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Mergers of Black Hole – Neutron Star binaries. I. Methods and

First Results
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ABSTRACT

We use a 3-D relativistic SPH (Smoothed Particle Hydrodynamics) code to

study mergers of black hole – neutron star (BH–NS) binary systems with low

mass ratios, adopting MNS/MBH ≃ 0.1 as a representative case. The outcome of

such mergers depends sensitively on both the magnitude of the BH spin and its

obliquity (i.e., the inclination of the binary orbit with respect to the equatorial

plane of the BH). In particular, only systems with sufficiently high BH spin

parameter a and sufficiently low orbital inclinations allow any NS matter to

escape or to form a long-lived disk outside the BH horizon after disruption.

Mergers of binaries with orbital inclinations above ∼ 60o lead to complete prompt

accretion of the entire NS by the BH, even for the case of an extreme Kerr BH.

We find that the formation of a significant disk or torus of NS material around

the BH always requires a near-maximal BH spin and a low initial inclination of

the NS orbit just prior to merger.

Subject headings: binaries: close — black hole physics — stars: neutron —

relativity — gamma rays: bursts

1. Introduction

Over the past two decades, the modelling of double compact objects (DCOs) has at-

tracted special interest among theorists, mainly because such systems are expected to be
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strong sources of gravitational waves (GWs). Their inspiral and merger GW signals cover

a wide frequency band, from ∼ 10−4 − 10−1 Hz for supermassive black hole binaries of

∼ 104 − 107 M⊙ (Arun 2006) to ∼ 1000 Hz for NS–NS binaries, providing potential sources

both for ground-based interferometers (LIGO, VIRGO, etc.) and space-based detectors

(LISA). The inspiral signals can provide information on the spins and masses of the compact

objects (e.g., Poisson & Will 1995). Moreover the merger signal of BH–NS and NS–NS bina-

ries is believed to carry information on the NS structure and equation of state (EOS) of mat-

ter at nuclear densities (Faber & Rasio 2000; Faber et al. 2001; Faber & Rasio 2002). It is

interesting to mention here that for BH–NS mergers of massive enough BHs (M & 100 M⊙),

where the NS is expected to plunge into the BH as a whole, not much information on the

NS EOS will be carried by the GW signal. For BH–NS binaries, only the merger of the NS

with a stellar-mass BH will allow for the NS to disrupt outside the BH’s innermost stable

circular orbit (ISCO; this is emphasized and explained in more detail later on in this paper)

and enrich the GW signal with information on the physics of the NS matter.

Even though the GW signals from the inspiral of NS–NS binaries is accessible to

ground-based interferometers, covering the frequency range ∼ 40−1000 Hz, the signals from

their final mergers will probably be lost in the high-frequency noise level (Vallisneri 2000;

Faber et al. 2002). On the other hand, the GW merger signals for many BH–NS binaries

are expected to lie well within the sensitivity band of LIGO, at frequencies ∼ 100− 500 Hz.

Although double NS binaries have been observed (Thorsett & Chakrabarty 1999; Burgay et al.

2003), BH–NS and BH–BH binaries remain undetected. Moreover, the few observed NS–NS

binaries (binary pulsars with NS companions and one double pulsar) are subject to con-

siderable selection effects. Therefore it is not currently possible to infer much empirically

about the general properties of DCOs based on the observed sample. Theorists rely instead

on binary evolution and population synthesis models to make predictions about the forma-

tion, evolution and properties of such binaries (e.g., Belczynski et al. 2007; Nelemans et al.

2001). These models give estimates of merger rates for DCOs and the corresponding de-

tection rates for the various GW interferometers. NS–NS binaries are expected to merge

with rates ∼ 1− 145 Myr−1 per MWEG (Milky Way Equivalent Galaxy) and the equivalent

rate for BH–NS binaries is ∼ 0.07− 5 Myr−1 per MWEG (Kim et al. 2006; Belczynski et al.

2007). For NS–NS binaries the detection rate estimations are ∼ (0.4 − 60) × 10−3 yr−1 and

∼ 2 − 330× yr−1 for LIGO and Advanced LIGO respectively (Kim et al. 2006), while for

BH–NS binaries the equivalent rates are ∼ 3 × 10−3 − 2 × 10−2 yr−1 and 0.7 − 40 yr−1

(Belczynski et al. 2007). Although the detection rates are quite low for the current LIGO

stage, the estimations are very promising for Advanced LIGO.

It should be mentioned here that although the merger rates for NS–NS have been empir-
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ically constrained (Kim et al. 2006) no such constrains have been set for BH–BH and BH–NS

binaries. The lack of complete understanding of binary stars evolution can lead to merger

rate estimations for these systems which vary significantly, depending on the exact physics

adopted in the various binary evolution codes. Current effort is focusing on decreasing these

uncertainties and setting more solid constraints on the merger rates of BH–NS and BH–BH

binaries (O’Shaughnessy et al. 2005, 2006).

Along with the binary evolution studies that provide merger rates of compact binaries,

general relativistic calculations of binary mergers try to guide the search for GW signals

by predicting the exact shape of the signals and generating GW search templates (e.g.,

Buonanno et al. 2006; Baker et al. 2006; Abbott et al. 2006; Apostolatos 1995). It is ex-

pected that both the BH spin and its misalignment with respect to the orbital angular

momentum will affect significantly the shape of the GW signal and its detectability as well

(Apostolatos 1995; Grandclement et al. 2003).

Another interesting aspect of BH–NS and NS–NS binaries is their possible connection

to the observed short gamma-ray bursts (GRBs), a scenario that has gained widespread

support over the last few years, both because of the rapid progress in theoretical modelling

and the recent Swift observations of short GRBs (see Nakar 2007, for a recent review).

GRBs are classified into two duration classes, separated at ∼ 2 s (Kouveliotou et al.

1993). Long bursts are found to be predominantly in active star-forming regions. It is now

believed that long bursts are produced when a massive star reaches the end of its life, its

core collapsing to form a BH and in the process, ejecting an ultra-relativistic outflow (e.g.,

Woosley & Bloom 2006). The standard collapsar model predicts that a broad-lined and

luminous Type I-c core collapse supernova (SN) accompanies long bursts (MacFadyen &

Woosley 1999). This association has been confirmed in observations of several nearby GRBs

(e.g., Galama et al. 1998; Hjorth et al. 2003; Pian et al. 2006; Gehrels et al. 2006).

Until recently, afterglow of short bursts have been extremely elusive. This situation

changed dramatically in 2005. Swift and HETE-2 detected X-ray afterglows from short

bursts (Gehrels et al. 2005; Villasenor et al. 2005). This has lead to identification of host

galaxies and to redshift measurements. More than ten short burst afterglows were detected

so far, and distinctive features emerge. While long bursts occur only in star forming spiral

galaxies, short bursts appear also in elliptical galaxies which are dominated by an old star

population. The low level of star formation makes it unlikely that the burst originated

in a SN explosion. Even though a short burst GRB 050709 took place in a galaxy with

current star formation, optical observations ruled out a SN association (Fox et al. 2005).

The isotropic energy for short bursts is 2-3 orders of magnitude lower than that for long

bursts Eiso ∼ 1052−54 erg (Barthelmy et al. 2005). These results suggest that compact stellar
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mergers are the progenitors of short bursts .

The similarity of X-ray afterglow light curves of long and short bursts indicates that

afterglows of both classes can be described by the same paradigm, despite of differences

in the progenitors. This view is supported by the fact that the decay rate of short burst

afterglows is the value expected from the standard fireball model (e.g. Piran 2004; Mészáros

2006), and that at least in two short bursts GRB 050709 and GRB 01221A there is evidence

for a jet break (Fox et al. 2005; Soderberg et al. 2006; Burrows et al. 2006). In the

standard afterglow model, these breaks are interpreted as a signature of collimation of a

fireball into a jet with an opening angle θ ∼ 6-12 degrees and imply beaming-corrected

energy of E ∼ (0.5 − 3) × 1049 erg, much less than that of long bursts E ∼ 1051 erg (Frail

et al. 2001). The lower energy implies that the mass of the debris torus formed during the

merger could be smaller than that of the torus formed in the collapse of the core of massive

stars.

