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ABSTRACT

Any planetary system with two or more giant planets may become dynamically unstable, leading to
collisions or ejections through strong planet–planet scattering. Following an ejection, the other planet
is left in a highly eccentric orbit. Previous studies for simple initial configurations with two equal-
mass planets revealed two discrepancies between the results of numerical simulations and the observed
orbital elements of extrasolar planets: the potential for frequent collisions between giant planets and
a narrow distribution of final eccentricities following ejections. Here, we show that simulations for
two planets with unequal masses predict a reduced frequency of collisions and a broader range of
final eccentricities. We show that the two-planet scattering model can easily reproduce the observed
eccentricities with a plausible distribution of planet mass ratios. Further, the two-planet scattering
model predicts a maximum eccentricity of about 0.8, independent of the distribution of planet mass
ratios. This compares favorably with current observations and will be tested by future planet discov-
eries. Moreover, we show that the combination of planet–planet scattering and tidal circularization
may be able to explain the existence of some giant planets with very short period orbits. However, the
presence of giant planets in circular orbits at slightly larger orbital periods (small enough to require
significant migration, but large enough that tidal circularization is ineffective) is more difficult to
explain. As part of this work, we also re-examine and discuss various possible correlations between
eccentricities and other properties of observed extrasolar planets. We demonstrate that the observed
distribution of planet masses, orbital periods, and eccentricities can provide constraints for models of
planet formation and evolution.

Subject headings: planetary systems — planetary systems: formation — planets and satellites: general
— celestial mechanics

1. INTRODUCTION

For several centuries, theories of planet formation had
been designed to explain our own Solar System, but the
first few discoveries of extrasolar planets immediately
sent theorists back to the drawing board. These discov-
eries led to the realization that planet formation theory
must be generalized to explain a much wider range of
properties for planetary systems. For example, it had
long been assumed that planets formed in circular or-
bits because of strong eccentricity damping in the proto-
planetary disk and that their orbits would later remain
nearly circular (i.e., with eccentricity e ≤0.1; Lissauer
1993, 1995). However, over half of the extrasolar planets
beyond 0.1 AU have eccentricities e ≥0.3, and two have
eccentricities larger than 0.9.

The planets in eccentric orbits are generally believed to
have formed on nearly circular orbits but later evolved
to their presently observed large eccentricities. Theo-
rists have suggested numerous mechanisms to excite the
orbital eccentricity of giant planets. These include:

a) secular perturbations due to a distant stellar or
massive planetary companion (Holman, Touma, &
Tremaine 1997; Mazeh et al. 1997; Ford, Kozinsky,
& Rasio 2000; Takeda & Rasio 2005),
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b) perturbations from passing stars (Laughlin &
Adams 1998; Hurley & Shara 2002; Zakamska &
Tremaine 2004),

c) strong planet–planet scattering events in plane-
tary systems with either a few planets (Rasio &
Ford 1996; Weidenschilling & Marzari 1996; Ford,
Havlickova, & Rasio 2001 (FHR); Marzari & Wei-
denschilling 2002; Yu & Tremaine 2001; Ford, Ra-
sio & Yu 2003; Veras & Armitage 2004, 2005,
2006) or many planets (Lin & Ida 1997; Levison
et al. 1998; Papaloizou & Terquem 2001; Adams &
Laughlin 2003l Goldreich, Lithwick, & Sari 2004;
Ford & Chiang 2007; Juric & Tremaine 2007),

d) interactions of orbital migration with mean-motion
resonances (Chiang & Murray 2002; Kley 2000;
Kley et al. 2004, 2005; Lee & Peale 2002; Tsiga-
nis et al. 2005),

e) resonances between secular perturbations and pre-
cession induced by general relativity, stellar oblate-
ness, and/or a remnant disk (Ford et al. 2000; Na-
gasawa et al. 2003; Adams & Laughlin 2006),

f) interactions with a planetesimal disk (Murrary et
al. 1998),

g) interactions with a gaseous proto-planetary disk
(Goldreich & Tremaine 1980; Artymowicz 1992;
Papaloizou et al. 2001; Goldreich & Sari 2003;
Ogilvie & Lubow 2003),
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h) asymmetric stellar jets (Namouni 2005, 2006), and

i) hybrid scenarios that combine aspects of more than
one of the above mechanisms (e.g., Marzari et al.
2005; Sandor & Kley 2006; Malmberg et al. 2006).

Some of mechanisms (a, b) inevitably influence the evo-
lution of some planetary systems, but are not able to
explain the ubiquity of eccentric giant planets (Zakam-
ska & Tremaine 2004; Takeda & Rasio 2005). Obser-
vations of multiple planet systems have provided strong
evidence that other mechanisms (c, d) are also signifi-
cant in altering planet’s orbital eccentricities. For ex-
ample, the dramatic eccentricity oscillations of υ And c
provide an upper limit on the timescale for eccentricity
excitation in υ And (≃ 100yr) and strong evidence for
planet–planet scattering in this system (Ford, Lystad &
Rasio 2005). Other multiple planet systems may also
exhibit similar behavior (Barnes & Greenberg 2006ab).
As another example, the detection of pairs of planets in
2:1 mean motion resonances (e.g., GJ 876 b & c) sug-
gests that smooth convergent migration likely occurred
in these systems. Additionally, the fact that migration
models can simultaneously match the observed eccentric-
ities for both planets b & c suggests eccentricity excita-
tion was related to the migration and resonant capture in
this system (Lee & Peale 2002; Kley et al. 2005). It is not
clear if the remaining mechanisms (e-h) are important for
shaping the actual distribution of planet eccentricities.

In this paper, we expand upon the original planet–
planet scattering model of Rasio & Ford (1996) and FHR.
First, we evaluate some potential origins of dynamical
instabilities that result in close encounters and strong
planet–planet scattering in §2. In §3, we present the
results of n-body simulations of planet–planet scattering
for systems with two giant planets of unequal masses.
Then, in §4, we compare the predictions of eccentricity
excitation models with the eccentricities of the known
extrasolar planets. In §5, we discuss the implications
of our work for theories of eccentricity excitation and
damping and suggest how future observations can further
test theories for eccentricity excitation.

2. ORIGIN OF INSTABILITY

While some authors have simulated multiple planet
systems beginning with the planet formation stage, com-
putational cost has limited such simulations to a small
portion of the disk and/or small number of initial condi-
tions (e.g., Kokubo & Ida 1998; Levison, Lissauer, &
Duncan 1998). Since dynamically unstable planetary
systems are highly chaotic, we can only investigate the
statistical properties of an ensemble of systems with sim-
ilar initial conditions. Thus, most investigations of dy-
namical instabilities in multiple planet systems proceed
by simulating systems after planets have formed and per-
turbations due to the protoplanetary disk are no longer
significant. The planets are placed on plausible initial
orbits and numerically integrated according to the grav-
itational potential of the central star and other planets.

Clearly, the choice of initial conditions will determine
whether the systems are dynamically stable and will af-
fect the outcome of unstable systems. Our simulations
of planet–planet scattering typically begin with closely
spaced giant planets (e.g., Rasio & Ford 1996; FHR).
This is necessary for dynamical instabilities to occur in

systems with only two planets initially on circular orbits.
For two-planet systems, there is a sharp transition from
rigorous Hill stability to chaos and strong interactions.
Therefore, one potential concern about the relevance of
dynamical instabilities is whether the necessary initial
conditions will manifest themselves in the two-planet
configurations that occur in nature. In this section, we
describe several possible mechanisms that could lead to
dynamical instabilities in two-planet systems, including
mass growth through accretion, dissipation of the proto-
planetary disk, and orbital migration. Additionally, the
secular evolution of systems with more than two planets
provides a naturally mechanism for triggering dynamical
instabilities, even long after the protoplanetary disk has
dissipated and planets are fully assembled (Chatterjee et
al. 2007).

According to the standard core accretion model, once
a rocky planetary core reaches a critical mass, it rapidly
accretes the gas within its radius of influence in a cir-
cumstellar disk. Thus, the semi-major axis of a plan-
etary core is determined by the collisional evolution of
protoplanets, while the mass of a giant planet is deter-
mined by the state of the gaseous disk when the core
reaches the critical mass (Lissauer 1993). Two planetary
cores could form with an initial separation sufficient to
prevent close encounters while their masses are less than
the critical mass for runaway accretion, but insufficient
to prevent a dynamical instability after the onset of rapid
mass growth due to gas accretion (Pollack et al. 1996).

