
ar
X

iv
:a

st
ro

-p
h/

07
03

16
6v

1 
  7

 M
ar

 2
00

7
Draft version March 8, 2007
Preprint typeset using LATEX style emulateapj v. 10/09/06

DYNAMICAL OUTCOMES OF PLANET–PLANET SCATTERING

Sourav Chatterjee,1 Eric B. Ford,2,3 and Frederic A. Rasio1

1 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
2 Harvard-Smithsonian Center for Astrophysics, Mail Stop 51, 60 Garden Street, Cambridge, MA 02138, USA and

3 Hubble Fellow

Draft version March 8, 2007

ABSTRACT

Observations in the past decade have revealed extrasolar planets with a wide range of semi-major
axes and eccentricities. Based on the present understanding of planet formation via core accretion and
oligarchic growth, we expect that giant planets often form in closely packed configurations. While the
protoplanets are embedded in a protoplanetary nebula, dissipation prevents eccentricity growth and
can suppress instabilities from becoming manifest. However, once the disk dissipates, eccentricities
can grow rapidly, leading to close encounters between the planets. In this study we explore strong
gravitational scattering in a gas-free multi-planet system as a mechanism to explain the orbital prop-
erties of exoplanets. We numerically investigate the long-term stability of representative multi-planet
systems containing three giant planets in orbit around a solar-like central star. We assign the planet
masses in a realistic manner following the core accretion scenario of planet formation. In contrast
to the case of two planets, there is no sharp stability boundary for 3-planet systems, so numerical
integrations of 3-planet systems can approach instability naturally, even without including dissipation,
mass growth, or migration. We characterize the timescale to reach instability as a function of the
initial planet–planet separation. We discuss strong gravitational scattering as a possible mechanism to
create high eccentricities as well as the close-in planetary orbits in the observed exoplanet population.
We find that this mechanism can reasonably reproduce the observed eccentricity distribution. Our
results also make testable predictions for the inclinations of short-period giant planets that are formed
via strong planet scattering followed by tidal circularization.

Subject headings:

1. INTRODUCTION

The study of extrasolar planets and their properties
has become a very exciting area of research over the
past decade. Since the detection of the planet 51 Peg b,
more than 200 new planets (Butler et al. 2006, see also
http://exoplanet.eu/) have been detected and the large
sky surveys planned for the near future can potentially
detect many more. These detections have raised many
questions about the formation and dynamical evolution
of planetary systems. The extrasolar planet population
covers a much greater portion of the semi-major axis and
eccentricity plane than was expected based on the plan-
ets in our solar system (Lissauer 1995, Figure 1). The
highly eccentric orbits and the presence of many giant
planets in very short-period orbits (the “hot Jupiters”)
are particularly puzzling.

Different scenarios have been proposed to explain the
high eccentricities. The presence of a distant compan-
ion in a highly inclined orbit can increase the eccentric-
ities of the planets around a star through Kozai oscil-
lations (Mazeh et al. 1997; Holman et al. 1997). How-
ever, this alone cannot explain the observed eccentric-
ity distribution (Takeda & Rasio 2005). Interaction with
the protoplanetary gas disk could either excite or damp
the eccentricities depending on the properties of the disk
and the orbits. However, the combined effects typically
result in eccentricity damping (Tremaine & Zakamska
2004, and references therein). Migration of two plan-
ets and trapping in a mean motion resonance (MMR)
can also pump up the eccentricities efficiently, but this
mechanism requires strong damping at the end or ter-

mination of migration right after trapping in resonance
(Lee & Peale 2002). Zakamska & Tremaine (2004) pro-
posed inward propagation of eccentricity after the outer
planets are excited to high eccentricities following a close
encounter with a passing star. Using typical values for
such interactions with field stars in the solar neighbor-
hood, however, they do not get very high eccentricities.
Papaloizou & Terquem (2001); Terquem & Papaloizou
(2002); Black (1997) propose a very different formation
scenario for planets from protostellar collapse in which
both hot Jupiters and eccentric planets at higher semi-
major axes are formed naturally. This scenario, however,
cannot form sub-Jupiter-mass planets.

In this paper, we explore another promising way
to create high eccentricities: strong gravitational scat-
tering between planets in a multi-planet system un-
dergoing dynamical instability (Rasio & Ford 1996;
Weidenschilling & Marzari 1996; Lin & Ida 1997). Ac-
cording to the model of oligarchic growth, planetesi-
mals form in a nearly maximally packed configuration in
the protoplanetary disk (Goldreich et al. 2004; Ida & Lin
2004b; Kokubo & Ida 2002). Once the disk dissipates,
mutual planetary perturbations (“viscous stirring”) of
the planetesimals will lead to eccentricity growth, or-
bit crossing, and eventually close encounters between
the big bodies in the disk (Ford & Chiang 2007; Levi-
son & Morbidelli 2007). While planetary systems with
more than two planets can not be provably stable,
they can remain stable for very long timescales depend-
ing on their initial separations (Chambers et al. 1996;
Marzari & Weidenschilling 2002). A sufficiently massive

http://arxiv.org/abs/astro-ph/0703166v1
http://exoplanet.eu/
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Fig. 1.— Semi-major axis vs eccentricity plot for the detected
planets. The sizes of the points are proportional to the minimum
masses (m sin i) of the corresponding planets. The size of a Jupiter
mass planet is shown at the left top corner for reference. The stars
represent the four giant planets in our solar system (for these the
sizes do not indicate their mass). The open circles show the planets
detected by radial velocity surveys. The triangles show planets
detected by micro-lensing or direct imaging. Planets with poorly
constrained eccentricities are plotted above e = 1. A horizontal
line is drawn at e = 1 to guide the eye. Note the logarithmic scale
of the semi-major axis.

disk can prevent interacting planets from acquiring large
eccentricities and developing crossing orbits. However,
once the disk is sufficiently depleted, the eccentricities of
the planets can grow to high values, possibly leading to
strong planet–planet scattering and a phase of chaotic
evolution that dramatically alters the orbital structure
of the system.

The detection of close-in planets with orbital peri-
ods as short as ∼ 1 d, the so-called hot Jupiters (and,
more recently, hot Neptunes and super-Earths), was an-
other major surprise. Giant planets are most likely to
form at much larger separations, beyond the ice line of
the star where there can be enhanced dust production
(Kokubo & Ida 2002; Ida & Lin 2004b). It is widely be-
lieved that the giant planets form beyond the ice line and
then migrate inwards to form the hot Jupiters we observe
today. Different kinds of inward migration scenarios have
been proposed to explain the hot Jupiters, but it is un-
clear why they pile up at just a few solar radii around the
star, rather than keep migrating and eventually accrete
onto the star.