Combined with the lack of a jet break in GRB 050724 which gives lower limits of θ > 25

degrees and E > 4×1049 erg (Grupe et al. 2006), the current small sample indicates that the

outflow of short bursts is less strongly collimated than most previous-reported long GRBs

with the median value θ ∼ 5 degrees (Frail et al. 2001; however see also Monfardini et al.

2006). The wider jet angle is consistent with a merger progenitor scenario (e.g., Mészáros,

Rees & Wijers 1999), since there is no extended massive stellar envelope as in long GRBs

that serves to naturally collimate the outflow. More bright short bursts will be needed to

improve the jet break statistics substantially.

One of unexpected finds by Swift is that early X-ray afterglows of long bursts show a

canonical behavior, where light curves include three components: (1) a steep decay compo-

nent, (2) a shallow decay component and (3) a “normal” decay component. On top of this

canonical behavior, many events have superimposed X-ray flares (e.g., Zhang et al. 2006).

The X-ray afterglow of a short burst GRB 050724, associated with an elliptical host galaxy,

also resembles the canonical light curve, and it suggests a long-lasting engine. A flare at

∼ 100 s in the X-ray light curve decays too sharply to be interpreted as the afterglow emis-

sion from a forward shock, but is consistent with the high latitude emission from a fireball

(Barthelmy et al. 2005; Kumar & Panaitescu 2000). This is appropriate for the late internal

shock scenario as invoked to interpret X-ray flares in long GRBs. This interpretation requires

that the central engine remains active upto at least ∼ 100 s, and challenges simple merger

models, because the predicted typical time scale for energy release is much shorter.

Another interesting scenario associated with BH–NS and NS–NS binaries is the possi-

ble connection of their mergers to the production of r-process elements (a very important

process for the formation of heavy nuclei with A > 90− 100). It is still not clear today what
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is the astrophysical site that can provide the appropriate conditions for r-process nucleosyn-

thesis to take place, although the conditions themselves can be estimated (Jaikumar et al.

2006). The possible ejection of extremely neutron-rich (Ye ∼ 0.1) material from NS disrup-

tions in compact binary mergers is believed to be a promising source for r-process elements

(Lattimer & Schramm 1974,1976). As such mergers are expected to happen in the outskirts

of galaxies (Perna & Belczynski 2002), it is possible that the high-velocity ejecta will enrich

the intergalactic medium with high mass r-process elements (Rosswog 2005).

Motivated by all these recent observational and theoretical developments, we have em-

barked on a numerically investigation of the merger process for BH–NS binaries using a

3-D relativistic SPH code. In this paper, the first of a series, we present our methods and

numerical code, as well as the results from a first set of preliminary calculations aimed at

exploring broadly the parameter space of these mergers. Our paper is organized as follows:

In §2 we discuss the SPH code used for our simulations, we develop some analytic considera-

tions regarding the metric used by the code, and we also discuss the various test calculations

that we have run. In §3 we present results from our simulations of equatorial mergers (§3.1)

and inclined mergers (§3.2), including a discussion of how to set up initial conditions for the

inclined case. Finally, a summary and conclusions are given in §4.

2. Methods and Tests

2.1. Critical Radii

Fig. 11 shows why the final merger of a BH–NS binary (for a typical stellar-mass BH)

is interesting but also particularly difficult to compute: the tidal (Roche) limit is typically

right around the ISCO and the BH horizon. On the one hand, this implies that careful,

fully relativistic calculations are needed. On the other hand, it also means that the fluid

behavior and the GW signals could depend sensitively (and carry rich information) on both

the masses and spins of the compact objects, and on the NS EOS. How much information is

carried about the fluid depends on where exactly the tidal disruption of the NS occurs: for a

sufficiently massive BH, the horizon will always be encountered well outside the tidal limit,

in which case the NS behavior remains point-like throughout the merger and disruption will

never be observed by a distant observer. If the BH’s mass is such that the tidal limit exists

outside the horizon, then the GW signal of the disruption could be detected by ground-based

1e.g., see Lai et al. (1994) and Wiggins & Lai (2000) for analytical calculations and discussion of tidal

radii.
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interferometers.

For those cases where disruption occurs outside the BH’s horizon, the final outcome of

the merger depends strongly on the relative positions of the tidal radius Rt (i.e., the point

where disruption takes place) to the ISCO of the BH. Fig. 1 gives a useful description of

that and a first idea of what one could expect the outcome to be for mergers of various

mass ratios. An interesting fact that we notice first is that for a given BH mass the relative

position of Rt to the ISCO changes with the BH’s angular momentum: as the BH’s spin

increases it drags the ISCO further closer to the BH. For high enough mass ratios (low BH

mass of the order of a few M⊙) the tidal radius is always encountered outside the ISCO even

for non-rotating BHs. For a 10 M⊙ BH, ISCO and Rt coincide for a Schwarzschild BH, but

the ISCO moves inside Rt for Kerr (spinning) BHs of that mass. Finally, for higher mass

BHs of ∼ 15 M⊙ the situation becomes more interesting as the ISCO lies well outside the

tidal radius for a non-spinning BH and for Kerr BHs with low spin, but it starts migrating

inside Rt as the BH’s angular momentum increases. For highly spinning BHs the tidal radius

is encountered well outside the ISCO. Of course for more massive BHs, Rt is not only inside

the ISCO but inside the horizon as well, even for the case of an extremal Kerr BH (this

happens for M & 100 M⊙).

Why this whole discussion is interesting, is because disruption outside the ISCO could

lead to the formation of a disk of the NS debris outside the BH’s horizon. If the disruption

is to happen inside the ISCO, no such feature is expected to form. Knowing the relative

position of ISCO and Rt for various mass ratios for the binary, gives us a first insight on

what to expect as an outcome of the merger and in which mass ratios we should look for

certain outcomes.

2.2. Analytic Considerations

The SPH code makes use of the Kerr-Schild (K-S) form of the Kerr metric. In this

section we summarize the reasons for choosing to use the K-S metric (i.e., its advantages

over the Kerr metric in Boyer-Lindquist [B-L] coordinates) and how quantities such as the

BH horizons and the angular velocity of equatorial circular orbits around the BH translate

from one coordinate system to the other. The reader can find extensive discussions on the B-

L and K-S coordinate systems in e.g., Chandrasekhar (1983); Poisson (2004); Kerr (1963).

Here, we present a short overview with emphasis on some useful aspects of the K-S metric

that relate directly to our calculations and to the representation of our results.

The Kerr solution in B-L coordinates is given by the familiar expressions (Boyer-Lindquist
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1967)

ds2 = −(1 − 2Mr

Σ
)dt2 + (

Σ

∆
)dr2 + Σdθ2

+ (r2 + a2 +
2Mra2

Σ
sin2 θ) sin2 θdφ2 − 4Mra sin2 θ

Σ
dφ dt (1)

where

∆ = r2 − 2Mr + a2 (2)

Σ = r2 + a2 cos2 θ. (3)

This form has only one off-diagonal term and is therefore far more convenient to use

than the K-S form of the metric.2 Yet, it carries some extra coordinate singularities which

correspond to the roots of ∆ : r± = M ±
√

M2 − a2 (r+ and r− are the future and past

horizons respectively, with r+ only being an event horizon). It is useful to observe that: (a)

for a/M = 1 the two coordinate singularities (horizons) coincide, (b) for a/M = 0 there

is only one horizon at rh/M = 2 and the curvature singularity at r/M = 0. The obvious

advantage of casting the Kerr metric into its K-S form is that one avoids the coordinate

singularities at the horizon present in B-L coordinates.