The accumulation of random velocities provides an-
other possible source of a dynamical instability. Assum-
ing planets form in the presence of a dissipative disk,
they are expected to form on nearly circular and copla-
nar orbits. While the timescale for dissipation in the disk
remains shorter than the timescales for eccentricity ex-
citation, eccentricities and inclinations will be damped,
preventing close encounters. As the disk dissipates, ec-
centricity damping becomes less significant, so mutual
planetary perturbations can excite significant eccentrici-
ties and inclinations and lead to close encounters between
planets.

Finally, the discovery of giant planets at small orbital
separations suggests that large-scale orbital migration
may be common. In multiple planet systems, conver-
gent migration (i.e., with the ratio of semi-major axes
approaching unity) could increase the strength of mu-
tual planetary perturbations, excite eccentricities (either
before or after resonant capture), and result in planet
scattering (Sandor & Kley 2005).

In contrast to the case of two-planet systems, there
is no sharp stability criterion for three-planet systems.
Three-planet systems can be unstable even for initial or-
bital spacings significantly greater than would be nec-
essary for similar two-planet systems to be unstable
(Chambers, Wetherill & Boss 1996). Additionally, such
systems can evolve quasi-stably for very long times,
∼ 106 − 1010 yr, before chaos finally leads to close en-
counters and strong planet–planet scattering (Marzari
& Weidenschilling 2002; Chatterjee at al. 2007). This
longer timescale until close encounters could allow suffi-
cient time for three or more planets to form via either
the disk instability or core accretion models.

If protoplanetary disks form many planets nearly si-
multaneously, then planet–planet scattering may lead to
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a phase of dynamical relaxation. Several researchers have
numerically investigated the dynamics of planetary sys-
tems with ∼ 10 − 100 planets (Lin & Ida 1997; Levison
et al. 1998; Papaloizou & Terquem 2001, 2002; Adams &
Laughlin 2003; Barnes & Quinn 2004; Juric & Tremaine
2007). Initially, such systems are highly chaotic and close
encounters are common. The close encounters lead to
planets colliding (creating a more massive planet) and/or
planets being ejected from the system, depending on the
orbital periods and planet radii. Either process results in
the number of planets in the system being reduced and
the typical separations between planets increasing. The
system gradually evolves from a highly unstable state to
quieter states, which can last longer before the next colli-
sion or ejection. Such systems typically evolve ultimately
to a final state with 1–3 eccentric giant planets that will
persist for the lifetime of the star (Laughlin & Adams
2003; Juric & Tremaine 2007).

With so many possibilities for triggering dynamical in-
stabilities in multiple planet systems, we expect that
these processes may be rather ubiquitous. While real
planetary systems likely have more than two massive
bodies, simulations of relatively simple systems (e.g.,
with just two giant planets) facilitate the systematic
study of the relevant physics and help develop intuition
for thinking about the evolution of more complex sys-
tems.

3. NUMERICAL INVESTIGATION OF PLANET–PLANET
SCATTERING

In the previous section, we argued that if planet forma-
tion commonly results in planetary systems with multiple
planets, then it should be expected that the initial con-
figurations will not be dynamically stable for time spans
orders of magnitude longer than the timescale for planet
formation. Shortly after the discovery of the first eccen-
tric extrasolar planets, Rasio & Ford (1996) conducted
Monte Carlo integrations of planetary systems contain-
ing two equal-mass planets initially placed just inside the
Hill stability limit (Gladman 1993). They numerically
integrated the orbits of such systems until there was a
collision, or one planet was ejected from the system, or
some maximum integration time was reached. The two
most common outcomes were collisions between the two
planets, producing a more massive planet in a nearly cir-
cular orbit between the two initial orbits, and ejections
of one planet from the system while the other planet re-
mains in a tighter orbit with a large eccentricity. The
relative frequency of these two outcomes depends on the
ratio of the planet radius to the initial semi-major axis.

While this model could naturally explain how planets
acquire large eccentricities, FHR performed a large en-
semble of planet–planet scattering experiments to com-
pare the resulting planetary systems to the observed sam-
ple and found two important differences. First, for the
relevant radii and semi-major axes, collisions were more
frequent in the simulations than nearly circular orbits
among the known extrasolar planets.

However, the branching ratios from those simulations
may not be appropriate for realistic planetary systems.
Since there is a sharp and rigorous Hill stability limit for
two-planet systems, the initial conditions placed the two
planets in orbits with a relatively small separation. Since
FHR also assigned the planets small initial eccentricities

and inclinations, the planets initially had a small rela-
tive velocity at conjunction (compared to their circular
velocity) and gravitational focusing increased the rate of
collisions early on in the simulations. The rate of col-
lisions drops significantly (for the systems that survive
long enough) once the planets have had time to excite
each other’s eccentricities. Thus, the fraction of systems
that result in collisions is likely sensitive to the initial
conditions.

To determine the fraction of actual two-planet systems
that result in collisions more accurately, future studies
would need to model the onset of the instability more re-
alistically. Unfortunately, direct n-body integrations of
young planetary systems with small bodies are extremely
computationally demanding. The significance of initial
conditions is less pronounced for n-body integrations of
systems with three or more planets, since more distant
initial spacings can be used, so that all close encoun-
ters occur only after the planets have excited each others
eccentricities. Despite these potential complications, it
can be useful to study relatively simple model systems to
develop intuition for more complex problems and to un-
derstand the limitations of simple models. In that spirit,
FHR reported the results of planet–planet scattering ex-
periments involving two equal-mass planets, while here
we report the results of planet–planet scattering experi-
ments involving two planets of unequal masses.

The more significant shortcoming of the two equal-
mass planet scattering model identified by FHR was that,
in systems leading to one ejection, the eccentricity dis-
tribution of the remaining planet was concentrated in a
narrow range and greater than the typical eccentricity of
the known extrasolar planets (See Fig. 2, right, rightmost
curve). FHR speculated that planet–planet scattering
involving two planets of unequal masses would result in
planets remaining with a broader distribution of eccen-
tricities. In this section, we present results that confirm
this speculation and quantify the resulting eccentricities.

3.1. Initial Conditions

We used the mixed variable symplectic algorithm of
Wisdom & Holman (1991), modified to allow for close
encounters between planets as implemented in the pub-
licly available code Mercury (Chambers 1999). The re-
sults presented below are based on ∼ 104 numerical in-
tegrations. Our numerical integrations were performed
for a system containing two planets, with mass ratios
10−4 < µi < 10−2, where µi ≡ mi/M⋆, mi is the
mass of the ith planet, and M⋆ is the mass of the cen-
tral star. A mass ratio of µi ≃ 10−3 corresponds to
m ≃ 1 MJup for M = 1 M⊙, where MJup is the mass
of Jupiter and M⊙ is the mass of the sun. The initial
semimajor axis of the inner planet (a1,init) was set to
unity and the initial semimajor axis of the outer planet
(a2,init) was drawn from a uniform distribution ranging
from 0.9 ·a1,init (1 + ∆c) to a1,init (1 + ∆c), where 1+∆c

is the critical semi-major axis ratio above which Hill sta-
bility is guaranteed for initially circular coplanar orbits,

and ∆c ≃ 2.4 × (µ1 + µ2)
1/3

(Gladman 1993). The ini-
tial eccentricities were distributed uniformly in the range
from 0 to 0.05, and the initial relative inclination in the
range from 0◦ to 2◦. All remaining angles (longitudes
and phases) were randomly chosen between 0 and 2π.
Throughout this paper we quote numerical results in
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units such that G = a1,init = M⋆ = 1, where G is the
gravitational constant. In these units, the initial orbital
period of the inner planet is P1 ≃ 2π.

Throughout the integrations, close encounters between
any two bodies were logged, allowing us to use a single
set of n-body integrations to study the outcome of sys-
tems with a a wide range of planetary radii. We consider
a range of radii to allows for the uncertainty in both the
physical radius and the effective collision radius allowing
for dissipation in the planets. When two planets col-
lided, mass and momentum conservation were assumed
to compute the final orbit of the resulting single planet.

Each run was terminated when one of the following
four conditions was encountered: (i) one of the two plan-
ets became unbound (which we defined as having a radial
distance from the star of 2000 a1,init); (ii) a collision be-
tween the two planets occurred assuming Ri/a1,init =
Rmin/a1,init = 1 RJup/5 AU = 0.95 × 10−4, where RJup

is the radius of Jupiter; (iii) a close encounter occurred
between a planet and the star (defined by having a
planet come within rmin/a1,init = 10 R⊙/5 AU = 0.01
of the star); (iv) the integration time reached tmax =
5 · 106 − 2 · 107 depending on the masses of the plan-
ets. These four types will be referred to as “collisions,”
meaning a collision between the two planets, “ejections,”
meaning that one planet was ejected to infinity, “star
grazers,” meaning that one planet had a close pericenter
passage, and “two planets.”