Strong gravitational scattering between planets in a
multi-planet system may provide another way to cre-
ate these close-in planets (Rasio & Ford 1996). A few
of the planets scattered into very highly eccentric or-
bits could have sufficiently small periastron distances
that tidal circularization takes place, giving rise to the
hot Jupiters. The currently observed edge in the mass-
period diagram is very nearly at the ideal circulariza-
tion radius (twice the Roche limit), providing support
for this model (Ford & Rasio 2006). Faber et al. (2005)
finds that these violent passages might not destroy the
planets completely even if mass loss occurs.

In previous work, numerical simulations were done
to explore strong gravitational scattering with two gi-

ant planets around a solar-like star (Rasio & Ford 1996;
Ford et al. 2001). The conclusion was that the observed
eccentricity distribution is not easily produced in sys-
tems with two equal-mass planets. However, Ford et al.
(2003) and Ford & Rasio (2007) show that strong scat-
tering of two unequal mass planets could explain the
observed eccentricities of most extrasolar planets. A
system with three (or more) giant planets of compara-
ble masses is qualitatively different than a two-planet
system, since there is no sharp stability boundary in
the 3-planet case (Chambers et al. 1996). Therefore,
simulations of 3-planet systems can very naturally ap-
proach instability and may be more representative of how
such instabilities arise in real systems. Chambers et al.
(1996) has studied systems with 3 planetesimals around
a central star, but their small masses prevented ejec-
tions, which are essential for generating large eccen-
tricities. Marzari & Weidenschilling (2002)(hereafter
MW02) have previously performed simulations of unsta-
ble systems with three giant planets around a solar-like
star, but their results are limited by the relatively small
number of systems with different initial conditions that
they have examined. In this paper we explore the out-
comes of strong planet–planet scattering in more realis-
tic systems containing three giant planets around a solar
mass star. In particular, our model systems are more
realistic in their initial distribution of planetary masses
(cf. Sec. 3.1). We also introduce modest inclinations to
the initial planetary orbits to study possible inclination
dependent effects. In Sec. 2 we present a timescale study
for the onset of instability in these systems. In this sec-
tion, we closely follow the treatment in MW02 for easy
comparison. In Sec. 3 we explore the final orbital prop-
erties for two sets of more realistic initial conditions. We
summarize and conclude in Sec. 4.

2. STABILITY TIMESCALES

According to the core accretion model of planet for-
mation, planets form in a protoplanetary disk separated
by a small number of Hill radii away from each other
(Kokubo & Ida 1998, 2002). The timescale for the onset
of instability depends on the planet–planet separations
measured in terms of the mutual Hill radii. In this sec-
tion we first perform a timescale study similar to the one
in MW02, but using a finer sampling and many more
runs to produce better statistics. As described below,
we also use more general initial inclinations for the plan-
etary orbits.

2.1. Numerical setup

For this timescale study we idealize the system in the
following way. We integrate three identical Jupiter mass
(MJ) planets orbiting around a central star of 1 M⊙ at
distances of several AU. The planets interact with each
other through gravity and physical collisions only. In
this section we do not use a realistic mass distribution
for the planets (cf. Sec. 3.1) in order to provide a more
direct comparison with MW02. We assume that the disk
is completely depleted from the system. We use the
MERCURY6.2 software for all our integrations (Chambers
1999). For this part we use the mixed variable symplectic
integrator with 200-day timesteps. We stop the integra-
tion after the first close encounter and record the time,
which we define to be the timescale of instability for the
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solar system. Two planets approaching within one Hill
radius defines a close encounter in this case.

Following the prescription in MW02, we put the planet
closest to the star at 5 AU and then determine the semi-
major axes of the other two planets as follows,

ai+1 = ai + KRH,i,i+1, (1)

where K is the spacing measured in terms of RH,i,i+1,
the mutual Hill radius for the ith and i + 1th planets,

RHi,i+1 =

(

Mi + Mi+1

3M⋆

)1/3
ai + ai+1

2
. (2)

Here Mi is the mass of the ith planet, M⋆ the mass of
the central star, and ai the semi-major axis of the ith

planet.

We integrate a number of 3-planet systems with dif-
ferent initial conditions: 1000 for K 6 4.3, 500 for
4.3 < K 6 5.0 and 200 for K > 5.0. The initial ec-
centricities of the planets are drawn from a uniform dis-
tribution between 0 to 0.1. We choose the inclinations
of the orbits randomly between 0◦ to 10◦ with respect
to the orbital plane of the closest planet. All the other
angles describing the orbits are chosen randomly in the
full range.

2.2. Results

After integrating a number of systems as described
above we calculate the distribution of the instability on-
set timescales. Figure 2 shows the results as a function
of K. The filled circles show the median and the bars
above and below represent ±34% around the median.
We also show the mean of each distribution to compare
it with the median. In each case the mean overestimates
the timescale and lies often outside the 34% bars around
the median.

As in MW02 we find that the timescale to instability
increases rapidly as K increases. Low-order MMRs leave
their signatures in dips or rises of the timescale. For
each of these major resonances, the median timescale
for instability dips for close but slightly lower K values,
whereas, at the resonance K values the median is higher.
For example, the prominent drop in stability timescale
between K = 4.8 – 5 corresponds to a 2 : 1 resonance
between the 1st and 2nd as well as the 2nd and 3rd plan-
ets at K = 5.1. The drop at K = 3 and the rise in the
range K = 3.1 – 3.4 are due to the proximity of the 3 : 2
MMR between the 1st and 2nd as well as the 2nd and 3rd

planets situated at K = 3.1. Another possible MMR is
between K = 4.1 and 4.2 due to 3 : 1 commensurability
between the 3rd and the 1st planetary periods. However,
we do not see any strong effect of that particular MMR
on the instability growth timescales. For systems with
initial conditions close to but not exactly at MMR, a few
lucky ones might obtain the right initial phases leading to
a stable MMR. However, all others will become more un-
stable, which is seen in the prominent dips in the median
timescales. We also note that these resonances affect the
timescales in a wide range of K values around the ex-
act value corresponding to integral period ratios. This
confirms the findings in MW02.