The coordinate singularity at the horizon present in the B-L form of the metric has the

following effect (Poisson 2004): although it takes a finite proper time for a particle to cross

the event horizon, it takes infinite t time to do so. Also, since the angular velocity dφ/dt

tends to a finite limit at the horizon, φ has also to increase an infinite amount : φ → ∞ (φ,

like t, is not a ”good” coordinate at the horizon). What that practically means for our code

is that, it prevents us from extending our calculations all the way to the horizon of the BH.

In that case, one needs instead to place an absorbing boundary outside the BH’s horizon.

Fortunately there is a way to overcome that problem. In order to extend the Kerr metric

beyond the horizon, another coordinate system needs to be adopted. Keeping in mind that

the horizons are null surfaces, it makes intuitively sense to construct the new coordinates in

terms of the null geodesics.

The null geodesics in the Kerr space-time are given by the tangent vectors

dt

dτ
=

r2 + a2

∆
E (4)

2Note that this form of the Kerr metric reduces to the well known Schwarzschild solution in the limit

a = 0: ds2 = −(1 − 2M
r

)dt2 + (1 − 2M
r

)−1dr2 + r2dθ2 + r2 sin2 θdφ2
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dr

dτ
= ±E (5)

dθ

dτ
= 0 (6)

dφ

dτ
=

a

∆
E (7)

where E is the specific energy.

The real null vector ~l reads:

lα =
1

∆
(r2 + a2,±∆, 0, a). (8)

Setting E = 1 (and using λ for the affine parameter)

dt

dλ
=

r2 + a2

∆
,
dr

dλ
= ±1, (9)

dθ

dλ
= 0,

dφ

dλ
=

a

∆
. (10)

By choosing the positive sign for dr/dλ we obtain an outgoing congruence with the

tangent vector field defined by

lαϑα =
r2 + a2

∆
ϑt + ϑr +

a

∆
ϑφ. (11)

The new variables u and φ̃ can be introduced in the place of t and φ:

du = dt − r2 + a2

∆
dr (12)

dφ̃ = dφ − a

∆
dr. (13)

The null geodesic now becomes

lα = (0, 1, 0, 0) (14)

and the metric takes the form

ds2 = −(1 − 2Mr̃

Σ
)du2 + Σdθ2 − 2du dr̃ − 4aMr̃ sin2 θ

Σ
du dφ̃ + 2a sin2 θdr̃ dφ̃
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+ (r̃2 + a2 +
2Mr̃a2 sin2 θ

Σ
) sin2 θdφ̃2 (15)

where r̃ is defined by3

r̃4 − (ρ2 − a2)r̃2 − a2z2 = 0 (16)

with4

ρ2 = x2 + y2 + z2. (17)

By instead choosing the negative sign for dr/dλ we can obtain an ingoing congruence

with the tangent vector field given by

l′αϑα =
r2 + a2

∆
ϑt − ϑr +

a

∆
ϑφ (18)

The new variables to be introduced here are

dv = dt +
r2 + a2

∆
dr (19)

dφ̃′ = dφ +
a

∆
dr (20)

In this coordinate system the null geodesic simplifies to

l′α = (0,−1, 0, 0) (21)

and the metric becomes

ds2 = −(1 − 2Mr̃

Σ
)dv2 + Σdθ2 + 2dvdr̃ − 4aMr̃ sin2 θ

Σ
dvdφ̃′ − 2a sin2 θdr̃dφ̃′

+ (r̃2 + a2 +
2Mr̃a2 sin2 θ

Σ
) sin2 θdφ̃′2 (22)

What’s the use of those two different coordinate sets? The coordinates (v,r,θ,φ̃′) are

well behaved on the future horizon, yet they are singular on the past horizon, where (u,r,θ,φ̃)

3a more geometrically insightful representation of Eq. (16) would be:

x2 + y2

r̃2 + a2
+

z2

r̃2
= 1

4Note that as a → 0 , r̃ → ρ
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are now well behaved. Therefore the first set of coordinates is used in order to regularize

the past horizon, whereas the second one is used to regularize the future horizon. If one

wants to avoid both horizons of a Kerr BH, both patches need to be used in order to cover

the entire spacetime around the BH. Then there is just the curvature singularity of the Kerr

metric left, which occurs at

Σ = r̃2 + a2 cos2 θ = 0 ⇒ (23)

x2 + y2 = a2 (24)

The curvature singularity is not a point but rather a ring of radius a and exists only at the

equatorial plane. It is always found inside the past horizon, although as a/M decreases the

curvature singularity and the past horizon approach each other (Fig. 2).

2.3. SPH Code

We employ a 3-D implementation of the SPH technique. The GRSPH (General Rela-

tivistic Smooth Particle Hydrodynamics) code is based on the work by Laguna et al. (1993a)

in which the general relativistic hydrodynamic equations were rewritten in a Lagrangian

form similar to their counterparts for non-relativistic fluids with Newtonian self-gravity.

The GRSPH code is restricted to fixed curved spacetimes, in particular the spacetime of

a rotating black hole. Originally the black hole metric used in the code was in terms of

Boyer-Lindquist coordinates. For the present work, we use Kerr-Schild coordinates. The

main advantage of these coordinates is their regularity across the black hole horizon, thus

allowing SPH particles to freely cross it. An important aspect of SPH in curved spacetimes

is the handling of the local volume averages required by the smoothing of the equations. The

smoothing volumes involved are in general not small enough to ignore curvature effects, in

particular in the neighborhood of the black hole. Our implementation correctly accounts for

these effects. The most important computational aspect of the GRSPH code is the particle

neighbor finding algorithm. The GRSPH code uses an oct-tree data structure as basis for

finding neighbors (Warren & Salmon 1991). The oct-tree in GRSPH has been successfully

used for N-body large-scale structure simulations (Heitmann et al. 2005) and used as a foun-

dation of a SPH code with radiation transport (Fryer et al. 2006). The GRSPH code scales

as O(N log N) with N the number of particles . The code was calibrated with three one-

dimensional benchmarks (Laguna et al. 1993): (1) relativistic shock tubes, (2) dust infall

onto a black hole, and (3) Bondi collapse (see Laguna et al. 1993a for the details). The code

has been successfully applied to studies of the tidal disruption of main sequence stars by a

supermassive BH (Laguna et al. 1993b; Kobayashi et al. 2004; Bogdanovic et al. 2004).

The use of a fixed background in our simulations is justified for low mass ratios (q ≃ 0.1
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in this paper) where the mass of the BH is substantially larger than the NS mass. Artificial

viscosity is implemented in our code by following the description presented in Laguna et al.

(1993a) and Laguna et al. (1994). Artificial viscosity is a mechanism for accounting for

the possible presence of shocks and is introduced as a viscous pressure term added to the

SPH equations (Laguna et al. 1993a). As we do not expect any shocks to appear anywhere

but perhaps at the point where the stream of NS material accreting onto the BH crosses

itself, we keep artificial viscosity suppressed by lowering the parameters of its two terms (the

bulk viscosity term and the von Neumann-Richtmyer (1950) viscosity term) at the value 0.2

instead of order unity that is commonly used (see Laguna et al. 1993a, for details and tests).

Radiation reaction is implemented in the GRSPH code by following the prescription

described in Lee & Kluzniak (1999b), §2. We use the quadrupole formula for the rate

of energy radiated (Eq. (4) in Lee & Kluzniak 1999b) to derive a damping force (Eq. (6)

in Lee & Kluzniak 1999b) for each of the SPH particles. The formula has been slightly

modified as in our code we deal with du/dt where u is the 4-velocity. We have also added a

parameter to increase the radiation reaction force in order to accelerate the inspiral since we

do not want to spend too much computational time for it. We have checked that once the

inspiral starts, this parameter does not make much difference. It has the effect of putting

the NS in a plunge trajectory.

Throughout our calculations and for all the results presented here we use geometrized

units with G = c = 1.