3.2. Results

We began by conducting an exploratory set of inte-
grations using a wide variety of planet masses (10−3 ≤
mi/M < 10−2). The probabilities for the four out-
comes (collisions, ejections, star grazers, and two plan-
ets) depend on the mass of both planets, the final or-
bital properties of the system within one of these out-
comes depended on the ratio of planet masses, but not
the total planet mass. Therefore, we focused our n-
body integrations of a series of seven sets of integra-
tions with a constant total planet mass ratio, but varying
β ≡ m1/(m1 + m2). We chose a somewhat large total
planet mass ratio, (m1 + m2)/M⋆ = 6 × 10−3, so as to
accelerate the evolution of the planetary systems and re-
duce the computational cost of the simulations.

3.2.1. Collisions

Collisions leave a single, larger planet in orbit around
the star. Near the time of a collision, the energy in the
center-of-mass frame of the two planets is much smaller
than the gravitational binding energy of a giant planet
to the star. Therefore, we model the collisions as com-
pletely inelastic and assume that the two giant planets
simply merge together while conserving total momentum
and mass. Using this assumption, the final orbit has a
semi-major axis between the two initial semi-major axes,
a small eccentricity, and a small inclination. In fact, we
find that the final semi-major axis is only slightly less
than would be estimated on the basis of energy conser-
vation,

af

a1
≃

[

m1

m1 + m2
+

m2a1

(m1 + m2) a2

]−1

, (1)

where af is the final semi-major axis of the remaining
planet. This compares favorably with the results of our

simulations and the magnitude of the deviations can be
approximated (see appendix of FHR). We find that the
fractions of our integrations that result in collisions de-
creases for more more extreme planet mass ratios (assum-
ing constant total planet mass). While collisions between
planets may affect the masses of extrasolar planets, a sin-
gle collision between two massive planets does not cause
significant orbital migration or eccentricity growth if the
planets are initially on low-eccentricity, low-inclination
orbits near the Hill stability limit. Therefore, we shift
our attention to those simulations that resulted in ejec-
tions.

3.2.2. Ejections

Since the escaping planet typically leaves the system
with a very small (positive) energy, energy conservation
sets the final semimajor axis of the remaining planet
slightly less than

af

a1
≃

[

m1

mf
+

a1m2

a2mf

]−1

(2)

Thus, the final semi-major axis of the planet left be-
hind after an ejection depends on whether the more mas-
sive planet initially had the smaller or larger semi-major
axis. Otherwise, the order of the planets makes little
difference. Even in simulations with equal mass planets
(β = 0.5), we that the outer planet typically accounts for
≃ 55% of the ejections. When β is reduced only slightly
to 0.45 or 0.40, then ≃ 65% or 80% of the ejections are
of the less massive planet, regardless of which planet was
initially closer. For β ≤ 0.30, less than 1% of the ejec-
tions leave the less massive planet bound to the star.
Therefore, we have combined the final eccentricities and
inclinations of integrations with the save mass ratio, but
reverse initial ordering of the planets. We present the
mean and standard deviation of the final planet’s semi-
major axis, eccentricity, and inclination for each set of
simulations in Table 1. Thus, the ejection of one of two
equal-mass planets results in the most significant reduc-
tion in the semi-major axis, but is limited to

af

a1,init
≥ 0.5.

The remaining planet acquires a significant eccentric-
ity, but its inclination typically remains small. The ec-
centricity and inclination distributions for the remaining
planet are not sensitive to the sum of the planet masses,
but depend significantly on the mass ratio. Both the final
eccentricity and inclination are maximized for equal-mass
planets.

In Fig. 2 we show the cumulative distributions for the
eccentricity after a collision for different mass ratios.
While any one mass ratio results in a narrow range of
eccentricities, a distribution of mass ratios would result
in a broader distribution of final eccentricities. However,
there is a maximum eccentricity, which occurs for equal-
mass planets. Thus, the two-planet scattering model pre-
dicts a maximum eccentricity of about 0.8 independent
of the distribution of planet masses. We will compare
this with the properties of known planets is § 4.

3.2.3. Stargrazers

In a small fraction of our numerical integrations one
planet underwent a close encounter with the central star
(i.e., came within 10−2 × a1,init). For our simulations
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with β = 0.5, Rp/a1,init = 10−4), ≃ 3% of all our inte-
grations resulted in a star grazer. While the overall frac-
tion of runs that result in stargrazers is sensitive to the
planetary radii, the ratio of the number of integrations
that resulted in stargrazers to the number that resulted
in ejections is not. Additionally, the ratio of the number
of integrations that resulted in stargrazers to the number
that resulted in ejections is likely to be less sensitive to
our choice of initial conditions. For the same parameters,
we find a ratio of ≃ 0.06. In our simulations with more
extreme mass ratios, we find the total fraction of runs re-
sulting in a star grazer is ≃ 12% or ≃ 16% for β = 0.3
or β = 0.2, and the ratio of star grazers to ejections is
≃ 0.2 or ≃ 0.3.

We must exercise caution in interpretting the above
numbers. Due to the limitations of the numerical inte-
grator used, the accuracy of our integrations for the sub-
sequent evolution of systems resulting in star grazers can-
not be guaranteed (Rauch & Holman 1999). Moreover,
some of these planets could be directly accreted onto
the star if their pericenters continue to decrease, or they
might be ablated or destroyed by stellar winds/radiation
(Vidal-Madjar et al. 2003, 2004; Murrary-Clay et al.
2005), or even ejected from the system following a strong
tidal interaction (Faber, Rasio & Willems 2005). More-
over, the orbital dynamics of these systems might be af-
fected by additional forces (e.g., tidal forces, interaction
with the quadrupole moment of the star, general relativ-
ity; Adams & Laughlin 2006) that are not included in
our simulations and would depend on the initial separa-
tion and the radius of the star. Despite these compli-
cations, our simulations can provide constraints on the
frequency of short-period planets formed via a combina-
tion of planet scattering and tidal dissipation.

The fraction of systems producing stargrazers in our
simulations is larger than the fraction of solar-type stars
in radial velocity surveys that have very-hot-Jupiters
(1d≤P≤3d) or hot-Jupiters (3d≤P≤5d), but smaller
than the fraction of hot-Jupiters among detected ex-
trasolar planets (Butler et al. 2006). The results of
the OGLE-III transit search allow estimates for the fre-
quency of hot-Jupiters (≃

(

1+1.39
−0.59

)

/310) and very-hot

Jupiters (≃
(

1+1.10
−0.54

)

/690). These rates are not statisti-
cally inconsistent with current estimated rates based on
radial velocity surveys (≃ 0.6% for hot-Jupiters; Gould
et al. 2006). While the fraction of solar-type stars with
short-period giant planets is well constrained by exist-
ing radial velocity surveys, the frequency of long-period
planets is not yet well constrained. The present detec-
tions provide a lower limit on their frequency, but this
fraction is expected to increase as radial velocity surveys
extend to longer temporal baselines. Improvements in
measurement precision and instrument stability will en-
able the detection of less massive long-period planets,
and is also likely to increase the number of long-period
giant planets.

Given the limitations of our simulations and existing
observations, it is most appropriate to compare: (a) the
theoretical ratio of the number of systems (from our
simulations) that resulted in stargrazers to the number
of systems that resulted in ejections to (b) the upper
limit for the current observational ratio of the frequency
of (very-)hot-Jupiters to the frequency of eccentric gi-

ant planets. Restricting our attention to planets with
m sin i ≥ 0.1MJ , we find 20 planets with orbital peri-
ods between 3 and 5 days (not including those recently
discovered by the “N2K” project that focuses on short-
period planets) and 80 planets with best-fit eccentricities
greater than 0.2. Thus, we estimate the upper limit for
the observational ratio to be ≃ 20/80 = 0.25 ± 0.06.
Given the uncertainties in both the observational and
theoretical ratios, this suggests that planet–planet scat-
tering could be responsible for a significant fraction of
hot-Jupiters, if typical planetary systems form multi-
ple giant planets. While radial velocity surveys are still
incomplete, at least ≃ 30% of stars harboring one gi-
ant planet show evidence for additional for distant giant
plants (Wright et al. 2006). Thus, our simulations sug-
gest that for giant planets with initial semimajor axes of a
few AU, it is possible to achieve the extremely close peri-
center distances necessary to initiate tidal circularization
around a main sequence star and possibly leading to the
formation of (very-)short-period planets (Rasio & Ford
1996; Rasio et al. 1996; Faber, Rasio & Willems 2005).

The scattering of two giant planets has more difficulty
explaining the presence of giant planets in nearly circu-
lar orbits at intermediate orbital periods ∼ 10 d–100 d,
since their orbits are small enough to require significant
migration, but large enough that tidal circularization is
ineffective. It might be possible to circularize giant plan-
ets at slightly larger distances if the circularization oc-
curs while the star is on the pre-main sequence and has
a larger radius or while a sufficiently massive circumstel-
lar disk is still present. Of course intermediate-period
planets may also have formed via some other mechanism
(§1).