We found a simple empirical fitting formula for the me-
dian timescale to instability away from MMR. It can be

Fig. 2.— Instability growth timescale as a function of spacing
parameter K. The filled circles are the medians of the distributions
of stability timescales for the respective values of K. The bars show
the ±34% range in the timescale. Note that they are not error bars,
instead they represent the distribution of the stability timescales.
The medians are shown in the plot because the distributions are
skewed towards greater timescales. The open stars show the mean
of the timescale distribution. Signatures of some major resonances
can be noticed in the sudden dips in timescale. The arrow indicates
that most systems with K = 5.5 are stable for at least 109 years.
The starting point of the arrow represents the shortest instability
timescale among our simulations. The solid line (blue) and the
dashed line (green) show the empirical best fit lines predicting the
medians of the stability timescale distributions given the K values
(Eqs. 3, 4).

TABLE 1
Fit: t vs K

a b c Max Error(%)

Fit 1 1.07 0.03 1.10 10
Fit 2 -1.74 1.29 50

a The best fit values of the fitting parameters
for the empirical fits for the median stability
timescale of the systems as a function of their
initial spacing parameter K.

expressed as a function tm(K) of the spacing parameter
K,

log10tm(K) = a + b × exp(c K), (3)

where a, b, and c are constants (henceforth, called Fit-1).
The best fit values for a, b, and c (Table 1) can predict
the median timescales with fractional error less than 10%
away from MMR. We also tried to find a simpler linear
fit tm,linear(K) for our data away from MMR, following
MW02, writing

log10tm,linear(K) = a + b K, (4)

where a and b are fitting parameters (henceforth, called
Fit-2). The best fit values for a and b are also given in
Table 1. We find that Fit-1 is much better than Fit-2.

We note that the shapes of the distributions of the
timescales are essentially the same for any K value away
from a major MMR. In order to illustrate this fact we
show the timescale distributions at two different K val-
ues, 2.3 and 3.9, both away from resonance (Figure 3).
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Fig. 3.— Histograms for the timescale distributions at two differ-
ent K values both away from MMR. Note that times are shown in
log scale. Each histogram shown here corresponds to 103 runs for
that K value. The number distributions are normalized such that
P

i ni∆lti = 1, where, ∆lti is the binsize in logarithm of time. This
normalization essentially makes the area under each histogram nor-
malized to 1. The solid histogram corresponds to K = 3.9 and the
dashed histogram corresponds to K = 2.3. Both these K values
are away from any major MMR. The two histograms have essen-
tially the same shape. The dotted (blue and red) curves show the
analytical fitting curves for timescale distributions at the left and
the right sides of the mode of the distributions. For systems with
stability timescales less than the median of the distribution show
an exponential shape, whereas, those with timescales higher than
the median show a linear drop-off (see Eqs. 5, 6 and Table 2).

We find simple empirical fitting formulae to predict the
distributions of the stability timescales. Note that the
histograms of the timescale distributions are normalized
such that

∑

i ni∆lti = 1, where, ∆lti is the bin size in
logarithm of time. The normalized number distribution
for times lower than the median timescale (henceforth
denoted as nL) has an exponential shape, whereas, that
above the median timescale (henceforth denoted as nR)
has a linear decay for all K away from major MMRs.
The fitting formulae for nL and nR are given by

nL = NL exp [(log10 t − log10 tm(K))/tL] , (5)

nR = NR − tR log10t. (6)

For a given K value, the median timescale can be ob-
tained using Eq. 3 and then using the median timescale
the shapes of the distributions can be obtained using Eqs.
5 and 6. Here, NL,R are the normalization constants for
the peak amplitudes of the distributions, tm(K) is the
median of the timescale distribution as a function of K,
tL and tR are fitting constants characterizing the expo-
nential index and the slope of the two curves, respec-
tively. The best-fit values for NL,R, and tL,R are listed
in Table 2.

The shapes of the normalized distributions for the
timescales can be quite different depending on whether
they are near or away from MMR. One example is shown
in Figure 4, where two such distributions are shown, for
two K values, one near and the other away from MMR.

3. MORE REALISTIC SYSTEMS

3.1. Numerical setup

TABLE 2
Fit: Timescale distribution

(nL,R)

K tL NL tR NR

2.0 0.719 0.714 1.728 3.716
2.1 0.669 0.775 1.138 2.649
2.2 0.582 0.886 0.778 1.971
2.3 0.595 0.864 0.836 2.129
2.4 0.663 0.867 1.193 2.816
2.5 0.530 0.996 1.559 3.628
2.6 0.482 1.153 1.286 3.065
2.7 0.589 1.004 1.112 2.806
2.8 0.582 1.002 1.167 3.01
2.9 0.713 0.800 0.584 1.791
3.0 0.624 1.715 1.412 3.141
3.1 0.810 0.512 0.095 0.522
3.2 2.343 0.206 0.082 0.484
3.3 1.447 0.283 0.203 0.968
3.4 1.051 0.462 0.188 0.889
3.5 0.533 1.238 0.180 0.869
3.6 0.395 3.700 0.201 0.929
3.7 0.811 0.937 0.143 0.753
3.8 0.744 1.085 0.245 1.140
3.9 1.211 0.415 0.522 2.409
4.0 1.488 0.353 0.349 1.811
4.1 1.399 0.379 0.160 0.975
4.3 1.684 0.346 0.204 1.292
4.4 2.650 0.218 0.127 0.953
4.8 1.066 4.910 0.102 0.710
5.0 0.767 73.831 0.209 1.242

a Best fit values for the fitting param-
eters, NL, tL, NR, and tR predicting
nL, and nR for a given K and the me-
dian of the stability timescale distri-
bution tm(K).