2.4. Test Calculations

2.4.1. Testing the K-S Metric

The Kerr-Schild coordinate system used in the SPH code is only avoiding the outer

(future) horizon, since that serves the purpose of the SPH particles getting as close to the

BH’s horizon as possible, without the code crashing or becoming problematic. Yet, in the

extremal Kerr case (a/M = 1), the two horizons coincide (Fig. 2) at r̃ =
√

2M , and as a

result, we see the orbits of the SPH particles being trapped at r̃ =
√

2M . To check that

it is the inner horizon where our transformation is singular, we set up the following simple

test: we construct a test particle geodesic integrator that makes use of the K-S metric and

we start with an equatorial orbit for a/M = 1 which, starting from a finite distance from the

BH ( having vz = vy = y = z = 0), ends being trapped at r̃ =
√

2M . We then keep following

the same orbit as we reduce the value of a (Fig. 3). The result is that the particle ends being

trapped at the inner horizon (whichever that is for the specific value of a). The trapping
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is illusionary: it reveals the singularity of our coordinate transformation. We thus avoid

using a/M = 1 in the simulations presented in this paper and instead we set a/M = 0.99

for the case of an extremal Kerr B.H. By doing so, the future horizon moves outwards at

r̃+ = 1.51067M and the past horizon moves inwards at r̃− = 1.31067M and are therefore

distinguishable.

Another quantity that is going to be affected by the coordinate transformation (i.e.,

from B-L to K-S) is the angular velocity Ωφ for a circular equatorial orbit around the BH.

In B-L coordinates Ωφ is given by

Ωφ = ± M1/2

r3/2 ± aM1/2
(25)

where r2 = x2 + y2 + z2 and the upper (lower) sign corresponds to co-rotating (counter-

rotating) orbits. In K-S coordinates Eq. (25) holds when r is replaced by r̃, as defined by

Eq. (16) (see Appendix C for an analytical calculation of Ωφ in K-S coordinates). In order

to check numerically that this is the correct formula for Ωφ, we set up the following test:

we use again the geodesic integrator and we place a test particle at some distance r0 from

the BH and give it the angular velocity that corresponds to an equatorial circular orbit at

the specific r0 as required by Eqs. (25) and (16). As expected, the test particle remains

in this fixed circular orbit (with dr̃/dτ = 0) as we integrate for a large number of orbital

periods. If we instead use Eq. (25) with r2 = x2 + y2 + z2, the particle follows an oscillating

orbit (dr/dτ 6= 0) around its initial position, indicating that the formula used for Ωφ needs

modification.

2.4.2. Stable Binary Orbits

In a first test, we considered a white dwarf (WD) with M∗ = 0.6 M⊙ and R∗ = 1.3 ×
10−2 R⊙ ∼ 9×108 cm orbiting around a Schwarzschild BH with M = 2×105 M⊙. Here 5000

particles are used to represent the WD with a Γ = 5/3 polyt,ropic EOS. Since the mass

ratio is extreme, our approximation (moving the fluid on a fixed background metric) should

be extremely accurate. With these parameters, the tidal radius Rt ∼ 6.3 × 1010cm and the

horizon scale rh = 2M ∼ 5.9×1010 cm are comparable, and much larger than the WD radius

R∗. If Rt ≫ rh, the point particle approximation should break down for orbits near the

ISCO because the WD will get disrupted at radii well outside the ISCO. On the other hand,

when Rt ≪ rh, the sound crossing time of the WD is much shorter than the orbital period,

and it is numerically expensive. Thus, we have chosen the parameters satisfying Rt ∼ rh to

test the code for relativistic orbits. With these parameters we found that we can maintain
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a circular orbit at r = 8 M to within |∆r|/r < 10−3 over one full orbital period (Fig. 4).

In a second, similar test we considered a NS with m = 1.4 M⊙ and RNS = 13.4 km

= 1.93 × 10−5 R⊙ (represented by 10000 SPH particles and with a Γ = 2 polytropic EOS)

orbiting around a Schwarzschild BH with M = 10 M⊙. We found that we can maintain a

NS orbiting at r = 20 M stably and without any noticeable numerical dissipation for more

than 20 orbital periods.

2.5. Initial Conditions for BH–NS Binaries

We set up initial conditions for BH–NS binaries near the Roche limit using the SPH code

and a relaxation technique similar to those used for previous SPH studies of close binaries

(e.g., Rasio & Shapiro 1995). First we construct hydrostatic equilibrium NS models for

a simple gamma-law EOS by solving the Lane-Emden equation. When the NS with this

hydrostatic profile is placed in orbit near a BH, spurious motions could result as the fluid

responds dynamically to the sudden appearance of a strong tidal force. Instead, the initial

conditions for our dynamical calculations are obtained by relaxing the NS in the presence of

a BH in the co-rotating frame of the binary. For synchronized configurations (assumed here),

the relaxation is done by adding an artificial friction term to the Euler equation of motion

in the co-rotating frame. This forces the system to relax to a minimum-energy state. We

numerically determine the angular velocity Ω corresponding to a circular orbit at a given r as

part of the relaxation process. The advantage of using SPH itself for setting up equilibrium

solution is that the dynamical stability of these solutions can then be tested immediately by

using them as initial conditions for dynamical calculations.

3. First Results

3.1. Equatorial BH–NS Mergers for Spinning and Non-spinning BH

For all the results presented in this section we ran simulations using 104 SPH particles

to represent a NS with a Γ = 2 polytropic EOS. The NS mass is m = 1.4M⊙ and its radius

is RNS = 15 km. The BH has a mass M = 15M⊙. All the SPH particles are of equal

mass (mp = m/104). The NS is initially placed at a distance r0 = 8M and for the cases

of a spinning BH (a/M 6= 0) the NS is co-rotating in the equatorial plane. The angular

momentum of the BH is left as a free parameter.

As a first approach we would like to get an idea on the possible outcome of a BH–
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NS merger: what percentage -if any- of the NS mass survives the merger, which are the

morphological features of the merger (e.g., creation of accretion disk, spread of the accreting

material), and how the BH angular momentum affects these features. For the two extreme

cases a/M = 0 and a/M = 0.99 (we avoid using a/M = 1 for the reasons mentioned in §2.2),

we observe a completely different behavior.

Fig. 5 shows the outcome of the merger for a non spinning BH: the NS, after being

completely disrupted and following an inspiraling orbit, disappears entirely into the BH’s

horizon in a time t/M ≃ 180 after the beginning of the simulation (where t is the coordinate

time for an observer at inifinity).

The result of our simulation for the case of the extremal Kerr BH (a/M = 0.99) is shown

in Figs. 6 and 7. The NS again gets completely disrupted and falls toward the co-rotating

BH following an inspiraling orbit while an outwards expanding tail of the disrupted NS’s

material is forming at the same time. The NS fluid starts disappearing into the BH’s horizon

at t/M ≃ 400 with an initially high infall rate which finally diminishes to an almost zero

level. At this point (t/M = 490) about 30% of the initial NS mass resides outside the BH’s

horizon (Fig. 8). We notice that the disruption takes place well outside the ISCO, in contrast

to the previous case of a Schwarzschild BH.

We run the same exact type of simulations for different values of the BH’s angular

momentum and compare the results. Fig. 8 shows the fraction of the initial NS mass that

survives the merger for five different values of a/M (0.75 ≤ a/M ≤ 0.99). As the angular mo-

mentum of the BH decreases, so does the fraction of material that survives, residing outside

the BH’s horizon. For the case of a/M = 0.1 (not included in the latter figure for practical

reasons), the situation is almost the exact same as for the Schwarzschild (non-spinning) BH:

the NS disappears completely into the horizon (Table 1 summarizes our results).

For the simulations with a/M spanning the range 0.1 < a/M < 0.75, namely for

a/M = 0.2, a/M = 0.5 and a/M = 0.6, we observe that the infall starts earlier as a/M

decreases (consistent with the behavior of the high a/M mergers). No surviving material

exists for those mergers with low spin for the BH (a/M < 0.7).