The planet scattering plus tidal circularization model
for forming giant planets with very short orbital peri-
ods will be tested by future observations. Measurement
of the Rossiter-McLaughlin effect could detect a signifi-
cant relative inclination between the planet’s orbital an-
gular momentum and the stellar rotation axis (Gaudi &
Winn 2007) that could be induced by planet scattering
(Chatterjee et al. 2007). Observations of 11◦ ± 15◦ for
HD 149026 (Wolf et al. 2007) and 30 ◦ ±21◦ for TrES-1
(Narita et al. 2007) are suggestive and will stimulate ad-
ditional observations to improve the measurement pre-
cission. On the otherhand, the detection of a Trojan
companion to a short-period giant planet would suggest
that the planet’s migration was less violent (e.g., Ford &
Gaudi 2006; Ford & Holman 2007).

4. COMPARISON WITH OBSERVATIONS

In this section, we investigate the observed distribu-
tion of eccentricities of extrasolar planets, based on the
catalog of Butler et al. (2006), as updated by Johnson et
al. (2006) and Wright et al. (2006). For comparing the
observed eccentricity distribution to models, it is useful
to exclude some of these planets, when the eccentrici-
ties are only weakly constrained by present observations.
When the time span of radial velocity observations span
less than two orbital periods, there can be significant de-
generacies between the orbital period, eccentricity, and
other parameters, and the bootstrap method of estimat-
ing uncertainties in orbital parameters can significantly
underestimate the true uncertainties (Ford 2005). There-
fore, we restrict our attention to planets with an orbital
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period less than half the timespan of published radial ve-
locity observations. Similarly, we exclude planets with
orbital periods less than 10 days, since their eccentrici-
ties may have been altered due to tidal dissipation (Rasio
et al. 1996). Of the 173 planets discovered by the radial
velocity method, 136 meet both these criteria. Of these
136, the best-fit eccentricity for 86 planets exceeds 0.2.
The abundance of giant planets with large eccentricities
has led theorists to develop several models for exciting
orbital eccentricties. Here we consider the implications
of the observed eccentricity distribution for the planet–
planet scattering model.

In §3.2.2, we demonstrated that strong scattering of
unequal mass planets can result in a broad range of ec-
centricities, as is necessary to explain the eccentricities
of extrasolar planets. Our results demonstrate that the
exact distribution of eccentricities predicted will depend
on the distribution of planet masses, including whether
the masses of multiple planets that formed around one
star are correlated. Understanding the distribution of
planet masses and orbits is the subject of much ongo-
ing research. Therefore, we first turn our attention to
predictions of the planet scattering model that are in-
sensitive to these uncertainties. In particular, the planet
scattering model predicts that the planet that remains
bound to the host star following an ejection will typi-
cally be the more massive of the two planets. As a re-
sult, the most extreme final eccentricities occur as the
result of scattering of nearly equal mass planets. In the
limiting case of equal mass planet scattering, the aver-
age final eccentricity was 〈ef 〉 = 0.624 and the standard
deviation was σef

= 0.135. Therefore, the planet–planet
scattering model predicts eccentricities no greater than
≃ 0.8. Then, we investigate what distribution of planet
mass ratios would be necessary to explain the eccentric-
ity distribution derived from present observations. Fi-
nally, we explore the potential for correlations between
the eccentricity distribution and other properties to con-
strain theories for the origin of eccentricities, including
the planet-planet scattering model.

4.1. Very High Eccentricity Planets

Of the 86 planets with orbital periods greater than 10
days and best-fit orbital eccentricities exceeding 0.2, two
planets have eccentricities that are currently estimated to
be greater than 0.8, HD 80606b (e = 0.935±0.0023; Naef
et al. 2001) and HD 20782b (e = 0.925±0.03; Jones et al.
2006). Such large eccentricities are unlikely to be the re-
sult of planet–planet scattering (at least in the context of
two planets initially on nearly circular orbits, as explored
in §3.2.2). Thus, we search for alternative explanations
for these two planets with extremely large eccentricities.
First, we note that the eccentricity determination of HD
20782b is quite sensitive to a single night’s observations.
If the observations from that night are omitted, then the
best-fit eccentricity would drop to 0.732, a value consis-
tant with the planet-planet scattering model. Clearly, it
would be desirable to obtain several additional radial ve-
locity measurements around the time of future periastron
passages to confirm the very large eccentricity.

Another possibility is that a wide stellar binary com-
panion may have play a role in exciting such large eccen-
tricities. Indeed, both of these planets orbit one member
of a known stellar binary (Desidera & Barbieri 2006). For

the sake of comparison, we note that only 19 out of the 86
planets in our sample orbit members of a known binary.
In principle, secular perturbations due to a wide binary
companion on an orbit with a large inclination relative to
the planet’s orbit can induce eccentricity oscilations with
amplitudes approaching unity. However, the timescale
for the eccentricity oscilations can be quite large for wide
binaries, in which case other effects (e.g., general relativ-
ity or other planets) may lead to significant precession
of the longitude of periastron and limit the amplitude of
the eccentricity oscilations (Holman et al. 1997; Ford et
al. 2000; Laughlin & Adams 2006). For both HD 80606
and HD 20782, the orbit of the wide binary companion
is unknown, limiting the utility of n-body integrations
for these systems. Nevertheless, it is still possible to es-
timate the secular perturbation timescale based on the
current projected separation of the binary companion.
The current estimates in both of these systems are quite
large (Desidera & Barbieri 2006). This has led to specu-
lation that the “Kozai effect” may not be able to explain
the large eccentricities for these two systems. The bina-
rity may still be significant, e.g., if the two stars were
not born as a binary, but rather the current binary com-
panion originally orbited another star and was inserted
into a wide orbit around the planetary system via an ex-
change interaction (a formation scenario similar to that
proposed for the triple system PSR 1620–26; Ford et al.
2001; or other putative planets in multiple star systems;
Portegies Zwart & McMillan 2005; Pfahl & Muterspaugh
2006; Malmberg et al. 2007). During such an encounter,
the four-body interactions might have induced a large ec-
centricity in the planetary orbit. Such interactions may
have been common for stars born in clusters or other
dense star forming regions (Adams & Laughlin 1998; Za-
kamska & Tremaine 2004).

We note that four other planets in our sample cur-
rently have a large best-fit eccentricity, but current ob-
servational uncertainties imply that they may or may not
be a challenge to the planet-planet scattering model: HD
45450 (e = 0.793± 0.053), HD 2039 (0.715± 0.046), HD
222582 (e = 0.725 ± 0.012), and HD 187085 (e = 0.75 ±
0.1). Additionally, some recently discovered planets—
e.g., HD 137510 (e = 0.359 ± 0.028) and HD 10647
(e = 0.16±0.22)— have modest best-fit eccentricities and
formal uncertainty estimates, but a Bayesian analysis
(following Ford et al. 2006) of the observations indicates
significant parameter correlations and/or broad tails that
still allow for very large eccentricities. We encourage ob-
servers to make additional observations of these known
planetary systems, so as to improve the current observa-
tional uncertainties. Many observations spanning mul-
tiple periods with a high degree of long-term stability
and good coverage near periastron passage are especially
important for these particularly interesting high eccen-
tricity systems that may provide insights into additional
mechanisms for eccentricity excitation. We also encour-
age observers to pursue broad planet searches, so as to
increase the number of known planets with very large
eccentricities. Discovering a larger sample of such plan-
ets and follow-up observations help determine the role of
binary companions in forming such systems.

4.2. Inferred Planet Mass Ratio Distribution
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In §3, we demonstrated that the planet-planet scat-
tering model predicts a large distribution of eccentrici-
ties and could account for 84 of 86 planets in the cur-
rent sample. Thus, the planet–planet scattering model
might be the dominant mechanism for exciting the ec-
centricities of extasolar planets. To explore this possibil-
ity, we consider the limiting case in which every planet’s
eccentricity is presumed to be due to the planet having
ejected exactly one other planet. Since the eccentricity of
the remaining planet depends strongly on the mass ratio
and the less massive planet is almost always ejected, we
are able to transform the observed eccentricity distribu-
tion into a distribution of the inferred planet mass ratios
(where β = mf/(m1 + m2) is the ratio of the mass of
the putative ejected planet to the sum of masses of that
planet and the remaining planet, assuming the orbits are
coplanar). To perform this inversion, we assume that the
final eccentricity is uniquely determined by the ratio of
planet masses, and use the fitting formula ef = 1.44β1.23,
based on the median eccentricities shown in Table 1 and
Fig. 2. Since this fitting formula is based on the me-
dian eccentricities from our scattering simulations, it is
expected that planet–planet scattering for equal-mass
planets would result in some final eccentricities slightly
greater than 0.62, the predicted median eccentricity eval-
uating our fitting formula at β = 0.5. Therefore our
simple inversion of the fitting formula would result in β
somewhat greater than 0.5 for some systems, even if the
less massive planet had always been ejected.