Fig. 4.— Histograms for the timescale distributions near and
away from an MMR. Each histogram corresponds to 103 runs for
that K value. We follow the same normalization scheme as men-
tioned earlier. K = 3.3 is near the K value for a 3 : 2 commensu-
rability between the periods of the first and the second as well as
the second and the third planetary orbits (dashed line). K = 3.9
is away from MMR (solid line). The distributions near and away
from MMR have somewhat similar shapes for times lower than the
medians of the distributions. However, for times higher than the
medians the decay is not as sharp near a MMR as for systems far
from a MMR.
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In an effort to represent more realistic initial condi-
tions, we integrate 3 planets around a central star as de-
scribed in section 2.1, but allowing for unequal masses of
the planets. We mimic the core accretion scenario for gi-
ant planet formation in the following way. Planet masses
depend on the distance of the planet from the central star
through the dependence of the gas surface density in the
protoplanetary disk. To assign the masses of the planets
we closely follow the planet formation model described in
Kokubo & Ida (2002, hereafter KI02). First, we assign
the planetary core masses Mcore uniformly between 1 –
10 M⊕. Then, we assume that the cores accrete all the
gas within 10 Hill radii (KI02) to reach a total mass of
M at a semi-major axis a and a core mass Mcore. Then
M is given by

M = 2πa∆Σgas + Mcore, (7)

where ∆ = 10rH is the feeding zone of the planet core
and rH is the Hill radius of the planet core, given by

rH =

(

2

3

Mcore

M⋆

)1/3

a. (8)

Here M⋆ is the mass of the central star and a is the
distance of the core from the central star; Σgas is the gas
surface density in the disk and is given by

Σgas = 240Σ1

( a

1AU

)−
3

2

g cm−2, (9)

where the coefficient 240 is the assumed gas to dust ra-
tio factor (taken from KI02), Σ1 is the surface density at
1 AU, and the exponent comes from the minimum mass
disk model. We use Σ1 = 10 in this case which is a little
higher than the minimum-mass Solar nebula value of 7.
The choice of Σ1 is somewhat arbitrary and motivated to
produce close to Jupiter-mass planets. The initial masses
of the planets obtained with this procedure are between
0.4 MJ – 1.2 MJ . Throughout this study we have as-
sumed Jupiter’s density (1.33 g cm−3) as the density of
all planets in our simulations to determine each planet’s
radius.

The initial eccentricities are drawn from a uniform dis-
tribution between 0—0.1, and the orbital inclinations are
drawn from a uniform distribution between 0◦—10◦ with
respect to the initial orbital plane of the planet initially
closest to the star. To find inclination dependent effects
more easily we employ little higher range of inclinations
than our Solar system planetary orbits. However, we do
not extend it too much. We discuss in Sec. 3.3 why we
expect and also verify numerically that this choice of ini-
tial inclination values do not affect the final inclination
values significantly. The initial semi-major axis of the
closest planet is 3AU, the other two planets are placed
with the spacing law

ai+1 = ai + 3.5RH,i, (10)

where RH,i is the Hill radius of the ith planet. The choice
of the initial semi-major axis of the initially closest planet
and the value of K = 3.5 are somewhat arbitrary, but are
guided by the following constraints. We choose systems
where close encounters happen rather quickly, so that we
can integrate after the chaotic stage is over for most of
the systems. Also we make sure that initially the systems
are not in a MMR. Both conditions can be satisfied easily

by choosing a suitable K value, which determines the
initial spacing between the planet orbits in terms of their
Hill radii (Figure 2). The initial phase angles are assigned
random values between 0◦–360◦.

We integrate each system for 107 years, which is 2×106

times the initially closest planet’s period (T1,i), and also
∼ 105 times the instability onset timescale for the given
initial conditions. We integrate the systems symplecti-
cally when there is no close encounter with a timestep
of 10 days and switch to Bulirsch-Stoer (BS) as soon
as two planets have a close approach (closer than 3
Hill radii) using the hybrid integrator of MERCURY6.2

(Chambers 1999). Runs with poor energy conservation
(|dE/E| > 0.001) with the hybrid integrator are repeated
with the BS integrator. This happens in ∼ 30% of the to-
tal number of runs. We integrate 103 systems with differ-
ent initial conditions and present the results statistically.
We find that for all systems at least one planet is ejected
eventually. For systems with two remaining planets we
check for Hill stability using the known semi-analytic cri-
teria (Gladman 1993). In our simulations about 9% of
systems were not provably stable at the integration stop-
ping time. We discard those from our analysis. We treat
collisions in the following simple way (“sticky-sphere”
approximation). Collisions are assumed to happen when
the distance between two planets is less than the sum of
their physical radii. When two planets collide they stick
together creating a single planet of mass equal to the
sum of the masses of the colliding planets. The dynami-
cal properties of the merger product are then determined
using conservation of momentum. We find that collisions
are not important with the given initial conditions, so it
is possible to present our results in a scale-free manner
where all lengths are given in units of the initial semi-
major axis of the initially closest planet (a1,i) and all
times in units of the initial inner planet’s orbital period
(Ti,1).

Two representative time-evolution plots are shown in
Figure 5 and Figure 6. Figure 5 represents a system
with two planets remaining in a stable configuration. In
this particular system the initially closest planet has mul-
tiple orbit crossing episodes with the other two planets
before eventually getting ejected at 4.1×104 T1,i. The top
panel shows the time-evolution of the semi-major axes of
the three planets. After the ejection of the inner planet
the other two planets become stable. The bottom panel
shows the eccentricity evolution of the planets. Note the
clear chaotic eccentricity evolution of the planets until
the ejection happens, after which the eccentricities of the
remaining bound planets go through stable secular oscil-
lations.

Figure 6 represents a case where the initially closest
planet collides and merges with the initially furthest
planet at ∼ 4.5 × 103 T1,i. Then at ∼ 7 × 104 T1,i the
initial middle planet gets ejected. We stop integration
when there is only one remaining planet bound to the
central star since the configuration is always stable. Note
the orbit crossing episodes in the top panel and the cor-
responding chaotic eccentricity changes.

3.2. High eccentricities and hot Jupiters

We find that strong scattering between planets in-
creases the eccentricities very efficiently (Figure 7). The
median in the eccentricity distribution for the final in-
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Fig. 5.— Time evolution of the semi-major axes (top panel)
and the eccentricities (bottom panel) of a typical simulation. The
black, red and green lines show the orbital elements for the ini-
tially closest (a1, e1), middle (a2, e2) and the furthest (a3, e3)
planets. In this particular integration, the first planet is ejected at
∼ 4.1× 104 T1,i, and the integration concludes with two planets in
provably stable orbits. The semi-major axes for both P2 and P3

remain constant and the eccentricities oscillate stably on a secular
timescale. Numbers in the subscript represent the positional se-
quence of the planets starting from the star and letters “i” and “f”
mean initial and final values, respectively. We employ the same
convention in all our plots.

Fig. 6.— Same as Figure 5, but for a simulation that concludes
with a single planet orbiting the central star. The initial closest
planet merges with the initial furthest planet through collision at
∼ 4.5 × 103 T1,i. Then at ∼ 7 × 104 T1,i the initial middle planet
gets ejected. We stop integration after that since a single planet
around a central star is stable and will maintain a constant semi-
major axis and eccentricity.

ner planets is 0.38. The median eccentricity for the final
outer planets with semi-major axes < 10 AU is at 0.28
whereas the median for all simulated planets is at 0.33.
We compare our results with the observed eccentricity
distribution of the detected extrasolar planets (Fig. 7).