The morphological features of the mergers for the non-maximally spinning BH are simi-

lar to the extremal case, with the difference that, as a/M decreases the outwards expanding

tail tends to spread less. For the very low a/M cases no such tail is forming.

By the end of the SPH simulations, the mass fraction that resides outside the BH’s

future horizon seems to have reached a stable value. Since for a/M ≥ 0.9 there is substantial

part of the NS’s mass surviving the merger, one would like to investigate what the final

fate of this material might be, i.e., what percentage of it -if any - will escape or stay bound
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forming a stable disk around the BH. To answer those questions we first calculate the rest

energy (energy as measured by an observer at infinity) of each SPH particle throughout

the whole simulation for runs E1-E5. By knowing a particle’s energy we can determine

whether it is bound or unbound (e2 > 1 for unbound and e2 < 1 for bound5, where e =

−(gttu
t + gtφu

φ + gtru
r) is the rest energy per unit mass for an observer at infinity). Fig. 9

show the variations of bound and unbound mass for each of our simulations.

For the two runs with the highest a/M values (runs E1 and E2 from Table 1) we are able

to resolve a non zero fraction of bound material (2− 3% of the NS’s mass). For runs E3, E4

and E5 the percentage of bound material drops to unresolvable values ( as mentioned at the

beggining of this paragraph the code’s mass resolution is mp = m/104). As shown in Fig. 9

for the runs E1 and E2, both the unbound and bound NS material stabilize at a certain

value and persist there for a long time. That leads us to believe that the bound fraction of

the surviving mass stays around the BH forming a stable disk. In order to check whether our

definition of bound and unbound material is correct, we do the following test-runs: we evolve

the results of the SPH simulations using again the geodesic integrator. For every different

run (different a/M) we set as initial conditions for the geodesic integrator the last output

file from the equivalent SPH simulation. We make sure to run the geodesic integrator for a

sufficiently long time as it is much faster than the SPH code. The results of those tests, met

our expectations.

Namely, the material that we recognized as unbound escapes completely following

parabolic trajectories, whereas the particles that were energetically determined to be bound

(for runs E1 and E2 only) remain bound around the BH (and outside the BH’s horizon)

following equatorial precessing orbits, with maximum apoastron ∼ 30M , minimum perias-

tron of about ∼ 2 − 3M and a very small dispersion towards the direction of the BH’s axis

∼ 0.1 − 0.2M (see Fig. 10).

Two important remarks on the results of Table 1: no substantial fraction of bound

material survives for mergers with a/M . 0.95 and therefore no formation of a stable disk

is observed, and also for the cases with a/M . 0.7 the merger is completely catastrophic for

the NS, with no material surviving the merger.

5for an analytical discussion and a proof of that see Wilkins (1971) and Chandrasekhar (1983, chap.3,

§19)
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3.2. Non-equatorial BH–NS Mergers

Many authors have suggested that a significant NS birth kick is required for the forma-

tion of coalescing BH–NS binaries (e.g., Kalogera 2000; Lipunov et al. 1997). Any misalign-

ments between the axis of the BH and the NS progenitor are expected to be canceled during

the evolution of the binary prior to the supernova (SN) explosion that is associated with the

formation of the NS, due to mass-tranfer phases. Any spin-orbit misalignement therefore is

expected to be introduced by the SN that forms the NS. Kalogera (2000) argues that tilt

angles greater than 30o are expected for 30% − 80% of coalescing BH–NS binaries, whereas

tilt angles of 50o − 100o are expected for at most 70% of such systems. In order to account

for these findings, we set up some simulations for misaligned mergers, covering a wide range

of tilt angles from 30o − 180o. The results are presented in the two following subsections.

3.2.1. Setting Up Initial Conditions

The selection of initial conditions for the equatorial mergers is straight forward: select

an initial radius r0 -outside the Roche limit- and calculate the angular velocity Ωφ needed

for the relaxation procedure using Eqs. (25) and (16). Obviously, Eq. (25) does not hold

for non-equatorial orbits, since its derivation assumes that θ = π/2. When moving away

from the equatorial plane, there is a third constant of the motion6 appearing (the Carter

constant Q), as a result of the existence of a killing tensor. (The geodesics equations of the

Kerr spacetime are included in Appendix B). In order to find a stable, so-called spherical,

non-equatorial orbit on which to initially place the NS, we follow the technique described

in Hughes (2000). (For an in depth analysis of the procedure, refer to Hughes 2000 and

Wilkins 1971). Here, we point out the basic steps for finding and setting up numerically the

initial conditions for such an orbit, as presented in Hughes (2000).

For a circular orbit R(≡ dr/dτ) = 0 = R′, where the prime indicates differentiation

with respect to τ . Furthermore, for the orbit to be stable R′′ < 0 should also hold. One

can specify a unique orbit by fixing r0 and Lz. The conditions R = 0 = R′ will fix the other

two parameters of the orbit, E and Q. The inclination of the orbit (which is a constant of

the motion) can be calculated as :

cos(i) =
Lz

√

L2
z + Q

(26)

6the other two being the energy E and angular momentum Lz, related to the stationary and axial Killing

vectors respectively.
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(with i being zero on the equatorial plane where the Carter constant Q is also zero).

The most bound orbit (in terms of energy) for a given radius r0 is the equatorial prograde

orbit (in the same sense the retrograde orbit corresponds to the least-bound orbit). Therefore,

one can start by choosing a radius r0 in the equatorial plane (where Q = 0) and then, by

solving R = 0 = R′, calculate the energy E and angular momentum Lz for that orbit. Solving

analytically the condition (with R being defined by Eq. (B1)) one gets for the prograde and

retrograde orbits (Hughes 2000)

Epro =
1 − 2v2 + pv3

√

1 − 3v3 + 2pv3
(27)

Lpro
z = rv

1 − 2pv3 + p2v4

√

1 − 3v2 + 2pv3
(28)

Eret =
1 − 2v2 − pv3

√

1 − 3v3 − 2pv3
(29)

Lret
z = −rv

1 + 2pv3 + p2v4

√

1 − 3v2 − 2pv3
(30)

where v =
√

M/r and p = a/M .

With E and Lz numerically known for a given equatorial orbit of radius r0, one can

proceed into finding non-equatorial stable orbits. The way to do so is by keeping the radius r0

fixed, decreasing the value of Lz and solving again for the conditions R = 0 = R′, which now

are going to give the energy and Carter constant. This way one can keep on decreasing the

value of Lz until it reaches the value Lret
z or until R′′ = 0 (marginally bound). The stability

of the new, inclined orbit (with the inclination given by Eq. (26)) should be checked with the

requirement R′′ < 0. The angular velocity of this orbit can now be numerically determined

as Ωφ = dφ/dt by using the geodesics equations for dφ/dτ and dt/dτ (Eqs. (B3) and (B4)).

The velocity for a stable, spherical, non-equatorial orbit of radius r0 and inclination i will

be vy = r0Ωφ cos(i)

Since we have followed this numerical method to find initial conditions for the inclined

mergers, tuning the r0 and Lz values in order to solve for an exact value of inclination angle

was not trivial to do. In any case we tried to get as close to the value of the desired inclination

angle as it was numerically possible. For example, the inclined merger labelled to be 30o was

in reality 29.6577o. Similar order deviations of the integer value of inclination hold for the

rest of the inclined mergers presented here.
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3.2.2. Results

We have run five simulations of non-equatorial mergers, for five different inclination

angles all with a/M = 0.99 (Table 2). The rest of the characteristics of the simulations

presented in this section, i.e., BH and NS masses, polytropic index Γ, number of SPH

particles, are as mentioned in §4.1 .

Runs I4 (i ≈ 90o) and I5 (retrograde orbit) end up with the NS being entirely lost into

the BH’s horizon after spiraling around it for several orbits. The difference between the

outcomes of those two mergers is that, for run I4 the ’feeding’ of the BH does not take place

on the equatorial plane: the NS follows a 3D spherical orbit of decreasing radius before it

finally vanishes completely into the BH.