To minimize contamination from either tidally circu-
larized planets or planets with significant uncertainties
in the orbital parameters, we again base our analysis on
the eccentricities of extrasolar planets with orbital pe-
riods greater than 10 days, but less than half the time
span of published radial velocity observations. We plot
the cumulative distribution of β for this sample (Fig. 3,
solid line), as well as a subset of these extrasolar planets
where we have omitted planets in known binary systems
(dotted line, 67 planets). For comparison, we consider
the known multiple-planet systems and plot the cumu-
lative distribution for the ratio of the second most mas-
sive planet to the sum of the masses of the two most
massive (known) planets in the system (again assuming
coplanarity; long dashed line). The distribution of in-
ferred mass ratios is somewhat more extreme than the
distribution of planet mass ratios for the known multi-
ple planet systems. A two-sample Kolmogorov-Smirnov
test test yields a p-value of 0.19 or 0.14, including or
excluding β’s inferred from the current eccentricities of
planets in known binaries. One possible explanation is
that planetary systems with a timescale for instabilities
that exceeds the current age of the star could have a dif-
ferent distribution of β than planetary systems that have
already ejected a giant planet. Another possible expla-
nation is that the typical history of a planetary system
that currently contains a single giant planet might differ
from the history of the typical planetary system that now
has multiple giant planets. Despite these possibilities, we
caution that any differences in the observed and inferred
distributions of β may be due to observational selection
effects. If a system has a small β, then one planet will
typically have a much smaller velocity semi-amplitude
and be more likely to have evaded detection.

As another point of reference, we show the cumula-

tive distribution for β that would result from randomly
choosing pairs of planets from our sample (that excludes
planets with orbital periods less than 10 days or longer
than half the time span of published radial velocities, but
includes planets in known binaries; short-dashed curve).
We observe that this distribution is quite similar to the
distribution of inferred β’s, differing only for β ≥ 0.45. A
two-sample Kolmogorov-Smirnov test yields a p-value of
0.21 or 0.06, depending on whether we include or exclude
planets in known binary systems. In principle the differ-
ence might be due to nature rarely forming very nearly
equal mass planets. However, we regard it as more likely
that this difference is due to our assumptions that the
less massive planet is always ejected and that the final
eccentricity of the remaining planet is exactly determined
by β (i.e., we ignore the dispersion of ef observed in our
scattering experiments). Clearly, this comparison is af-
fected by the observational selection effects that favor
detecting massive planets. Nevertheless, on the whole,
this suggests that the planet scattering model can eas-
ily reproduce the observed eccentricity distribution (for
planets with orbital periods greater than 10 d) by assum-
ing a plausible mass distribution and no strong correla-
tion between the masses of planets in multiple planet
systems.

4.3. Observed Eccentricity Distribution

Next, we analyze the observed distribution of extra-
solar planet eccentricities, without assuming that large
eccentricities are due to planet scattering. As before, we
restrict our attention to the extrasolar planets with or-
bital periods between 10 days and half the time span of
published observations. We have performed a Bayesian
analysis for each of the planets in the catalog of Butler et
al. (2006), using the radial velocity data sets published by
California and Carnegie Planet Search team. A detailed
analysis will be presented separately, and here we only
summarize our method. We assume the published model
type (i.e., the number of planets and whether there is
a long term trend) and apply the Markov chain Monte
Carlo algorithm described in Ford (2005, 2006). Previ-
ous work has shown that the bootstrap-style estimates of
parameter uncertainties employed by Butler et al. (2006)
can differ significantly from uncertainty estimates based
on the posterior probability distribution for model pa-
rameters (Ford 2005; Gregory 2005, 2006). Such dif-
ferences are common for planets with eccentricities that
are very near 0, planets with orbital periods comparable
to the time span of observations, and planets with few
and/or low signal-to-noise observations. Here, we focus
out attention on the marginal posterior probability dis-
tributions for the orbital eccentricities. By restricting
our attention to planets with orbital period greater than
10 days and less than half the timespan of observations,
we obtain a sample for which the eccentricities are typ-
ically well-constrained by the observations and the two
methods typically give qualitatively similar uncertainty
estimates. We consider individually the multiple planet
systems containing one or more planets with intermedi-
ate orbital periods and one planet with an orbital period
likely longer than half the time span of observations. We
determined that the uncertainty in the orbital param-
eters of the outer planet in the systems Hip 14810, HD
37124, and HD 190360 may significantly affect the orbital
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parameters of the other planets. Therefore, we dropped
all planets in these systems from our sample.

To summarize the avaliable information about the ec-
centricity distribution of extrasolar planest, we have av-
eraged the marginal cumulative posterior eccentricity
distribution for each planet in our sample (Figs. 4 & 5,
dotted curve, all panels) for the sample including and
excluding planets orbiting known binary stars.

It is important to note that this method does not pro-
vide a Bayesian estimate of the eccentricity distribution
of the population. Instead, these summary distributions
can be intuitively thought of as a generalization of the
classical histogram that accounts for the uncertainties in
the individual eccentricities in a Bayesian way (allowing
for non-Gaussian posterior distributions). However, like
classical histograms, our summary distributions can be
affected by biases (e.g., the terminal age bias for dating
field stars with stellar models; Pont & Eyer 2004; Takeda
et al. 2006). While we have attempted to minimize the
potential influence of any systematic biases (by selecting
a subset of extrasolar planets for which the eccentricities
were well constrained by observational data), our sum-
mary distributions are still influenced by the shape of
individual posterior distributions. Performing a proper
Bayesian population analysis would require more sophis-
ticated and much more computationally demanding cal-
culations (e.g., Ford & Rasio 2006). Nevertheless, we
believe that these distribution can serve as a valuable
summary of the avaliable information about the eccen-
tricity distribution of extrasolar planets.

For the sake of comparison, we present similar sum-
mary information for the observed eccentricity distribu-
tion based on the orbital determinations of Butler et al.
(2006). For this purpose, we approximate each planet’s
marginal cumulative eccentricity distribution as

p(e) =
erf ((e − ebf) /σe) − erf (−ebf/σe)

erf ((1. − ebf) /σe) − erf (−ebf/σe)
, (3)

where ebf is the best fit eccentricity and σe is the un-
certainty in the eccentricity, both taken from Butler et
al. (2006). The results are presented in Figs. 4a & 5b,
dashed curve) for the sample including and excluding
planets orbiting known binary stars. The strong simi-
larity of these two distributions demonstrates that this
distribution is well determined and that this can be used
as a robust summary of the observed planet eccentrici-
ties.

4.3.1. Does the Eccentricity Distribution Vary with Planet
Mass?

Next, we investigate whether the eccentricity distri-
bution is correlated with other planet properties. Such
differences have the potential to provide insights into
the processes of planet formation. For example, Black
(1997) and Stepinsky & Black (2000) noted similarities in
the period-eccentricity distributions of extrasolar planets
and binary stars, and suggested that both sets of objects
may in fact be one extended population. More recent
work identified differences in the two distributions and
favors the hypothesis that these two populations have
different formation mechanisms (Halbwachet, Mayor &
Udry 20005).

Most recently, Ribas & Miralda-Escude (2006) noted
a potential correlation between a planet’s mass and its

orbital eccentricity. They propose that this could be due
to two different formation mechanisms, e.g., core accre-
tion followed by gas accretion dominating the formation
of planets with m sin i ≤ 4MJ and direct collapse of gas
from the protoplanetary nebulae dominating the forma-
tion of planets with m sin i ≤ 4MJ . Ribas & Miralda-
Escude (2006) divided their sample according to m sin i
being greater than or less than 4MJ , and test the null
hypothesis that the two samples came from the same
distribution using the two sample Kolmogorov-Smirnov
test. Since they do not present any a priori justifica-
tion for their choice of 4MJ , we worry that it may have
been chosen a posteriori , in which case we would caution
against over-interpretation of their p-values.