Fig. 7.— Cumulative distributions showing initial and final ec-
centricities of the planets. Top and bottom panels show the initial
and final cumulative eccentricity distributions, respectively. In the
top panel solid (black), dotted (red) and dashed (blue) lines rep-
resent the closest, middle, and furthest planets, respectively. They
are on top of each other because the initial eccentricity distribution
is the same for all of the planets. In the bottom panel solid (black)
and dotted (red) lines represent the final inner planets. The dotted
(red) line shows the outer planets with semi-major axes < 10 AU .
The dashed (blue) line shows all planets, both inner and outer
within 10 AU from the central star. The semi-major axis cut-off
is used to compare the simulated population with the observed
population more easily. For comparison, the dash-dot line (green)
in the bottom panel shows the eccentricity distribution of the ob-
served giant planets with a mass cut-off of 0.4MJ , since we do not
have planets less massive than that in our simulated population.
The dashed line with longer dashes (magenta) represents the eccen-
tricity distribution of the observed exoplanets more massive than
0.4MJ and semi-major axes greater than 0.03 a1,i.

For that we use a lower mass cut-off of 0.4 MJ following
the lower mass cut-off of our simulated population. To
show how the eccentricity distribution of the observed
exoplanet population changes with imposed lower semi-
major axis cut-off we also plot the same but now using
only exoplanets with semi-major axes > 0.03 a1,i. The
upper semi-major axis cut-off (10 AU) for the simulated
final planet population is used to address the fact that
we cannot observe planets further out from the central
star.

As seen in the figure we seem to overestimate the eccen-
tricities of the inner planet. However, the slopes of the
cumulative eccentricity distributions at higher eccentric-
ity values are similar. In a realistic planetary system,
there can be damping effects of lingering gas, dust or
planetesimals in a protoplanetary disk. Both of the above
will lower the eccentricities of the planets in a real plane-
tary system. While our simplistic simulations come rea-
sonably close to matching the eccentricity distribution
of observed planets, including damping might improve
the eccentricity distribution. In Sec. 3.5 we show that a
slightly different initial distribution of planet masses re-
sults in a very good match to the eccentricity distribution
for e > 0.25, without any dissipation.

We find a significant fraction of systems with planets in
orbits that can take them to small periapse distances to
the star. Figure 8 shows the final positions of the planets
that are still bound to the central star in the a-e plane.
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Fig. 8.— Final semi-major axis versus eccentricity plot. All
lengths are scaled by the initial closest planet semi-major axis (here
a1,i = 3.0AU). Black solid circles and red open stars represent
the final inner and outer planets, respectively. Solid lines show
different constant periapse lines with values 0.1 and 0.5. Note the
high eccentricities and the close approaches towards the central
star. The empty wedge shaped region in the a-e plane at high
eccentricities is due to the requirement for orbital stability.

The solid lines represent different constant pericenter dis-
tances labeled near the corresponding lines in the figure.
Note that the planets show weak correlations between
the eccentricity and the semi-major axis. For the inner
planet, planets with lower semi-major axes tend to have
higher eccentricities, whereas the outer planets show an
opposite trend. The final inner and outer planets make
two clearly separated clusters of points in the a-e plane
due to stability considerations.

Figure 9 shows the cumulative distribution of the
periastron distances of the final bound planets around
the star. For the sake of comparison, we also show the
pericenter distribution of the observed exoplanet popu-
lation in Figure 9. 10% of the systems harbor planets
with periapse distances 6 0.1ai,1. If the initial semi-
major axes are sufficiently small then the planets can
effectively have small periastron distances so that tidal
forces between the star and the planet become impor-
tant and a highly eccentric orbit can be circularized to
produce a short-period giant planet (Ford & Rasio 2006;
Faber et al. 2005). We caution that if similar systems
had been started with much smaller a1,i (and the same
planetary radii), then collisions might become the most
common final outcome.

3.3. Implications for Short-Period Planets

The top and bottom panels in Figure 10 show the cu-
mulative distributions of the initial and final semi-major
axes for the planets respectively. The planet that is clos-
est initially may not remain closest at the end due to
the close encounters and orbit crossing. We find that
in ≃ 1/3 of the cases the initially closest planet remains
the closer planet finally, in ≃ 1/3 of the cases the initially
middle planet ends up being the closer planet, and in the
rest of the cases the initially furthest planet becomes the
closer planet finally. Also 20% of the final stable systems

Fig. 9.— Cumulative histogram of the pericenter distance of
the initial (top panel) and final (bottom panel) planets bound to
the star. In the top panel the solid, dotted and dashed lines show
the pericenter distributions of the initial closest, middle and the
furthest planets, respectively. In the bottom panel the solid and
dotted lines show the same for the final stable inner and the outer
planets with their semi-major axes less than 10AU. The dashed
magenta line shows the pericenter distribution of the observed ex-
oplanet population for comparison purposes. The length scaling
used for the observed population is a1,i = 2.5AU.

Fig. 10.— Cumulative frequency plots of semi-major axes of
the initial (top panel) and final (bottom panel) planets. Vertical
solid (black), dotted (red) and dashed (blue) lines show the initial
values in the top panel. These are vertical lines because the initial
semi-major axes of the closest, middle and outer planets do not
have a spread. Solid (black) and dotted (red) curves in the bot-
tom panel show the final inner and outer planets’ semi-major axes,
respectively.

have a single planet around the central star, two plan-
ets being lost from the system either through collisional
merging or ejection.

We see a very interesting trend in the final orbital in-
clinations. Figure 11 compares the distributions of sev-
eral inclinations. Here each inclination reported is the
absolute value of the orbital inclinations measured with
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Fig. 11.— Cumulative distribution showing initial and final
orbital inclinations of the planets with respect to the initial in-
variable plane. In the top panel the solid (black) and the dotted
(red) lines represent the initial and final RMS inclination distri-
butions of the planet orbits with respect to the initial invariable
plane. In the middle panel solid (black), dotted (red) and dashed
(blue) lines represent the closest, middle and furthest planets, re-
spectively. The bottom panel shows the final orbital inclination
distributions of the remaining planets in the system. The solid
(black), and the dotted (red) lines represent the inner and outer
planets, respectively. The dashed (blue) line represents the relative
angles between the two remaining planetary orbits. Note that the
final closer planets, which are the planets more easily observable
in a planetary system, statistically have higher inclinations. Also
note that the relative inclinations between the planetary orbits are
also quite high.

respect to the initial invariable plane. The initial invari-
able plane is defined as the plane perpendicular to the
initial total angular momentum vector of the planetary
orbits of the planetary system. Note that the initial “in-
variable plane” can differ since planets can be ejected
from the system and carry away angular momentum.

