by

qcrit ≃ 1 − 0.4e + 0.18e2. (41)

The critical mass ratio separating positive from neg-
ative values of 〈ė〉sec is largely independent of e. Pro-
ceeding in a similar fashion as for the derivation of equa-
tion (41), we derive the critical mass ratio separating
increasing from decreasing eccentricities to be approxi-
mately given by

qcrit ≃ 0.76 + 0.012e. (42)

Last, we note that a more quantitative numerical com-
parison between the above approximation formulae for
qcrit and the exact numerical solutions shows that equa-
tions (41) and (42) are accurate to better than 1%.

6. TIDAL EVOLUTION TIMESCALES

A crucial question for assessing the relevance of the
work presented here is how the derived orbital evolution
timescales compare to the corresponding timescales as-
sociated with other orbital evolution mechanisms such as
tides. In Fig. 4, we show the secular evolution timescales
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of the semi-major axis and orbital eccentricity of a mass-
transferring binary due to tidal dissipation in the donor
star as a function of q, for different values of the eccentric-
ity, e. The timescales are strong functions of |~rA1

|/a and
are determined as in Hurley et al. (2002)3 (see also Zahn
1977, 1978; Hut 1981). The radius |~rA1

| is determined by
assuming the donor is on the zero-age main sequence and
that the orbital separation is then obtained by equating
the radius of the donor (given by Tout et al. 1996) to the
volume-equivalent radius of its Roche lobe at the peri-
astron of the binary orbit (see Sepinsky et al. 2007). As
before, we assume the donor rotates synchronously with
the orbital motion at periastron and that the accretor is
a 1.44 M⊙ neutron star.

The timescales of orbital evolution due to tides range
from a few Myr to more than a Hubble time, depending
on the binary mass ratio and the orbital eccentricity. The
discontinuity in the timescales at q ≃ 0.87 corresponds
to the transition from donor stars with convective en-
velopes (M1 . 1.25 M⊙) to donor stars with radiative
envelopes (M1 & 1.25 M⊙) which are subject to different
tidal dissipation mechanisms. It follows that tides do not
necessarily lead to rapid circularization during the early
stages of mass transfer, especially for orbital eccentrici-
ties e & 0.3. Furthermore, for the adopted system pa-
rameters, the orbital eccentricity always decreases, while
the orbital semi-major axis can either increase or de-
crease. Hence, in some regions of the parameter space,
the effects of tides and mass transfer are additive, while
in other regions they are competitive. This is illustrated
in more detail in figure 5 where we show the orbital evo-
lution timescales due to the combined effect of tides and
mass transfer. In the calculations of the timescales, we
have assumed that, at the lowest order of approximation,
the effects of tides and mass transfer are decoupled. The
total rate of change of the orbital elements is then given
by the sum of the rate of change of the orbital elements
due to tides and mass transfer.

When q . 0.87 and e & 0.4, the effects of tides and
mass transfer on the orbital semi-major axis are always
opposed, with the orbital expansion due to mass trans-
fer dominating the orbital shrinkage due to tides. In the
case of the orbital eccentricity, the increase of the ec-
centricity due to mass transfer dominates the decrease
due to tides for mass ratios smaller than some critical
mass ratio which depends strongly on the orbital eccen-
tricity. Since the timescales of orbital evolution due to
mass transfer are inversely proportional to the magnitude
Ṁ0 of the mass-transfer rate at periastron, the param-
eter space where and the extent to which mass transfer
dominates increases with the rate of mass transfer at pe-
riastron.

In figure 6, we show the total orbital evolution
timescale due to the sum of tidal and mass transfer ef-
fects as a contour plot in the (q, e)-plane. The thick
black lines indicate the transitions from positive (left
of the thick black line) to negative (right of the thick

3 Note that there is a typo in equation (42) of Hurley et al.
(2002). The correct equation for k/T for stars with radiative en-
velopes is (J. Hurley, Private Communication)

(k/T )r = 1.9782 × 104
`

MR2/a5
´1/2

(1 + q2)5/6 E2 yr−1.