We explore this hypothesis by comparing the eccen-
tricity distributions of various subsets of the extrasolar
planet population (presented in aggregate as the dot-
ted curve in each panel of Fig. 4 & 5). First, we di-
vide the planet sample according to the best-fit m sin i
(Fig. 4b). In order to avoid complications associated
with a posteriori statistics, we choose to perform a sin-
gle statistical test, dividing our sample into two nearly
equal sized subsamples (they differ in sample size by one):
m sin i ≤ 1.57MJ (dashed curve) and m sin i > 1.57MJ

(solid curve). Similar eccentricity distributions that do
not include any planets in known binary systems are pre-
sented in Fig. 5b. The same choices of mass ranges re-
sults in subsample sizes that differ by at most three. A
two-sample Kolmogorov-Smirnov test results in p-values
of 0.024 and 0.093 for the samples including and exclud-
ing planets in binaries. (If we had instead divided our
sample at m sin i = 4MJ , we would have obtained p-
values of 0.004 and 0.023.) By analyzing planets in sys-
tems with no known binary companion, we minimize the
potential for eccentricity excitation by a stellar binary.
Since the K-S test only suggests a marginally significant
difference between the high- and low-mass planets orbit-
ing stars with no known binary companion, we conclude
that a larger sample of extrasolar planets is necessary to
test this hypothesis.

The sign of any putative correlation between planet
mass and eccentricity is also notable. It is the more mas-
sive planets that are claimed to be more eccentric. Many
models of eccentricity excitation would predict that it is
easier to increase the eccentricity of lower-mass planets,
since a larger torque is required to excite the eccentric-
ity of a more massive planet. One possible explanation
is that most planetary systems produce eccentric giant
planets, but the amount of subsequent eccentricity damp-
ing varies from one system to another. If the late stage
eccentricity damping is determined by the mass of the
planetesimal disk relative to the planet mass, then this
model could explain the larger eccentricities of more mas-
sive planets. Further, the large dispersion in the time
until the onset of dynamical instability would result in
a large dispersion in the amount of eccentricity damping
after the most recent strong planet scattering event, and
thus provide a natural mechanism for explaining both the
small eccentricities of the planets in the solar system and
the large eccentricities of extrasolar giant planets. Fur-
thermore, this scenario would predict that more massive
planets would tend to have larger eccentricities.
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4.3.2. Does the Eccentricity Distribution Vary with Orbital
Period?

Next, we present a similar analysis, but dividing our
planet sample according to the best-fit orbital period
(Figs. 4c & 5c), rather than m sin i. A difference in these
distributions might be expected if eccentricity excitation
is strongly correlated with planet migration (Artymow-
icz 1992; Papaloizou & Terquem 2001; Goldreich & Sari
2003; Ogilvie & Lubow 2003). If we assume that giant
planets form at large distances and migrate inwards, then
planets that are currently have smaller semi-major axes
would be expected to have experience more migration.
To test this hypothesis, we divide our sample into two
subsets: P > 350days (solid curve) and P < 350days
(dashed curve). Again, the boundary between the two
subsamples is chosen so that size of the two sub samples
are equal or differ by only one when we include bina-
ries and three when we exclude binaries. Clearly, the
distributions are quite similar. Formally, a two sample
K-S test results in p-values of 0.87 and 0.96 for the sam-
ples that include and exclude planets in binary systems.
Thus, we conclude that the current planet sample con-
tains no significant differences in the eccentricity distri-
butions of planets with orbital periods of 10d≤ P ≤ 330d
and those with 330d≤ P ≤ Tobs/2, and we find no ob-
servational support for eccentricity excitation via migra-
tion.

It is natural to ask if the large torques presumed re-
sponsible for orbital migration could also be responsible
for exciting orbital eccentricities. While the dissipative
nature of a gaseous disk naturally leads to eccentricity
damping (Artymowicz 1993), a few researchers have sug-
gested that excitation may also be possible. Artymow-
icz (1992) found that a sufficiently massive giant planet
(≥10 MJup) can open a wide gap, leading to torques
which excite eccentricities. More recently, Goldreich &
Sari (2003) have suggested that a gas disk could excite
eccentricities even for less massive planets via a finite
amplitude instability. This claim is controversial, as 3-d
numerical simulations have not been able to reproduce
this behavior (e.g., Papalouizou et al. 2001; Ogilvie &
Lubow 2003). Given the large dynamic ranges involved
and the complexity of the simulations, one might ques-
tion the accuracy of current simulations. For example,
3-d simulations have suggested that the gaps induced by
giant planets might not be as well cleared as assumed in
many 2-d disk models (Bate et al. 2003; D’Angelo et al.
2003). We believe that further theoretical and numerical
work is needed to better understand planet–disk inter-
actions. In the meantime, we look to the observations
for guidance on the question of eccentricity damping or
excitation.

In the GJ876 system, the observed eccentricities are
not consistent with eccentricity excitation via interac-
tions with the disk. The current observed eccentricities
could be readily explained if interactions with a gas disk
led to strong eccentricity damping K = ėa/eȧ ≫ 1 (Lee
& Peale 2002; Kley et al. 2005). This is in sharp contrast
to current hydrodynamic simulations of migration that
suggest K ≃ 1 and theories that predict K < 0 (e.g.,
Goldreich & Sari 2003; Ogilvie & Lubow 2003). While
other resonant planetary systems are not yet as well con-
strained or studied as GJ 876, the moderate eccentricities

of other extrasolar planetary systems near the 2:1 mean
motion resonance suggest that GJ 876 is not unique.

The υ And system also provides a constraint on eccen-
tricity excitation during migration. If the outer two plan-
ets migrated to their current locations (0.8 and 2.5AU),
then they must have been in nearly circular orbits at the
time of the impulsive perturbation in order for the mid-
dle planet’s eccentricity to periodically return to nearly
zero. While this does not demonstrate a need for rapid
eccentricity damping as in GJ 876, this is inconsistent
with models which predict significant eccentricity exci-
tation. Since dynamical analyses severely limit the pos-
sibility of eccentricity excitation in both the GJ 876 and
υ And systems, we conclude that orbital migration does
not typically excite eccentricities, at least for a planet-
star mass ratio less than ∼ 0.003 − 0.006 (those of the
most massive planet in υ And and GJ 876).

4.3.3. Does the Eccentricity Distribution Vary with the
Ability of the Planet to Eject Lower-Mass Objects?

The next investigation is motivated by theoretical
models for eccentricity excitation via planet-planet scat-
tering and the dynamical relaxation of packed planetary
systems (see §1 and references therein). (The repeated
scattering of planetesimals extrasolar planets where we
have omitted planets in known binary systems (dotted
line, 67 planets). For comparison, we consider the known
multiple planet systems and plot the cumulative distri-
bution for the ratio of the second most massive planet to
the sum of the masses of the two most massive (known)
planets in the system (again assuming coplanarity; long
dashed line). The distribution of inferred mass ratios is
somewhat more extreme than the distribution of planet
mass ratios for the known multiple planet systems. A
two-sample Kolmogorov-Smirnov test test yields a p-
value of 0.19 or 0.14, including or excluding β’s inferred
from the current eccentricities of planets in known bina-
ries. One possible explanation is that planetary systems
with a timescale for instabilities that exceeds the cur-
rent age of the star could have a different distribution
of β than planetary systems that have already ejected a
giant planet. Another possible explanation is that the
typical history of a planetary system that currently con-
tains a single giant planet might differ from the history
of the typical planetary system that now has multiple-
planets. Despite these possibilities, we caution that any
differences in the observed and inferred distributions of
β may be due to observational selection effects. If a sys-
tem has a small β, then one planet will typically have a
much smaller velocity semi-amplitude and be more likely
to have evaded detection.

As another point of reference, we show the cumula-
tive distribution for β that would result from randomly
choosing pairs of planets from our sample (that excludes
planets with orbital periods less than 10 days or longer
than half the time span of published radial velocities, but
includes planets in known binaries; short-dashed curve).
We observe that this distribution is quite similar to the
distribution of inferred β’s, differing only for β ≥ 0.45. A
two-sample Kolmogorov-Smirnov test yields a p-value of
0.21 or 0.06, depending on whether we include or exclude
planets in known binary systems. In principle the differ-
ence might be due to nature rarely forming very nearly
equal mass planets. However, we regard it as more likely
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that this difference is due to our assumptions that the
less massive planet is always ejected and that the final
eccentricity of the remaining planet is exactly determined
by β (i.e., we ignore the dispersion of ef observed in our
scattering experiments). Clearly, this comparison is af-
fected by the observational selection effects that favor de-
tecting massive planets. Nevertheless, on the whole, this
suggests that the planet scattering model is able to re-
produce the observed eccentricity distribution (for plan-
ets with orbital periods greater than 10d) by assuming a
plausible mass distribution and no strong correlation be-
tween the masses of planets in multiple planet systems.
lt might also result in eccentricity growth for very mas-
sive giant planets, mp/M ≥ 0.01; Murray et al. 1998).
In each of these models, close encounters can result in
either two bodies colliding (resulting in a more massive
planet, but not significant eccentricity growth) or one
body being ejected (resulting in eccentricity growth for
the remaining planet). The frequency of these two out-
comes depends on
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where Rp is the radius of the planet (or the effective
radius for collision), r is the distance separating the star
from the planet at the time of the close encounter. Since
we do not know the exact distance for r, we set it equal
to the current apastron distance of the observed planet,
a(1 + e). When θ ≫ 1, the planet is able to efficiently
eject bodies, but when θ < 1, collisions will be much
more frequent.