The top panel shows the initial and final RMS incli-
nations. Clearly strong scattering between planets in-
creases inclinations of the orbits leading to higher final
RMS inclination as can be seen in the top panel of Fig-
ure 11. The middle and bottom panels in Figure 11
show the initial and the final inclinations of the orbits of
the individual planets. In general, the inclinations tend
to increase for each planet. Additionally, we note that
the inclination of the final inner planet statistically has
larger values (bottom panel, Figure 11) than the outer.
The relative inclinations between the remaining planet
orbits is also quite high (Figure 11, bottom panel).

If it is true that the timescale for tidal damping of
inclinations is much greater than the age of the stars
(Winn et al. 2005), then the significantly increased incli-
nations should be found in some planetary systems that
have gone through strong gravitational scattering phases
in their lifetimes. Since the star and the planets get their
angular momenta from the same source, planetary orbits
are expected to form in a coplanar disk perpendicular
to the stellar spin axis. However, our results show that
strong planet-planet scattering can dramatically affect
the coplanarity of some planetary systems. Measuring
a poor degree of alignment between the star spin axis

Fig. 12.— This figure shows the initial RMS inclination vs final
inclination of the inner-most planet. Note that the final closer
planet orbital inclination is largely insensitive to the initial RMS
inclination.

and the planetary orbits could be used to recognize some
systems that have undergone a tumultuous dynamical
history.

We expect that the chaotic phases erase any substan-
tial correlation between the initial and final properties.
Here, we test this hypothesis by investigating the cor-
relation between the initial and final inclinations. Of
course if a system is initially assigned a strictly coplanar
configuration, then the angular momentum conservation
dictates the system to remain coplanar. However, apart
from that trivial situation we find that the final inclina-
tion of the inner planet does not depend on the initial
RMS inclination (Figure 12). We quantify the amount
of correlation between the initial RMS and the final or-
bital inclination of the final inner planet using the bi-
variate correlation coefficient. The bivariate correlation
coefficient (rxy) for two variables x and y, is given by the
following equation.

rxy =
Cov(x, y)

sd(x)sd(y)
, (11)

where Cov(x, y) is the covariance of x and y, given by

Cov(x, y) =
1

n

(

n
∑

i=1

(xi − x̄)(yi − ȳ)

)

, (12)

and sd(x) or sd(y) is the standard deviation of x or y
defined as follows.

sd(x) =

(

1

n

n
∑

i=1

(xi − x̄)2

)1/2

. (13)

We find that the correlation coefficient between the
initial RMS and the final orbital inclinations is
riRMS,iclose = 0.05. The low value of r bolsters the belief
that the high final inclinations are not merely reflection
of the initial orbital inclinations. Thus, as long as the
planetary system is not strictly coplanar to begin with,
strong planet-planet scattering can increase the orbital
inclinations of some systems significantly.
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Fig. 13.— Pericenter distance vs inclination of the final inner
planets. The open dots show the final positions of the final inner
planet in the pericenter-inclination plane. The filled disks (blue)
and triangles (red) represent the mean orbital inclination of the in-
ner planet and the final RMS inclinations, respectively. The means
are obtained for bins of equal population (nbin = 50). We observe
a weak anti-correlation between the pericenter and the inclination.

The final inclination of the inner planet orbit, which is
the most easily observable, shows a weak anti-correlation
with the pericenter distance of the orbit (Figure 13);
lower pericenter orbits tend to have higher inclinations.
The correlation coefficient in this case is rrp,iclose =
−0.13 using Eq. 11.

We look forward to future observations that determine
the degree of alignment between the stellar spin and the
planetary orbits. For our solar system, the angle be-
tween the spin axis and the invariable plane is ≃ 6◦.
The angle between the stellar rotation axis and the or-
bital angular momentum of a transiting planet (λ) can
be constrained via the Rossiter-McLaughlin effect. Ob-
servations have measured λ sin i for four systems (Winn
2006b): −4.4◦±1.4◦ for HD 209458b (Winn et al. 2005),
−1.4◦±1.1◦ for HD 189733b (Winn et al. 2006), 11◦±15◦

for HD 149026b (Wolf et al. 2007), and 0◦ ± 30◦ for
TrES-1b (Narita 2006). Our study implies that plane-
tary systems with a tumultuous dynamical history will
sometimes show a large λ. Therefore, we look forward
to precise measurements of λ for many planetary systems
to determine the fraction of planets among the exoplanet
population with a significant inclination. Measurements
of λ would be particularly interesting for the massive
short-period planets (m > MJ) or for very-short period
giant planets (P < 2.5 d), since these planets might have
a different formation history than the short-period plan-
ets with m ≃ 0.5MJ that are more common.

Our simulations show the effects of mass segregation,
as heavier planets preferentially end with smaller semi-
major axes. This trend can be easily seen by compar-
ing the initial and final mass distributions of the planets
in Figure 14. The mass distribution clearly shifts to-
wards higher mass values in the final inner planet mass
histogram whereas the outer planet mass essentially re-
flects the initial mass distribution (compare the top and
bottom panels of Figure 14).

Fig. 14.— Initial and final mass distributions of the closest, mid-
dle and furthest planets. The top (bottom) panel shows the initial
(final) mass distributions. Solid (black), dotted (red), and dashed
(blue) lines in the top panel represent the initial mass histograms
of the closest, middle, and furthest planets. Solid (black) and dot-
ted (red) lines in the bottom panel represent the mass histograms
of the final inner and outer planets, respectively. One planet is
ejected in each of our simulations. Note that the histogram for
the inner planet masses shifts towards higher values in the bottom
panel, which indicates that the higher mass planets preferentially
become the inner planet in the final stable configuration of the
planetary systems.

Fig. 15.— Mass vs eccentricity of the final stable planets. The
circles (black) and the triangles (blue) represent the final inner
and the outer planets. Planets with masses > 1.6MJ are collision
products. The collision planets tend to have lower eccentricities.

We do not find a strong effect of mass on eccentricity
but we note that collisions tend to reduce the fraction
of highly eccentric systems (Figure 15). The collision
products can be seen in the cluster around and above
1.5 MJ . We find no other significant mass dependent
effect in the final orbital parameters.