black line) rates of change of the semi-major axis and
eccentricity. The white dividing line near q ≈ 0.87 corre-
sponds to the transition between tidal dissipation mecha-
nisms in stars with convective envelopes (M1 . 1.25 M⊙)
and stars with radiative envelopes (M1 & 1.25 M⊙). It
follows that there are large regions of parameter space
where the combined effects of mass transfer and tidal
evolution do not rapidly circularize the orbit. In partic-
ular, for q > 0.87 and e & 0.75 orbital circularization
always takes longer than 10Gyr, while for q to the left of
the thick black line the orbital eccentricity grows rather
than shrinks. For a given q left of the thick black line,
the timescales for eccentricity growth increase with in-
creasing e though, so that there is no runaway eccen-
tricity growth. Hence, for small q, mass transfer at the
periastron of eccentric orbits may provide a means for
inducing non-negligible eccentricities in low-mass binary
or planetary systems. The orbital semi-major axis, on
the other hand, always increases when e . 0.55, but can
increase as well as decrease when e & 0.55, depending on
the binary mass ratio q. We recall that both the tidal
and mass transfer orbital evolution time scales depend
on the ratio of the donor’s rotational angular velocity Ω1

to the orbital angular velocity Ωorb,P and that we have
set Ω1/Ωorb,P = 1 in all figures shown.

7. CONCLUDING REMARKS

We developed a formalism to calculate the evolution
of the semi-major axis and orbital eccentricity due to
mass transfer in eccentric binaries, assuming conserva-
tion of total system mass and orbital angular momentum.
Adopting a delta-function mass-transfer profile centered
at the periastron of the binary orbit yields rates of secu-
lar change of the orbital elements that are linearly pro-
portional to the magnitude Ṁ0 of the mass-transfer rate
at the periastron. For Ṁ0 = 10−9 M⊙ yr−1, this yields
timescales of orbital evolution ranging from a few Myr
to a Hubble time or longer. Depending on the initial
binary mass ratio and orbital eccentricity, the rates of
secular change of the orbital semi-major axis and eccen-
tricity can be positive as well as negative, so these orbital
elements can increase as well as decrease with time.

Comparison of the timescales of orbital evolution due
to mass transfer with the timescales of orbital evolution
due to tidal dissipation shows that the effects can either
be additive or competitive, depending on the binary mass
ratio, the orbital eccentricity, and the magnitude of the
mass-transfer rate at the periastron. Contrary to what
is often assumed in even the most state-of-the-art binary
evolution and population synthesis codes, tides do not al-
ways lead to rapid circularization during the early stages
of mass transfer. Thus, phases of episodic mass transfer
may occur at successive periastron passages and may per-
sist for long periods of time. As a first approximation, the
evolution of the orbital semi-major axis and eccentricity
due to mass transfer in eccentric binaries can be incor-
porated into binary evolution and population synthesis
codes by means of equations (39) and (40) in which the
mass-transfer rate is approximated by a delta-function
of amplitude Ṁ0 centered at the periastron of the binary
orbit.

In future papers, we will relax the assumption of con-
servation of total system mass and orbital angular mo-
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Fig. 4.— Timescales of orbital evolution due to tidal dissipation in a Roche-lobe filling component of a close binary under the assumption
that the donor is a zero-age main-sequence star rotating synchronously with the orbital angular velocity at the periastron, and the accretor
is a 1.44 M⊙ neutron star. Shown at left (right) are the timescales for the evolution of the semi-major axis (eccentricity) as a function of
the mass ratio, q, for different orbital eccentricities e. Regimes where the timescales are negative correspond to a decrease of the semi-major
axis (eccentricity), while regimes where the timescales are positive correspond to an increase of the semi-major axis (eccentricity). The
discontinuity at q ≃ 0.87 corresponds to the transition from donor stars with convective envelopes (M1 . 1.25 M⊙) to donor stars with
radiative envelopes (M1 & 1.25 M⊙).