We investigate whether the eccentricity distribution is
correlated with θ, by dividing the planet sample accord-
ing to the ratio of the escape velocity from the planet
(evaluated at the surface of the planet) to the escape ve-
locity from the star (evaluated at the apastron distance
of the planet) in Figs. 4d & 5d. Since radial velocity
observations measure m sin i, we compare two subsam-
ples with θ2 sin i ≥ 1.69 (solid line) and θ2 sin i < 1.69
(dashed line). Again, the samples are divided such that
the equal numbers of planets in each subsample differs
by only one. Since planets with large θ eject other bod-
ies more efficiently, the planet scattering model predicts
that massive planets are more likely to acquire large ec-
centricities. This expectation is consistent with the sign
of any putative correlation between the planet eccentric-
ity and θ seen in Figs. 4d & 5d. A two-sample K-S test
results in p-values of 0.020 and 0.100 for samples that in-
clude or exclude planets in known binary systems. Thus,
we find that the putative dependance of the eccentric-
ity distribution on θ is essentially just as statistically
significant as the suggested dependance on planet mass
(Butler et al. 2006; Ribas & Miralda-Escude 2006). Nev-
ertheless, we caution that both putative correlations are
at most marginally significant at this time. More im-
portantly, the similar statistical significance of two puta-
tive correlations of the eccentricity distribution with the
planet mass or θ demonstrate that even when one model
correctly predicts a correlation, other models may make
similar predictions. Thus, it is important that theorists
explore the implications of a broad range of theoretical

models and observers provide observations that can test
each of these predictions.

We conclude that a larger sample of extrasolar planets
would be valuable for testing hypotheses about the ori-
gins of large eccentricities. The current sample of ≃ 200
extrasolar planets, has allowed several particularly inter-
esting systems to provide valuable constraints on planet
formation and eccentricity excitation. Additionally, the
current sample is suitable for identifying (or refuting)
strong correlations, such as the planet frequency-stellar
metallicity correlation (Fisher & Valenti 2005). However,
many other statistical analyses of the extrasolar planet
population will require the discovery of many more ex-
tasolar planets. While transit searches have the poten-
tial to discover many additional extrasolar giant planets
in the coming years, these will be strongly biased to-
wards short-period planets for which tidal dissipation is
likely to have circularized their orbits (Rasio et al. 1996).
These will certainly be quite valuable for testing the-
ories of planet migration (e.g., Ford & Rasio 2006) and
planetary structure (e.g., Bodenheimber, Laughlin & Lin
2003). However, statistical investigations of eccentric-
ity excitation mechanisms will require discoveries many
planets with intermediate to long-period orbits. Thus,
we encourage observers to apply other planet search tech-
niques to large samples (e.g., “N2K” project; Fischer et
al. 2004).

4.4. Could Binaries and Planet Scattering Explain all
Large Eccentricities?

Both secular perturbations from a binary companion
and planet-planet scattering appear very likely to play
a significant role in exciting the eccentricities of extraso-
lar planets, but it is not clear if additional mechanisms
commonly excite eccentricities. Therefore, we searched
through the catalog of known extrasolar planets to iden-
tify those with large eccentricities that appear unlikely
to be due to either secular perturbations from a wide
binary companion or planet scattering. We summarize
this information in Fig. 6. Of the 173 radial velocity
planets, 89 have best-fit eccentricities greater than 0.2.
Of those 89, 23 have a known binary companion and
74 have θ sin i > 1. This leaves 11 eccentric planets for
which the eccentricity cannot be explained by secular
perturbations by a known wide binary companion or by
planet–planet scattering involving that planet. In three
of these cases, the eccentricity may still have been ex-
cited by the perturbation from another giant planet in
the system. We discuss each of these briefly. HD 74156
hosts a second planet that is both eccentric and capable
of ejecting other objects (θ2 sin i ≃ 25). Radial velocities
of HD 118203 reveal a long-term trend that is likely to
due to a second more distant giant companion. While
the orbit is highly uncertain, the slope and time-span of
observations suggest that the putative second planet is
most likely to be more massive than HD 118203b and
have a semi-major axis of at least 1.7 AU. If true, then
the putative distant giant planet would be able to eject
other objects and excite an eccentricity in HD 118203b.
Alternatively, the best-fit eccentricity may be an artifact
due to the radial velocity perturbations of one or more
additional planets. Observations also show a long-term
trend in HD 49674. While the magnitude is smaller, the
longer time span of radial velocity observations imply
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that the putative planet most likely has an orbital pe-
riod beyond 5 AU, so it too is likely able to eject other
objects. GJ 876 contains three planets and the outer
two are participating in a 2:1 mean motion resonances.
Detailed modeling of this system suggests that the ec-
centricities of both GJ 876b and GJ 876c are likely due
to eccentricity excitation that occured due to convergent
migration and resonance capture (Lee & Peale 2002; Kley
et al. 2004). Technically, GJ 876c is massive enough to
eject other bodies (θ2 sin i ≃ 1.2), so a hybrid scenario of
planet scattering and resonant capture is possible (e.g.,
Sandor & Kley 2005).

This leaves 7 out of 89 eccentric planets that cannot be
explained by secular perturbations from a known wide bi-
nary or by planet–planet scattering by any planet which
is currently supported with radial velocity observations
(HD 33283b, HD 108147b, HD 117618b, HD 208487b,
HD 216770b, Hip 14810c), unless sin i ≪ 1. Of course,
these systems may have an undetected binary compan-
ion. For example, there is preliminary evidence for a bi-
nary companion to HD 52265 (Chauvin et al. 2006), but
follow-up observations are needed to confirm this. Sim-
ilarly, there may be additional undetected planets. We
note that over half of these systems were discovered only
in the last year, most have a relatively modest number of
radial velocity observations, and over half of these have
a relatively modest signal-to-noise ratio (velocity semi-
amplitude over the effective single measurement preci-
sion).

Thus, there is a very real possibility that additional ra-
dial velocity observations may result in revisions to the
measured eccentricity (e.g., GJ 436b), the detection of a
long-term trend most likely due to a distant giant planet,
and/or the detection of additional planets. The uncer-
tainties in the orbital elements can be particularly prob-
lematic in cases where there is an undetected planet is
near a 2:1 or 3:1 mean motion resonance. Previous ex-
perience has taught that the perturbations from yet un-
detected planets can lead to significant overestimates of
the eccentricity. We encourage additional observations of
these systems, which may prove particularly interesting
for testing theories of eccentricity excitation. We note
that HD 108147, Hip 14810, HD 33283, HD 52265, and
HD 216770 are particularly favorable, since they have
velocity amplitudes and eccentricities such that one ec-
centric planet could be differentiated from two planets
in a mean motion resonance. We will present a more de-
tailed discussion of resonant systems in a future paper.
If future observations were to confirm the sizable eccen-
tricity, the lack of other massive companions (both giant
planet and stellar companions), then these systems would
provide evidence for at least one additional eccentricity
excitation mechanism in addition to planet-planet scat-
tering, secular perturbations from binaries, and resonant
capture.

5. CONCLUSIONS

A planetary system with two or more giant planets
may become dynamically unstable, leading to a collision
or the ejection of one of the planets from the system.
Early simulations for equal-mass planets revealed dis-
crepancies between the results of numerical simulations
and the observed orbital elements of extrasolar planets.
However, our new simulations for two planets with un-

equal masses show a reduced frequency of collisions as
compared to scattering between equal-mass planets and
suggest that the two-planet scattering model can repro-
duce the observed eccentricities with a plausible distri-
bution of planet mass ratios.

Additionally, the two-planet scattering model predicts
a maximum eccentricity of ∼ 0.8, which is independent
of the distribution of planet mass ratios. This predicted
eccentricity limit compares favorably with current obser-
vations and will be tested by future planet discoveries.
The current sample of extrasolar planets provides hints
of a correlation between the eccentricity distribution and
other properties. We show that the putative correlation
between eccentricity distribution and the ratio of the es-
cape velocity from the planet to the escape velocity from
the star is comparable in statistical significance to the
putative correlation between the eccentricity distribution
and planet mass. Additionally, both correlations remain
marginally significant, when we exclude planets in known
binary systems. We have identified a few particularly in-
teresting planets that are unlikely to be explained by
the two-planet scattering model, since θ2 sin i < 1. We
encourage additional observations of these systems to de-
termine if these are isolated planets or if there may be
other planets in the system that could excite large ec-
centricities and/or cause the current eccentricity to be
overestimated.