The outcome of Run I1 is presented in Figs. 11 and 12. As in the equatorial mergers

of high a/M presented in §4.1, the merger results in the formation of an expanding tail of

the NS’s material, with the innermost part of the helix ’feeding’ the BH. For this case the

helix does not lay on the equatorial plane , although the feeding point does. By the end

of the simulation almost 40% of the NS mass remains outside the BH’s horizon with most

of it unbound and only about 6% bound. We followed the procedure described already in

§3.1 and used the geodesic integrator to further evolve the results of the SPH simulation as

a test of the validity of our definition of bound and unbound mass and to check the spatial

distribution of the bound material around the BH. The whole unbound part of the surviving

material escapes outwards, whereas the bound mass forms a stable torus outside the BH’s

horizon. Fig. 13 shows the spatial distribution of pericenters (in red - upper right and lower

panels) and apocenters (in blue - upper left and middle panels) on the x-y and x-z planes.

Every particle is depicted at the moment of its own apocenter (or pericenter) (i.e., those

plots do not correspond to a snapshot of specific time of the equivalent merger).

Run I2 corresponds to a merger with initial inclination of ∼ 45o. As the infall of the

NS’s material into the BH starts, at about t/M = 1500 after the beginning of the simulation,

an outwards expanding tail is forming (Figs. 14 and 15) and by the end of the simulation

25% of the initial NS mass (Fig. 16) is left unbound and escaping. No bound, disk-forming

material was resolved in this case.

For an inclination of ∼ 70o (Run I3) the outcome of the merger is no different than that of

Runs I4 and I5: the whole NS disappears into the BH’s horizon. The morphological features

of this merger though is somewhere in between those of the low inclination mergers, where

there is mass surviving and the higher inclination ones, which ended up being completely

catastrophic for the NH. After the NS orbits around the BH following a spherical orbit of

decreasing radius, it starts accreting into the BH with the feeding point being well above the
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equatorial plane. As the infall continues, the part of the NS that is still outside the BH’s

horizon moves towards the equatorial plane and at the last stages of the merger, when the

feeding point has sufficiently approached the equatorial plane, a small, expanding, spiraling

tail forms which is energetically unable to escape or expand significantly and ends up being

accreted into the BH as well. At the end of the simulation there is no surviving mass

(Fig. 17).

The difference between equatorial and inclined mergers in terms of the surviving bound

mass seems to be the vertical (z-axis) distribution of the NS debris. In the first case the

bound material remains on an equatorial disk (−0.15M ≤ z ≤ 0.15M) whereas in the later

case the disk take the form of a torus with −1M ≤ z ≤ 1M , and also in the later case the

torus is more massive than the disk of the equatorial mergers.

We note that the geodesic integrator runs are taken just as an approximation and a

qualitative test of the further evolution of the two groups of surviving material (bound and

unbound), for the cases where hydrodynamics is of no importance and the SPH particles can

be treated as free particles; e.g., for unbound particles at great distances from the BH.

4. Discussion and Summary

We have performed simulations of BH–NS mergers with mass ratio q ≃ 0.1 and poly-

tropic index Γ = 2 using a 3-D relativistic SPH code. We investigated equatorial mergers

for various values of the BH spin and we also carried out simulations for inclined mergers

(considering a tilted orbital plane for the NS with respect to the BH’s equatorial plane) in

the case of an extremal Kerr BH. We find that the outcome of the merger depends strongly

on the spin of the BH and the inclination of the orbit. More specifically, for equatorial

mergers, the survival of NS material is possible only for mergers with a/M > 0.7 and, in

that case, the percentage of surviving material increases with increasing BH spin, varying

from about 35% to ∼ 1% for a/M decreasing from 0.99 to 0.7. Complete disruption of the

NS happens for all values of a/M . Most of the surviving material gets ejected from the

vicinity of the BH and only a few percent stays bound to the BH, forming a relatively thin

stable disk outside the BH’s horizon. Only for very high BH spins (a/M > 0.95) do we see

a substantial fraction (∼ 3%) of the disrupted NS material remaining bound.

The outcome of inclined mergers (for fixed a/M = 0.99) shows strong dependence on

the value of the inclination angle. For sufficiently low inclinations (< 60o) there is always a

large fraction of the NS mass surviving the merger, ∼ 20−40%, depending on the inclination

angle. Moreover, for these mergers the formation of a thick stable torus of substantial bound
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mass is also strongly inclination-dependent. Whenever the inclination exceeds 40 − 45o the

fraction of bound material drops to levels unresolvable by our present calculations, although

there is still a significant fraction (∼ 25%) of the material that is being ejected.

The complete tidal disruption of the NS in all the merger calculations that we presented

in this paper is in qualitative agreement with previous Newtonian studies of BH–NS mergers

with soft EOS (Rosswog et al. 2004; Lee & Kluzniak 1999b). However, those studies sug-

gested that for a stiffer EOS a core of the NS always survives the merger (Lee & Kluzniak

1999a; Kluzniak & Lee 1998). The general picture that comes out of these Newtonian cal-

culations is that for higher mass ratios (with q ∼ 0.7 − 0.28) the survival of NS material

and formation of a disk around a Schwarzschild BH is possible for soft EOS. For these high

mass ratio mergers the tidal disruption radius lies outside the ISCO, which allows for more

NS material to settle into a disk after the tidal disruption. A stiffer EOS could, in that case

prevent the total disruption of the NS, leading to the formation of a “mini-NS” along with

the disk or even lead to multiple disruptions of the surviving NS core. Rosswog et al. (2004)

suggested that the surviving of a mini-NS for the case of a stiff EOS (Γ = 3) and various mass

ratios, is connected with the formation of the observed disk in their calculations, arguing

that the survival of an orbiting NS core acts as a storage mechanism that prevents further

inflow of material towards the BH.

In our simulations that involved a Schwarzschild (non-spinning) BH, no NS material was

observed being ejected or forming a disk around the BH. The accretion of the whole NS onto

the BH is very prompt for this case. This is to be expected, as for the particular mass ratio

(q ≃ 0.1) considered in our simulations the tidal limit is found inside the ISCO for a/M = 0

and thus we would not expect to find a stable disk forming around the BH. In their full-GR

treatment of BH–NS mergers for a non-spinning BH of arbitrary mass, Shibata & Uryu

(2006a,b) concluded that the disruption of a NS by a low-mass BH (M = 3.2 − 4 M⊙) can

lead to the formation of a low-mass disk (of mass ∼ 0.1 M⊙) around the BH, which could

potentially power a short GRB. No formation of more massive disks was ever observed in

their simulations, indicating that systems with ∼ M⊙ disks around a BH can not be formed

through BH–NS mergers with non-spinning BHs.

Faber et al. (2006b) followed a fully relativistic treatment for their simulations of BH–NS

mergers with mass ratio q = 0.1 and a non-spinning BH. As mentioned already in this paper,

for this specific mass ratio and BH spin, the tidal radius of a NS that has the “expected”

mass and radius (i.e., its compactness being C = MNS/RNS ∼ 0.14 − 0.21) is found inside

the ISCO. For this reason, Faber et al. (2006b) consider undercompact models for the NS

(C = 0.042), in order to study cases where the disruption of the NS takes place outside the

ISCO. In their paper, they suggest that their study of undecompact NSs can serve as an
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analogue for binaries with lower mass BHs and more compact NSs, where the tidal radius is

placed well outside the ISCO. They found that (a) there is a small fraction (∼ 5 − 7%) of

the NS mass that becomes unbound and escapes from the system, (b) although most of the

infalling mass is accreted promptly, there is a part of it (∼ 25%) that remains bound outside

the horizon, forming a disk. We observed no such ejected or disk-forming material for the

merger of a NS with compactness C = 0.14 and a Schwarzschild BH, and such an outcome

was seen only for mergers with spinning BHs.