Fig. 5.— Orbital evolution timescales due to the combined effects of tidal dissipation in a Roche Lobe filling component of a close
binary system and a delta function mass transfer with an amplitude Ṁ0 = −10−9 M⊙ yr−2 centered at the periastron of the orbit under
the assumption that the donor is rotating synchronously with the orbital angular velocity at periastron, and the accretor is a 1.44 M⊙

neutron star. The contribution to the orbital evolution timescales due to tides is determined under the assumption that the donor is
zero-age main-sequence star. Shown at left (right) are the timescales for the evolution of the semi-major axis (eccentricity) as a function
of the mass ratio, q, for a range of eccentricities, e. Regimes where the timescale is negative correspond to a decrease in the semi-major
axis (eccentricity), while regimes where the timescales is positive correspond to an increase in the semi-major axis (eccentricity). The
discontinuity at q ≃ 0.87 corresponds to a transition of the dominant tidal dissipation mechanism which is different for donor stars with
convective envelopes (M1 . 1.25 M⊙) than for donor stars with radiative envelopes (M1 & 1.25 M⊙).
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Fig. 6.— Contour plots of the total orbital evolution timescales in the (q, e)-plane due to the combined effects of tidal dissipation and
mass transfer for the same set of assumptions adopted in figure 5. Timescales for the evolution of the semi-major axis are shown at
left; timescales for the evolution of the orbital eccentricity are shown at right. The different shades of gray designate regions of the (q, e)
parameter space with timescales (in Gyr) in the ranges labeled in the plots. The thick black line designates the transition point where the
rate of change of the semi-major axis or orbital eccentricity changes from positive (to the left of the thick black line) to negative (to the
right of the thick black line). The vertical white line at q ≃ 0.87 corresponds to a transition of the dominant tidal dissipation mechanism
which is different for donor stars with convective envelopes (M1 . 1.25 M⊙) than for donor stars with radiative envelopes (M1 & 1.25 M⊙).
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Fig. 7.— Schematic diagram showing the vectors pertinent to the derivation of the equipotential surfaces for a non-synchronous, eccentric
binary. The center of mass of the system is shown as a cross near the center of the diagram and the center of mass of each star is shown

as a filled circle at the star’s center. The vectors ~R1 and ~R2 begin at the center of mass of the system.

mentum, and examine the effects of non-conservative
mass transfer on the orbital elements of eccentric bina-
ries. We also intend to study the onset of mass transfer in
eccentric binaries in more detail, adopting realistic mass-
transfer rates appropriate for atmospheric Roche-lobe

overflow in interacting binaries as discussed by Ritter
(1988). We will consider individual binary systems that
are known to be eccentric and transferring mass during
periastron passage, as well as populations of eccentric
mass-transferring binaries and their descendants.

APPENDIX

EQUIPOTENTIAL SURFACES AND THE INNER LAGRANGIAN POINT IN ECCENTRIC BINARIES

A crucial element in the description of mass transfer in any binary system is the location of the inner Lagrangian
point (L1) through which matter flows from the donor to the accretor. While a solution for the location of L1 is not
analytic, the case of circular orbits with synchronized components can be approximated by the formula

XL1
= 0.5 + 0.22 log q, (A1)

where XL1
is the distance of the L1 point from the mass center of the donor star in units of the distance between

the stars, and q = M1/M2 is the mass ratio of the binary defined as the ratio of the donor mass M1 to the accretor
mass M2. For mass ratios in the range 0.1 < q < 15, this formula is valid to an accuracy of better than 2% (e.g.
Drobyshevski & Reznikov 1974). The above formula has been generalized by Pratt & Strittmatter (1976) to include



Interacting Binaries with Eccentric Orbits 13

the effect of a non-synchronously rotating donor star:

XL1
=

[

0.53 − 0.03

(

Ω1

Ωorb

)2
]

(

1 +
4

9
log q

)

. (A2)

Here, Ω1 is the rotational angular velocity of the donor, and Ωorb the orbital angular velocity of the binary. For
0 < Ω1/Ωorb < 1 and 0.2 < q < 10, the formula is valid to an accuracy of better than 3%. It is to be noted though that
Pratt & Strittmatter (1976) derived the position of the L1 point under the assumption that the orbital and rotational
periods of the binary and its component stars are much longer than the dynamical timescale of the donor. Despite
the better than 3% accuracy of the fit given by equation (A2), the formula may therefore still break down because the
underlying formalism is no longer valid.