The combination of planet–planet scattering and tidal
circularization may be able to explain the existence of
giant planets in very short period orbits. However, the
presence of giant planets at slightly larger orbital periods
(small enough to require significant migration, but large
enough that tidal circularization is ineffective) is more
difficult to explain. Finally, the planet–planet scattering
model predicts a significant number of extremely loosely
bound and free floating giant planets, which may also be
observable (Lucas & Roche 2000; Zapatero Osorio et al.
2002).

A complete theory of planet formation must explain
both the eccentric orbits prevalent among extrasolar
planets and the nearly circular orbits in the Solar Sys-
tem. Despite significant uncertainties about giant planet
formation, the leading models for the formation and early
dynamical evolution of the Solar System’s giant planets
agree that the giant planets in the Solar System went
through a phase of large eccentricities (Levison et al.
1998; Thommes et al. 1999, 2002; Tsiganis et al. 2005;
Ford & Chaing 2007). If Uranus and Neptune formed
closer to the Sun, then close encounters are necessary
to scatter them outwards to their current orbital dis-
tances. During this phase, their eccentricities can exceed
≃ 0.5 (Tsiganis et al. 2005). Alternatively, if Uranus and
Neptune were able to form near their current locations,
then oligarch growth predicts that several other ice giants
should have formed contemporaneously in the region be-
tween Uranus and Neptune (Goldreich, Lithwick & Sari
2004). The scattering necessary to to remove these ex-
tra ice giants would have excited sizable eccentricities in
Uranus and Neptune (Ford & Chaing 2007; Levison &
Morbidelli 2007). Finally, the gravitational instability
model predicts that most giant planets form with signifi-
cant eccentricities (Boss 1995). Therefore, it seems most
likely that even the giant planets in our Solar System
were once eccentric.
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Perhaps the question, “What mechanism excites the
eccentricity of extrasolar planets?” should be replaced
with “What mechanism damps the eccentricities of giant
planets?” Unless giant planets form via gravitational in-
stability, interactions with a gas disk are not an option,
since the eccentricities would have been excited after the
gas was cleared. Both dynamical friction within a plan-
etesimal disk and planetesimal scattering could damp ec-
centricities in both the Solar System and other planetary
systems. Dynamical friction alone would not clear the
small bodies, so either accretion or ejection would be
required to satisfy observational constraints (Goldreich,
Lithwick & Sari 2004). Planetesimal scattering provides
a natural mechanism to simultaneously damp eccentric-
ities and remove small bodies from planetary systems.

Perhaps, the key parameter that determines whether a
planetary system will have eccentric or nearly circular
orbits is the amount of mass in planetesimals at the time
of the last strong planet-planet scattering event. This
could explain why more massive planets may tend to
have larger eccentricities. Additionally, the chaotic evo-
lution of multiple planet systems naturally provides a
large dispersion in the time until dynamical instability
results in close encounters (Chambers, Wetherill & Boss
1996; FHR; Marzari & Weidenschilling 2002). This could

explain why some planetary systems have large eccen-
tricities (late stage instability when there was little disk
to damp eccentricities), while our planets in the Solar
System have nearly circular orbits (last instability oc-
cured while sufficient planetesimal disk to damp eccen-
tricities). Unfortunately, this model would significantly
complicate the interpretation of the observed eccentricity
distribution for some extrasolar planets. Investigations
of dynamical instabilities in systems with three or more
planets have only begun to explore the large available
parameter space. Future numerical investigations will
be necessary to test such theoretical models.
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Fig. 1.— Mass Ratio (times sine of inclination of orbital planet to line of sight) versus semi-major axis. Each point corresponds to
one planet discovered by radial velocity method, as cataloged by Butler et al. (2006) and updated by Johnson et al. (2006) and Wright et
al. (2006). The horizontal bars on each point indicate the periastron and apoastron distances. The solid diagonal lines indicate curves of
constant radial velocity semi-amplitude and roughly indicate amplitudes where radial velocity searches lose sensitivity. The solid vertical
lines correspond to orbital periods (assuming a stellar mass of 1M⊙ for which the finite temporal baseline of existing radial velocity
surveys limits detection and/or precise measurements of orbital parameters. The dotted vertical lines correspond to orbital periods below
which tidal circularization is likely to have damped orbital eccentricities. The dashed diagonal lines correspond indicate curves of constant
θ2 sin i ≡ µa sin i/Rp, where Rp is the planet radius and RJup is the radius of Jupiter. Planets with apoastron to the left of this curve are not
currently able to efficiently eject other bodies from the planetary system. Open points indicate planets around stars with no known binary
companion and no evidence for a long-term radial velocity trend. Points with lines extending from the center to each vertex correspond to
planets orbiting a star that also shows a long term radial velocity trend. Points with a star inside correspond to planets orbiting a star in a
known stellar binary (Desidera & Barbieri 2006). Solid points correspond to planet orbiting stars with both a stellar binary companion and
a long term radial velocity trend. The number of sides for each point equals to the number of known planets orbitting the same star plus
two. Black and blue points correspond to planets with current best-fit eccentricities less than 0.2, while red and magenta points correspond
to planets with eccentricities greater than 0.2. Blue and magenta points correspond to planets around stars with only one currently known
extrasolar planet, no known binary companion, and no evidence for a long-term radial velocity trend. Black and red points correspond
to planets orbitting stars that are known to have either two or more planets, a binary companion, or a long-term radial velocity trend.
Magenta points to the left of all the diagonal dashed lines correspond to planets for which the eccentricity is unlikely to be explained by
planet-planet scattering and there is currently no evidence for additional massive bodies orbiting their host star.
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Fig. 2.— Cumulative distributions for the final eccentricity of the remaining planet after the other planet has been ejected. Each line
style corresponds to an ensemble of simulations with µ1 + µ2 = 6 × 10−3 and a different value of β ≡ mf /(m1 + m2), where mf is the
mass of the planet that remains bound to the star after the other planet is ejected.
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Fig. 3.— Cumulative distributions for β, the ratio of the mass of one planet to the sum of the two planet masses. The solid curve is
determined by assuming that the eccentricity of each of the known extrasolar planets (with orbital period between ten days and half the
temporal baseline of the published radial velocity observations) is due to planet-planet scattering. The dotted line is similar, but excludes
planets in known binary systems. The long dashed line is the distribution of m(2)/(m(1) +m(2)) for known multiple planet systems, where
m(1) is the most massive planet known to orbit a star and m(2) is the second most massive planet orbit known to orbit the same star

(assuming coplanar orbits). The short dashed line is the distribution of β derived by drawing two planet masses (independently and with
replacement) from the catalog of extrasolar planets discovered via radial velocity planet searches.
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Fig. 4.— Cumularive distributions for eccentricities of known extrasolar planets. Each cumulative distribution is based on the currently
known extrasolar planets discovered by radial velocity surveys with orbital period between ten days and half the temporal baseline of the
published radial velocity observations. A few planets have been omitted due to significant uncertainty in the eccentricities (§4.3). The
short-dashed curve in panel a is based on the published best-fit eccentricities and uncertainties. The dotted curves (repeated in each panel)
are based on a Bayesian analysis of the published radial velocity observations for each planetary system (Butler et al. 2006, Johnson et al.
2006, Wright et al. 2006). In panels b-d, we repeat this analysis for two subsets of this sample. In panel b, the solid (dashed) curve is for
planets with m sin i greater (less) than 1.57MJ . In panel c, the solid (dashed) curve is for planets with an orbital period greater (less) than
350d. In panel d, the solid (dashed) curve is for planets with θ2 sin i greater (less) than 1.69, where θ is the ratio of the escape velocity
from the planet (evaluated at its surface) to the escape velocity from the sun (evaluated at the planet’s apastron). The threshold values of
m sin i, period, and θ were chosen to result in sample sizes as nearly equal as possible.
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Fig. 5.— Cumularive distributions for eccentricities of known extrasolar planets not in a known binary system. Same as Fig. 4, except
only for planets that are not part of a known binary star system.
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Fig. 6.— Ratio of the escape velocity from the planet to the escape velocity from the sun (θ2) versus eccentricity. Each point corresponds
to the best-fit solution and uncertainty published in Butler et al. (2006), as updated by Johnson et al. (2006) & Wright et al. (2006). The
planet radius is estimated using the models of Bodenheimer et al. (2003). The horizontal error bar assumes that the planet radius is known
precisely. The point styles and colors are the same as in Fig. 1.