3.4. Mean Motion Resonances
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In the radial-velocity planet population there are 172
planetary systems with 200 planets. These include 20
multi-planet systems and at least 5 systems that include
a MMR (4 appear to be in 2:1 MMR). MMRs can have
strong effects on the dynamical evolution and stability of
those planetary systems. The 2:1 MMR is particularly
interesting due to the proximity of the two orbits and
the increased possibility for close encounters that could
result in strong gravitational scattering between the two
planets (Sándor & Kley 2006).

It is widely believed that MMRs between two or more
planets in a planetary system arise naturally from migra-
tion. Convergent migration in a dissipative disk can lead
to resonant capture into a stable MMR, particularly the
2:1 MMR (Lee & Peale 2002).

While we regard differential migration as a natural
way to trap two planets into MMRs, here we explore
the possibility of trapping two planets into MMR using
only their mutual gravitational perturbations and with-
out any damping. In a 3-planet system it is possible that
one planet can act as a source or sink of energy to let the
other two planets dynamically evolve into or out of a
MMR. If pure dynamical trapping into MMRs were ef-
ficient, then this would open up interesting possibilities.
For one, it does not require a common disk origin, as is a
requirement for the migratory origin of MMR. Addition-
ally, this mechanism could operate in a planetary system
at a much later time after the protoplanetary disk has
been depleted.

To look for possible 2:1 MMR candidates, we isolate
the systems that have two planets with their final periods
in close to 2:1 ratios. First, we choose systems where
the final ratio of periods is between 1.8 – 2.2. Then
we calculate the two resonance angles θ1 and θ2 over
the full time of their dynamical evolution. Here the two
resonance angles are given by

θ1,2 = λ1 − 2λ2 + ̟1,2, (14)

where λ1 and λ2 are the mean longitudes of the inner
and outer planets and ̟1 and ̟2 are the longitudes of
periastron for the inner and outer planets. When the
planets are not in a MMR, θ1,2 circulate through 2π.
When trapped in a MMR, the angles librate around two
values (Lee 2004). Finally, we check whether the periodic
ratio and libration of the resonant angles are long lived
or just a transient stage in their dynamical evolution.

We find one system where two planets are caught into
a 2:1 MMR (Fig. 16). The top two panels show the time
evolution of the resonant arguments θ1 and θ2. Note
how the two angles go from the circulating phase to the
librating phase at around 1.88×106 T1,i. The two bottom
panels show the time evolution of the semi-major axes
and the eccentricities of the two planets in MMR. Note
that the semi-major axes are nearly constant and the
eccentricities oscillate stably. Since there is no damping
in the system, the somewhat large libration amplitude of
the resonant angles is to be expected. In principle, the
presence of even a little damping (due to some residual
gas or dust in the disk) might reduce the amplitudes of
libration and eccentricity oscillations for systems such as
this one.

It is important to note that systems like the one il-
lustrated in Figure 16 are not a typical outcome of our
simulated population. We find that it is improbable to

Fig. 16.— Time evolution plots for the two resonance angles θ1

and θ2, the semi-major axes and the eccentricities of the planets.
From top to bottom the panels show the time evolutions of θ1, θ2,
semi-major axes and eccentricities, respectively. The time axis is
in units of the initial orbital period of the initially closest planet
(T1,i). For the panels showing semi-major axes and eccentricity,
the solid (red) and dotted (blue) lines show the evolutions of the
two planets that enter a 2:1 MMR. Note that a little before 1.88×
106 T1,i both θ1 and θ2 start librating.

trap two planets in a 2:1 MMR only through dynamics
for a long period of time when no damping is present.
We find a few (∼ 1%) other systems showing similar li-
brations of θ1,2 at different times during their dynamical
evolution, but for them the libration phase is shorter,
never being more than a few times 103 T1,i. However, if
our simulations were to include some dissipation, then
the frequency of such systems might be increased signif-
icantly. We encourage future investigations of this pos-
sibility.

3.5. A different mass distribution

To test the sensitivity of our results to the choice of
mass distribution, we perform the same study as before
with a different mass distribution (we call this mass dis-
tribution 2 henceforth). The numerical setup is exactly
the same as described in Sec. 3.1 but the masses of the
cores are assigned differently. Here we assign the plan-
etary core masses Mcore from a distribution of masses

between 1 – 100 M⊕ uniform in M
1/5
core and assume that

the cores accrete all the gas within 10 Hill radii of them.
The exponent in the core mass distribution and the sur-
face density at 1 AU, Σ1, are chosen somewhat arbitrarily
with the goal to obtain an initial mass distribution that
has a large number of Jupiter mass (MJ) planets and
a few higher mass planets with the number density go-
ing down with increasing mass (Fig. 17). The number
density of the higher mass planets mimics the mass dis-
tribution of the observed exoplanets. Our sample size
here is 500. The above mentioned choices produce initial
masses of the planets in the range 0.4 MJ – 4 MJ .

This choice of mass distribution also enables us to ob-
serve mass dependent effects more clearly. For example,
we see that the higher mass planets preferentially become
the final inner planets (Figure 17) more prominently.
The cumulative distributions of the eccentricities com-
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Fig. 17.— Same as Figure 14, but with a different and wider
initial mass distribution than the previous one. The initial mass
distribution has a high number of Jovian mass planets as in the
previous mass distribution, however, in this case the distribution
has a tail towards higher masses. The higher end in the initial mass
spectra in this case mimic the minimum mass (m sin i) spectrum of
the observed exoplanets. Note that the mass segregation effect is
more prominent here than in Figure 14. The dot-dash (green) line
shows the m sin i distribution of the observed exoplanets in both
panels for comparison.

pare better with the observed eccentricities (Figure 18)
for mass distribution 2. We do not find the very highly
eccentric (e > 0.8) planetary orbits in this case as in
the case of mass distribution 1. The final semi-major
axis distribution is statistically indistinguishable from
the semi-major axis distribution resulting from mass dis-
tribution 1. Semi-major axis and eccentricity have a
weak anti-correlation (Figure 19). We do not find any
systems with two planets trapped in 2:1 MMR for this
case. Even transient libration of the arguments as in
mass distribution 1 for some planetary systems is absent
in our sample for mass distribution 2.