In Paper II we will extend our simulations to include different mass ratios, although

remaining in the limit where the use of a fixed background is justified (i.e., for BH masses

much larger than the NS mass), and we will explore the effects of changing the NS EOS

and relaxing our assumption of an initially synchronized NS spin. Ultimately, the adoption

of a full numerical relativistic scheme, where no assumptions for a static background are

made, would be of great interest, as it would allow us to explore mergers of higher mass

ratios. Although the Newtonian studies of those mergers have given a qualitative idea of the

possible outcomes, there is a consensus that relativistic effects will play a very significant

role in the spatial distribution of the disrupted NS material, which plays a key role for the

connection of such mergers to short GRBs
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A. K-S form of the Kerr metric

Kerr presented his solution for the first time (Kerr 1963) in the following format:

ds2 = (r̃2 + a2 cos2 θ)(dθ2 + sin2 θdφ2) + 2(du + a sin2 θdφ) × (dr̃ + a sin2 θdφ)

− (1 − 2Mr̃

r̃2 + a2 cos2 θ
) × (du + a sin2 θdφ)2 (A1)

.

By using:

u = t + r̃

r̃ cos θ = z (A2)

(r̃ − ia)eiφ sin θ = x + iy

Eq. (A1) can be transformed to an asymptotically flat coordinate system (Kerr 1963).

First let’s apply u = t + r̃ on Eq. (A1). This will lead to the more familiar form:

ds2 = −(1 − 2Mr̃

Σ
)dt2 + (1 +

2Mr̃

Σ
)dr̃2 + Σdθ2

(r̃2 + a2 +
2Mr̃

Σ
a2 sin2 θ) sin2 θdφ2 +

4Mr̃

Σ
dt dr̃ (A3)

+
4Mr̃

Σ
a sin2 θdφ dt + (1 − 2Mr̃

Σ
)2a sin2 θdφ dr̃

where

Σ = r̃2 + a2 cos2 θ

and r̃ is defined by :

r̃4 − (ρ2 − a2)r̃2 − a2z2 = 0 (A4)

with ρ2 = x2 + y2 = z2.

Now applying the rest of the transformations in (A2), one gets:

ds2 = dx2 + dy2 + dz2 − dt2 +
2Mr̃3

r̃4 + a2z2
(k)2 (A5)

where

k = [
r̃(xdx + ydy) + a(xdy − udx)

r̃2 + a2
+

z

r̃
dz + dt] (A6)
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Let us make a useful parenthesis here: to understand better why the transformation

rules (A2) were chosen, it is constructive to start with Eq. (A1) and bring it to the following

form:

ds2 = [−du2 + 2du dr̃ + Σdθ2 + 2a sin2 θdr̃ dφ + (r̃a + a2) sin2 θdφ2]

+
2Mr̃

Σ
(du + a sin2 θdφ2) (A7)

.

Eq. (A7) can be interpreted as following: the terms not containing the mass m, give the

flat space metric in some coordinate system, while the last term can be expressed in terms

of the null (tangent with respect to ηαβ) vector, lα:

−lαdxα = du + a sin2 θdφ

and therefore the line element ds2 can be written in the form:

ds2 = (ds2)flat +
2Mr̃

Σ
(lαdxα)2 (A8)

and the metric is :

gαβ = ηαβ +
2Mr̃

Σ
lαlβ

This is actually the original way which Kerr followed to discover his solution.7

The idea now is to find those transformations that will take the part of Eq. (A7) that is

contained in the brackets to the standard representation of the Minkowski space. This will

lead us to the already mentioned transformation rules (A2).

Notice that the metric (A5) is analytical everywhere except at x2 + y2 = a2 (or else at

ρ = a and z = 0).

B. Geodesics of the Kerr spacetime in B-L coordinates

The Kerr geodesics equations (Misner, Thorne & Wheeler 1973)

Σ2

(

dr

dτ

)2

= [E(r2 + a2) − aLz ]
2 − ∆[r2 + (Lz − aE)2 + Q] ≡ R (B1)

7Any metric of the form gαβ = ηαβ + Hlαlβ, with H a scalar and lα a null vector field, is called a

Kerr-Schild metric
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Σ2

(

dθ

dτ

)2

= Q − cot2 θL2

z − a2 cos2 θ(e − e2) ≡ Θ (B2)

Σ

(

dφ

dτ

)

= csc2 θLz + aE

(

r2 + a2

∆
− 1

)

− a2Lz

∆
(B3)

Σ

(

dt

dτ

)

= E

[

(r2 + a2)2

∆
− a2 sin2 θ

]

+ aLz

(

1 − r2 + a2

∆

)

(B4)

C. Ωφ for equatorial orbits in K-S coordinates

The metric in K-S coordinates

ds2 = −(1 − 2Mr̃

Σ
)dv2 + Σdθ2 + 2dv dr̃ − 4aMr̃ sin2 θ

Σ
dv dφ̃′ − 2a sin2 θdr̃ dφ̃′

+ (r̃2 + a2 +
2Mr̃a2 sin2 θ

Σ
) sin2 θ dφ̃′2 (C1)

where

r̃4 − (x2 + y2 + z2 − a2)r̃2 − a2z2 = 0 (C2)

Σ = r̃2 + a2 cos2 θ. (C3)

Restricting the metric on the θ = π/2 plane

ds2 = −(1 − 2M

r̃
)dv2 + 2dv dr̃ − 4aM

r̃
dv dφ̃′ − 2adr̃ dφ̃′ + (r̃2 + a2 +

2Ma2

r̃
)dφ̃′2. (C4)

Two Killing vectors are associated with the v− and φ̃′− invariance or Eq. (C4)

~ξ = (1, 0, 0, 0) (C5)

~η = (0, 0, 0, 1) (C6)

and the defined conserved quantities
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e ≡ −~ξ · ~u (C7)

l ≡ ~η · ~u (C8)

with e and l being the conserved energy per unit rest mass and conserved angular

momentum per unit rest mass respectively. ~u is the four-velocity.

From Eqs. (C7) and (C8) and using ur̃ = 0

e = −gvvu
v − gvφ̃′u

φ̃′

(C9)

l = gφ̃′vu
v + gφ̃′φ̃′u

φ̃′

. (C10)

From Eqs. (C9) and (C10)

uv ≡ dv

dτ
=

1

r̃2 − 2Mr̃ + a2
[(r̃2 + a2 +

2Ma2

r̃
)e − 2Ma

r̃
l] (C11)

uφ̃′ ≡ dφ̃′

dτ
=

1

r̃2 − 2mr̃ + a2
[(1 − 2M

r̃
)l +

2Ma

r̃
e]. (C12)

Ωφ̃′ is defined as

Ωφ̃′ ≡
dφ̃′/dτ

dv/dτ
=

(1 − 2M
r̃

)l/e + 2Ma
r̃

(r̃2 + a2 + 2Ma2

r̃
) − 2Ma

r̃
l/e

. (C13)

We need to substitute for l/e in Eq. (C13). Heading for that we can make use of the

normalization condition

~u · ~u = −1, (C14)

to find

e2 − 1

2
=

1

2

dr̃

dtτ
+ [−M

r̃
+

l2 − a2(e2 − 1)

2r̃2
− M(l − ae)2

r̃3
]. (C15)

Based on Eq. (C15), one can define the effective potential
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Veff = −M

r̃
+

l2 − a2(e2 − 1)

2r̃2
− M(l − ae)2

r̃3
. (C16)

For a circular orbit of radius r̃0, the effective potential has a minimum at r̃0

ϑVeff

ϑr̃
(r̃0) = 0 (C17)

and also from Eq. (C15)

Veff(r̃0) =
e2 − 1

2
. (C18)

From Eqs. (C17) and (C18) one can solve for l/e: start from Eq. (C17)