In this paper, it is necessary to generalize the formula for the position of the L1 point even further to account for a
non-zero eccentricity as well as non-synchronous rotation. For this purpose, we determine the equipotential surfaces
describing the shape of the components of a non-synchronous, eccentric binary. Our procedure is a generalization of
the steps outlined by Limber (1963) for the derivation of the equipotentials of a non-synchronous, circular binary.

Here, we consider an eccentric binary system where the stars are considered to be centrally condensed and spherically
symmetric, and thus can be well described by Roche models of masses M1 and M2. Their orbit is assumed to be
Keplerian with semi-major axis a and eccentricity e. Star 1 is furthermore assumed to rotate uniformly with a

constant angular velocity ~Ω1 parallel to the orbital angular velocity ~Ωorb. We note that for an unperturbed Keplerian

orbit, the magnitude of ~Ωorb is a function of time, while the direction and orientation remain fixed in space.
As is customary, we determine the equipotential surfaces with respect to a Cartesian coordinate frame OXY Z with

origin O at the mass center of star 1, and with the Z-axis pointing along ~Ω1. The X- and Y -axes are co-rotating
with the star at angular velocity Ω1. Since non-synchronously rotating binary components are inevitably subjected
to time-dependent tides invoked by their companion, the mass elements will oscillate with frequencies determined by
the difference between the rotational and orbital frequencies. Here, we neglect these tidally induced oscillations as
well as any other type of bulk motion of matter due to, e.g., convection. This approximation is valid as long as the
characteristic timescale associated with the motion of the mass elements is sufficiently long compared to the star’s
dynamical timescale (more extended discussions on the validity of the approximation can be found in Limber (1963),
Savonije (1978), and Sepinsky et al. (2007)). Star 1 is then completely stationary with respect to the co-rotating frame
of reference.

With respect to the OXY Z frame, the equation of motion of a mass element at the surface of star 1 is given by

~̈r1 = ~̈r0 − ~̈R1 − ~Ω1 ×
(

~Ω1 × ~r1

)

− 2 ~Ω1 × ~̇r1, (A3)

where ~r0 and ~r1 are the position vectors of the mass element with respect to the mass center of the binary and star

1, respectively, and ~R1 is the position vector of the center of mass of star 1 with respect to the center of mass of the

binary, and −~Ω1 × (~Ω1 × ~r1) and −2 ~Ω1 × ~̇r1 are the centrifugal and Coriolis acceleration with respect to the rotating
coordinate frame.

Under the assumption that, in an inertial frame of reference, the only forces acting on the considered mass element
are those resulting from the pressure gradients in star 1 and the gravitational attractions of star 1 and its companion,
the acceleration of the mass element with respect to the binary’s center of mass is given by

~̈r0 = −
1

ρ
~∇P − ~∇

(

−G
M1

|~r1|
− G

M2

|~r2|

)

, (A4)

where G is the Newtonian constant of gravitation, ρ the mass density, P the pressure, and ~r2 the position vector of
the mass element with respect to the mass center of star 2. The gradient in equation (A4) and subsequent equations
in this Appendix are taken with respect to X , Y , and Z.

The acceleration of the center of mass of star 1 with respect to the binary mass center, on the other hand, is given
by

~̈R1 = −
GM2

D2

~R1

|~R1|
, (A5)

where D(t) (simplified to D in what follows) is the time-dependent distance between star 1 and star 2.
Substituting equations (A4) and (A5) into equation (A3), we obtain

~̈r1 = −
1

ρ
~∇P − ~∇

(

−G
M1

|~r1|
− G

M2

|~r2|

)

+
GM2

D2

~R1

|~R1|
− ~Ω1 × (~Ω1 × ~r1) − 2 ~Ω1 × ~̇r1. (A6)

When the X-axis coincides with the line connecting the mass centers of the two stars, the third and fourth term in
the right-hand member of equation (A6) can be written as the gradient of a potential function as

GM2

D2

~R1

|~R1|
= −~∇

(

GM2

D2
X

)

, (A7)
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~Ω1 × (~Ω1 × ~r1) = −~∇

[

1

2
|~Ω1|

2
(

X2 + Y 2
)

]

, (A8)

where X and Y are the Cartesian coordinates of the mass element under consideration. With these transformations,
equation (A6) becomes