4. SUMMARY AND CONCLUSIONS

We have studied in detail how the orbital properties
change due to strong gravitational scattering between
multiple giant planets in a planetary system containing
three giant planets around a solar mass star. We char-
acterize the stability of a planetary system depending
on the initial separation between the planets given in
units of their mutual Hill radii (Figure 2). Stability
of planetary systems increases quickly with the increas-
ing K value. We recognize resonance signatures as dips
and rises in the stability timescale. We show that the
timescale distributions of these systems, initially near
and away from major MMR are qualitatively different
(Figure 4), whereas two different K values both away
from MMR show the same qualitative shape in the sta-
bility time distribution (Figure 3). This observation
bolsters our belief that the final outcomes of the numeri-
cal simulations do not differ qualitatively if K is changed
as long as the chosen value of K ensures that the plane-
tary system is not near a major MMR initially. A higher
or lower K value satisfying the above requirement will
increase or decrease the timescale until instability of the

Fig. 18.— Same as Figure 7, but using mass distribution 2. The
solid (black) line, and the dotted (red) lines in the bottom panel
show the eccentricity distributions of the final inner and outer plan-
ets in the simulated population. The dash-dot (magenta) line show
that of the observed exoplanet population with mass > 0.4 MJ .
The simulated and observed eccentricities match much better in
this case, particularly for e ≥ 0.2.

Fig. 19.— Same as Figure 15, but using the broader distribution
of initial planet masses. There seems to be a weak anti-correlation
between the mass and the eccentricities of the planets.

planetary systems, but not qualitatively change the out-
comes following one or more strong scattering phases.
One notable exception is that for very low K, collisions
between the planets can become more frequent due to
gravitational focusing.

We study the final orbital properties of the planets
that remain bound to the central star in stable orbits af-
ter chaotic evolution due to strong mutual interactions.
We perform the experiments with realistic planetary sys-
tems containing 3 giant planets (cf. Sec. 3.1). In all of
our simulated systems at least one planet is eventually
ejected before reaching a stable configuration. This sup-
ports models of planet formation that initially form plan-
etary systems overstuffed with planets and instabilities
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reduce the number of planets until the timescale for in-
stability exceeds the age of the planetary system. In 20%
of the cases, two planets are ejected leaving the system
with only one giant planet. Thus, the planet scattering
model predicts the existence of many systems with a sin-
gle eccentric giant planet, as well as many free floating
planets. We find that strong gravitational scattering be-
tween giant planets can naturally create high eccentricity
orbits. Although our first set of models predicts eccen-
tric planets to be slightly more common than observed
(Figure 7), a wider initial mass distribution can result
in remarkable similarity with the observed distribution
(Figure 18). We conclude that planet–planet scattering
can easily account for the observed distribution of ec-
centricities ranging from 0.2-0.8. Our simulations under-
produce systems with eccentricities less than 0.2. This
may suggest that some observed systems are affected by
late stage giant collisions. Alternatively, the presence
of some damping from a gas or planetesimal disk could
lead to eccentricity damping. We find this latter expla-
nation particularly attractive due to the observed corre-
lation between planet mass and eccentricity (Butler et al.
2006). While our simulations find that high eccentricities
are most common among less massive giant planets, the
known population of extrasolar planets suggest that high
eccentricities are more common among the more massive
planets (Ford & Rasio 2007). This apparent discrepancy
could be resolved if a modest disk often remains after the
final major planet-planet scattering event. Less massive
planets would be more strongly affected by the remain-
ing disk, so their eccentricities could be damped, while
more massive planets would typically be immune to ec-
centricity damping.

We also find that it is possible to scatter some planets
at highly inclined orbits with low perihelion distances
(Figure 9). Approximately 10% of the systems obtain
perihelion distances less than 0.1 ai,1. If the initial semi-
major axes are small enough, then it is possible for strong
gravitational scattering to result in planet orbits with
sufficiently small perihelion distances, which tidal effects
will circularize to create hot Jupiters.

If we assume that the angular momentum of the host
star is aligned with that of the orbital angular momentum
of the planets, then measurements of λ should typically
be small in the absence of perturbations from other plan-
etary or stellar companions (cf. Sec. 3.3). We find that
strong gravitational scattering between the giant planets
can naturally increase the inclinations of the final plan-
etary orbits with respect to the initial total orbital an-
gular momentum plane (Figure 11). Since the timescale
to tidally align the stellar spin and the planetary angu-
lar momentum is much greater than the age of the star
(∼ 1012 years) (Greenberg 1974; Hut 1980; Winn et al.

2005), inclinations excited by planet-planet scattering af-
ter the disk had dispersed could be maintained for the
entire stellar lifetime. Observations of a hot-Jupiter with
a significantly non-zero λ would be suggestive of previ-
ous planet–planet scattering. However, caution would
be necessary if the star had a binary stellar companion
(Wu & Murray 2003; Takeda & Rasio 2005, Fabrycky
2007). On the other hand, observations of many hot-
Jupiters with orbital angular momenta closely aligned
with their stellar rotation axis would suggest a forma-
tion mechanism other than strong gravitational scatter-
ing followed by tidal circularization. Unfortunately, cur-
rent observations only measure this angle for a few sys-
tems and have uncertainties comparable to the dispersion
of inclinations found in our simulations. We encourage
observers to improve both the number and precision of
Rossiter-McLaughlin observations.

Although effects of a debris disk on planetary dy-
namics and vice versa is not within the scope of this
study, the warped disk observed in β Pictoris could
be one interesting example where inclined planetary or-
bits and the debris disk exchange torques, resulting in
a warped debris disk (Smith & Terrile 1984; Heap et al.
2000). Mouillet et al. (1997) suggests that the observed
asymmetry in the debris disk can be explained by the
presence of a planetary companion in an inclined orbit.
Strong planetary scattering, as we find, can be a natu-
ral way to create planetary orbits inclined to the initial
invariable plane.

We find that a few percent of the simulated population
have very high semi-major axes in the final stable con-
figuration. Strong planet-planet scattering can be one
natural way to form distant (a > 50 AU) giant planets
from the star (Veras & Armitage 2004). Such giant plan-
ets are extremely unlikely to be created in situ, since the
timescale for planet formation greatly exceeds the age of
the star. Additionally, there is simply insufficient disk
mass to form a giant planet at such large orbital dis-
tances (Kokubo & Ida 2002; Ida & Lin 2004b,a). Strong
scattering between planets in multi-planet systems can
be a natural mechanism to create such long-period plan-
ets. We find that this population of high semi-major
axis planets will have high eccentricities and inclinations
(Fig. 8). Future planet searches using astrometry or
direct detection can test these predictions.
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for NASA, under contract NAS 5-26555.
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