ϑVeff

ϑr̃
= 0 ⇒

r̃ =
−a2(e2 − 1) + l2 +

√

(a2 − a2e2 + l2)2 − 12(l − ae)2M2

2M
. (C19)

Now, from Eqs. (C18) and (C19) solve for l/e

l

e
=

−r̃3/2(a2 + r̃(r̃ − 2M)) + aM1/2(a2 + r̃(3r̃ − 4M))

M1/2(a2M − r̃(r̃ − 2M)2
. (C20)

Substituting Eq. (C20) in Eq. (C13) will give

Ωφ̃′ = ± M1/2

r̃3/2 ± aM1/2
(C21)

with the upper and lower signs corresponding to co-rotating and counter-rotating orbits.
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Table 1. Runs and their results for simulations of equatorial mergers

Run E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

a/M 0.99 0.95 0.9 0.8 0.75 0.6 0.5 0.2 0.1 0

Total NS mass outside r+ 33 % 32% 26% 4% 1% 0% 0% 0% 0% 0%

Bound NS mass outside r+ 2.5% 2% 0% 0% 0% 0% 0% 0% 0% 0%

Table 2. Initial conditions and results for the simulations of inclined BH–NS mergers

Run I1 I2 I3 I4 I5

a/M 0.99 0.99 0.99 0.99 0.99

r0(M) 12 11.5 12 13 10

inclination angle (o) 30 45 70 90 180

Total NS mass outside r+ 37% 25% 0% 0% 0%

Bound NS mass outside r+ 6% 0% 0% 0% 0%
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Fig. 1.— Tidal disruption limits for a 1.4 M⊙ NS in circular orbit around a BH of mass M .

The radius of the ISCO (in geometrized units) is also shown for the Schwarzschild (dashed

line) and maximally co-rotating Kerr cases (dash-dotted line). The two solid lines bracket

the tidal limit for NS with different spins and radii (Wiggins & Lai 2000; Lai et al. 1994).

Orbits are assumed to be in the equatorial plane and prograde.
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Fig. 2.— The future (solid blue line) and past (dashed red line) horizons of a BH for various

values of the BH’s angular momentum a. The third (dash-dotted green) line represents the

ring (curvature) singularity of the K-S metric, that exists only on the equatorial plane.
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Fig. 3.— A ’horizon-trapped’ orbit for different values of a. The initial conditions for the

particle are fixed and only a is varied in the four orbits.The red circles represent the two

horizons. It is clear that the particle successfully crosses the outer horizon and ends being

trapped in the inner horizon, except for the a = M case where the two horizons coincide.
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Fig. 4.— Test calculation for a WD orbiting a much more massive BH at r = 8 M. The mass

ratio in this case is q ≃ 4 × 105. The constant radius of this circular orbit is maintained

by our code to within better than 10−3 over one full period. Here each cross indicates the

position of the WD (center of mass of all SPH particles) at a different time along the orbit

(counter-clockwise).
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Fig. 5.— Sequence of six snapshots of a non-spinning BH–NS merger simulation (equatorial

projection.) The 1.4 M⊙ NS gets completely disrupted by a non-rotating BH of mass M =

15 M⊙. The NS was initially placed outside the tidal limit (r ≃ 8 M for this NS of radius

R ≃ 15 km with a Γ = 2 polytropic EOS). The NS fluid is disappearing completely into the

BH’s horizon (at r = 2M , indicated by the red circle) at a timescale of t/M = 180 after the

beginning of the simulation.
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Fig. 6.— Same as in Fig. 5 but for a rotating BH with a/M = 0.99. Except for the mass

getting lost inside the BH’s horizon, there’s a tail of expanding material forming. By the end

of the simulation (t/M ∼ 550) the infall of material stops completely and 33% of the NS’s

mass resides outside the horizon, with ∼ 30% corresponding to unbound ejected material

and the rest of it to bound disk-forming mass.
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Fig. 7.— A close up view on the central part of four of the snapshots in Fig. 6. The three

colored circles represent in K-S coordinates the BH’s future horizon r+ (blue), the past

horizon r−(red) and the ring singularity at r = a (green). Here it is illustrated what was

mentioned at paragraph §2.1.1: the metric’s singularity at the inner (past) horizon translates

to the ’illusive’ formation of a ring on the equatorial plane with radius r = r−.
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Fig. 8.— Fraction of the NS’s initial mass that resides outside the BH’s future horizon as

a function of time, for five different values of the BH’s angular momentum a/M (0.75 ≤
a/M ≤ 0.99). The survival of NS material outside the BH’s horizon depends strongly on the

BH’s angular momentum. As a/M decreases the fraction of surviving mass decreases aswell

and the merger becomes completely catastrophical for the NS for values a/M . 0.7. Also

the accretion of material into the BH’s horizon starts earlier as the BH’s angular momentum

decreases; something to be expected as the BH’s horizon is moving further away from the

BH with decreasing a/M .
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Fig. 9.— Fractions of total (black line), bound (blue line) and unbound (red line) material

of the NS’s initial mass as a function of time for five different simulations, corresponding

to five different values of a/M (runs E1-E5). For values of a/M < 0.95 the percentage of

surviving bound material drops to unresolvable by our code levels.
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Fig. 10.— Spatial distribution of the apocenters (blue) and the pericenters (red) for the

disk-forming SPH particles of the a = 0.99M equatorial merger (Run E1). The upper left

(right) and middle (bottom) panels correspond to the x-y and x-z plane projections for the

apocenters (pericenters) respectively. The total mass of the disk is 2.5% of the initial NS

mass. The mean pericenter value (inner radius of the disk) is rperi ∼ 2.5M and the mean

apocenter (outer radius of the disk) is rapo ∼ 30M .
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Fig. 11.— Snapshot of Run I1 (up) and its x-z projection (down) towards the end of the

simulation.The red circle represents the BH’s outer horizon. The material that survives the

merger forms an expanding helix. For this particular run 30% of the initial NS’s mass gets

dynamically ejected and 6% remains bound, forming a stable torus outside the BH’s horizon.
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Fig. 12.— Fraction of the NS’s mass that resides outside the BH’s future horizon for Run I1.

At time t/M = 1950 after the beginning of the simulation, the surviving material stabilizes

at ∼ 37%. 31% corresponds to unbound escaping mass, while 6% stays bound and forms a

torus around the BH’s horizon.
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Fig. 13.— Spatial distribution of the apocenters (blue) and the pericenters (red) for the

bound SPH particles of Run I1. It is noticeable that in inclined mergers the bound mass

forms a torus rather than a disk, as it is the case for the equatorial mergers (Fig. 10). The

upper left (right) and middle (bottom) panels correspond to the x-y and x-z plane projections

for the apocenters (pericenters) respectively. The total mass of the torus is 6% of the initial

NS mass. The mean pericenter value (inner radius of the torus) is rperi ∼ 2.0M and the

mean apocenter (outer radius of the torus) is rapo ∼ 25M .
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Fig. 14.— Snapshot of Run I2 (up) and its x-z projection (down) towards the end of the

simulation.The red circle represents the BH’s outer horizon. By the end of the simulation an

outwards expanding helix has formed, ejecting 25% of the initial NS’s mass away from the

BH. The fraction of surviving bound material was too small to be resolved in this calculation.
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Fig. 15.— Four 3-D snapshots of Run I2 towards the end of the simulation. The NS has

already been disrupted and starts accreting material into the BH’s horizon. An expanding

helix of unbound material forms at the same time, resulting to the ejection of 25% of the

NS mass.
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Fig. 16.— Fraction of the NS’s mass that resides outside the BH’s future horizon for Run I2.

At time t/M = 1600 after the beginning of the simulation, the surviving material stabilizes

at 25% almost all of which is unbound and therefore escaping outwards.

Fig. 17.— Fraction of the NS’s mass that resides outside the BH’s future horizon for Run I3.

At tine t/M = 1640 after the beginning of the simulation, the whole NS mass has crossed

the BH’s outer horizon.
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