~̈r1 = −
1

ρ
~∇P − ~∇V1 − 2 ~Ω1 × ~̇r1, (A9)

where

V1 = −G
M1

|~r1|
− G

M2

|~r2|
−

1

2
|~Ω1|

2(X2 + Y 2) +
GM2

D2
X. (A10)

Since star 1 is assumed to be static in the rotating frame, ~̇r1 = ~̈r1 = 0, so that equation (A9) reduces to

~∇P = −ρ~∇V1. (A11)

This equation governs the instantaneous shape of the equipotential surfaces at the instant when the X-axis coincides
with the line connecting the mass centers of the two stars. However, since this instant is entirely arbitrary, the equation
is generally valid and can be used to determine the shape of the star at any phase of the orbit, with appropriate re-
definition of the X-axis at every instant. A similar equation was derived by Avni (1976) and Wilson (1979).

Next, we look for the critical equipotential surface for which matter starts to flow from star 1 to star 2 through
the inner Lagrangian point L1. For circular binaries with synchronously rotating component stars, the L1 point is
always located on the line connecting the mass centers of the two stars. Matese & Whitmire (1983) have shown that
non-synchronous rotation combined with a misalignment between the spin axis of star 1 and the orbital plane may
cause the L1 point to oscillate in the Z-direction. As a first approximation, we here neglect these oscillations and
assume the L1 point to be located on the line connecting the mass centers of the two stars. The position of the L1

point is then obtained by setting dV1/dX = 0. The resulting equation for the position of L1 is

G
M1

X2
− G

M2

(X − D)2
− |~Ω1|

2X + G
M2

D2
= 0, (A12)

which can be rewritten in dimensionless form as

q

X2
L1

−
1

(XL1
− 1)2

− f2XL1
(1 + q)(1 + e) + 1 = 0. (A13)

Here, XL1
= X/D is the position of the L1 point on the X-axis in units of the distance between the two stars,

q = M1/M2 is the binary mass ratio, f = Ω1/Ωorb,P is the ratio of the star 1’s rotational angular velocity to the
orbital angular velocity at periastron, and Ω2

orb,P = G(M1 + M2)(1 + e)/D3
p. In the latter expression, DP = a(1 − e)

is the distance between the stars at periastron. Note that in the particular case of a circular orbit, equation (A13)
reduces to the equation for the position of the L1 point derived by Kruszewski (1963) and Pratt & Strittmatter (1976).

Equation (A13) must be solved numerically for the location of L1. Since we have made no explicit assumptions
about the relative location of the two star in the orbit, and we have let the distance between the stars D = a(1 −
e2)/(1 + e cos ν), with ν the true anomaly, be an explicit function of time, this equation characterizes the position of
the L1 point at any position in the orbit. Figure 8 shows the relative change

∆XL1
=

XL1
(ν) − XL1

(ν = 0)

XL1
(ν = 0)

(A14)

in the position of the L1 point as a function of the true anomaly for q = 1, f = 1, and a variety of eccentricities.
The position of the L1 point over the course of a single orbit varies by less than 15% when e . 0.1, and by 30–40%
when e & 0.2. At apastron, ∆XL1

increases with increasing eccentricity when e . 0.5, and decreases with increasing
eccentricity when e & 0.5. This turn-around at e ≃ 0.5 is caused by the increasing deviations from synchronous
rotation at apastron with increasing orbital eccentricity.

We have also derived a fitting formula for the position of the L1 point at the periastron of the binary orbit as a
function of q, e, and f :

XL1
= 0.529 + 0.231 log q − f2(0.031 + 0.025e)(1 + 0.4 log q). (A15)

This fitting formula is accurate to better than 4 % for mass ratios 0.1 ≤ q ≤ 10, eccentricities 0 ≤ e ≤ 0.9, and ratios
of stellar rotational angular velocities to orbital angular velocities at periastron 0 ≤ f ≤ 1.5. In the limiting case of a
circular, synchronized binary, equation (A15) reduces to equation (A1), while for a circular, non-synchronized binary,
equation (A15) reduces to equation (A2). A detailed discussion of the properties of all five Lagrangian points and the
volume of the critical Roche Lobe in eccentric binaries is presented in Sepinsky et al. (2007)
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Fig. 8.— The relative change in the position of the L1 point as a function of true anomaly ν, for q = 1, f = 1, and a range of eccentricities.

ORBITAL EVOLUTION DUE TO INSTANTANEOUS MASS TRANSFER BETWEEN TWO POINT MASSES

When the components of a mass-transferring binary are treated as point masses and mass transfer is assumed to
be instantaneous, an alternative derivation of the equations governing the secular change of the orbital semi-major
axis and eccentricity may be obtained from the equations for the specific orbital energy and angular momentum. This
method is commonly used to relate the post- to pre-supernova orbital parameters of binaries in which one of the
components undergoes an instantaneous supernova explosion (e.g. Hills 1983; Brandt & Podsiadlowski 1995; Kalogera
1996). As in Section 5, we assume conservation of total system mass and describe the mass transfer by a delta function
mass-transfer rate centered at the periastron of the binary orbit [see equation (32)].

The relative orbital velocity, Vrel, of two stars with masses M1 (the donor star) and M2 (the accreting star) in a
binary with orbital semi-major axis a and eccentricity e is given by

V 2
rel = G(M1 + M2)

(

2

|~r|
−

1

a

)

, (B1)

where G is the Newtonian constant of gravitation, and ~r is the relative position vector of the accretor with respect
to the donor. Under the assumption that mass elements are transferred instantaneously between the two stars, the
distance |~r| is the same right before and right after mass transfer, so that the rate of change of the orbital semi-major
axis due to instantaneous mass transfer is given by

da

dt
=

2a2Vrel

G(M1 + M2)

dVrel

dt
. (B2)
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Next, the specific orbital angular momentum of the binary written in terms of the binary component masses and
orbital elements is given by

|~r × ~Vrel|
2 = G(M1 + M2)a(1 − e2). (B3)

Noting that |~r × ~Vrel| = |~r||~Vrel| at periastron, and proceeding in a similar way as for the derivation of equation (B2),
we derive the rate of change of the orbital eccentricity due to instantaneous mass transfer to be

de

dt
=

2a(1 − e)|~Vrel|

G(M1 + M2)

d|~Vrel|

dt
. (B4)

Finally, we eliminate Vrel from equations (B2) and (B4) to obtain equations for the rates of changes of the orbital
semi-major axis and eccentricity in terms of the binary orbital elements and component masses. For this purpose, we
use the conservation of linear momentum to write the rate of change of the relative orbital velocity due to mass-transfer
as

d~Vrel

dt
=

Ṁ2

M2
~vδM2

−
Ṁ1

M1
~vδM1

, (B5)

where ~vδM1
and ~vδM2

are the relative velocities of the transferred mass elements with respect to the mass center of the

donor and accretor, respectively. To obtain an equation for the change in the magnitude of ~Vrel, we write the vector

components of ~Vrel, ~vδM1
, and ~vδM2

with respect to the x̂, ŷ, and ẑ unit vectors introduced in Section 3.2, and take

the dot product of equation (B5) with ~Vrel. Since, ~Vrel = Vrel ŷ at the periastron of the binary orbit, it follows that

dVrel

dt
= −

Ṁ1

M1

(

qvδM2,y
+ vδM1,y

)

. (B6)

Assuming conservation of orbital angular momentum it then follows from equations (29) and (B2)–(B6) that

qvδM2,y + vδM1,y = na(1 − q)

(

1 + e

1 − e

)1/2

, (B7)

where we have used Kepler’s 3rd law and that |~Vrel| = (G(M1 + M2)/a)
1/2

((1 + e)/(1 − e))
1/2

at the periastron of
the binary orbit. This equation is identical to equation (35) in the limiting case where |~rA1

| → 0 and |~rA2
| → 0.

Substituting equations (eq-C-vdm2) and (eq-C-vrel) into equations (B2) and (B4) and averaging over the orbital
period, we find

〈

da

dt

〉

sec

=
a

π

Ṁ0

M1

(

1 − e2
)1/2

(q − 1) (B8)

〈

de

dt

〉

sec

=
1

π

Ṁ0

M1
(1 − e2)1/2(1 − e)(q − 1). (B9)

These equations are identical to equations (25) and(26) in the limiting case where |~rA1
| → 0 and |~rA2

| → 0.
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