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ABSTRACT

Strong tidal interaction with the central star can circularize the orbits of close-in planets. With
the standard tidal quality factor Q of our solar system, estimated circularization times for close-in
extrasolar planets are typically shorter than the ages of the host stars. While most extrasolar planets
with orbital radii a . 0.1 AU indeed have circular orbits, some close-in planets with substantial
orbital eccentricities have recently been discovered. This new class of eccentric close-in planets implies
that either their tidal Q factor is considerably higher, or circularization is prevented by an external
perturbation. Here we constrain the tidal Q factor for transiting extrasolar planets by comparing their
circularization times with accurately determined stellar ages. Using estimated secular perturbation
timescales, we also provide constraints on the properties of hypothetical second planets exterior to
the known ones.
Subject headings: planetary systems

1. INTRODUCTION

The median eccentricity of the current sample of ∼ 300
planets is 0.19, while it is 0.013 for close-in planets with
semi-major axis a < 0.1 AU. The circular orbits of close-
in planets most likely result from orbital circularization
due to tides (e.g., Rasio et al. 1996; Marcy et al. 1997).
This requires the tidal circularization time τcirc to be
short compared to the age of the system τage. Since
τcirc is a very steep function of a (see Eq. 1 or 6), while
τage ∼ 1 − 10 Gyr for most systems, a sharp decline in
eccentricity is expected below some critical value of a.
However, the observed transition seems to occur around
0.03−0.04 AU, whereas the calculated τcirc becomes com-
parable to τage at ∼ 0.1 AU as we see below (Figure 1).
Since almost one quarter (presently 16/68) of planets
within 0.1 AU have e > 0.1, their high eccentricities de-
mand explanation.

First, we calculate the circularization times for transit-
ing planets, and compare them with the estimated ages
of the systems. The circularization time τcirc = −e/ė,
where ė is the sum of the eccentricity change due to the
tides raised on the star by the planet and those raised on
the planet by the star, is (Goldreich & Soter 1966; Hut
1981; Eggleton et al. 1998; Mardling & Lin 2002):
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The subscripts p and ∗ represent the planet and star, re-
spectively. The modified tidal quality factor for a planet
is defined as Q′

p ≡ 3Qp/2kp, where kp is the Love num-
ber, and Qp is the specific dissipation function, which
depends on the planetary structure as well as the fre-
quency and amplitude of tides. We also define
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where n =
√

G(M∗ + Mp)/a3 is the mean motion, Ωrot

is the rotational frequency, and
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Generally F∗ and Fp are comparable, and thus the stel-
lar damping is negligible unless the planet-to-star mass
(radius) ratio is large (small) or Q′

∗
≪ Q′

p. We define the
circularization time due to damping in the planet as

τcirc,0 =
2
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−5

F−1
p . (6)

Note that τcirc,0 can be shorter or longer than τcirc,
depending on the sign of F∗, which changes at
(Ω∗,rot/n)crit = 18/11(f1/f2). In the limit e → 0, this
equation leads to the standard expression for the circu-
larization time (Eq. 4.198 of Murray & Dermott 1999).

Figure 1 compares the circularization times calculated
from Eq. 1 and 6 with the estimated stellar ages for
the systems in Table 1 1. Here we assume Q′

p =

105, and Q′

∗
= 106, which are the standard values

motivated by measurements in our Solar System (e.g.
Yoder & Peale 1981; Zhang & Hamilton 2008), and for
main-sequence stars (e.g. Carone & Pätzold 2007). For
Ωp,rot, we assume that planets with circular orbits are
perfectly synchronized, i.e., Ωp,rot/n = 1, since the spin-
orbit synchronization times are ∼ 10−3 τcirc (Rasio et al.
1996). On the other hand, planets with eccentric orbits
should spin down until they reach quasi-synchronization
(Dobbs-Dixon et al. 2004); in practice we adopt a plan-
etary spin frequency such that the rate of change of spin
frequency is zero (Eq. 54 of Mardling & Lin 2002). For

1 Note that, in Eq. 1, it is implicitly assumed that the star
and the planet both have zero obliquity. Currently available mea-
surements of the Rossiter–MacLaughlin effect show that the plan-
etary orbits in general are closely aligned with the stellar equator
(Queloz et al. 2000; Winn et al. 2005). Current exceptions may be
the HD17156 and XO-3 systems (Narita et al. 2007; Hebrard et al.
2008), which we exclude from our analysis.
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Fig. 1.— Circularization times calculated from Eq. 6 (stars),
Eq. 1 with Ω∗,rot/n = 3d (orange circles) and 70 d (blue circles),
compared with the estimated stellar ages (squares) for systems with
transiting planets. Here we assume Q′

p = 105 and Q′
∗ = 106. For

all transiting planets, the estimated circularization time is shorter
than the age of the host star.

the stellar spin, we assume typical periods derived from
the observed vrot sin i, P∗,rot ∼ 3 – 70 d (Barnes 2001).

Figure 1 compares the circularization times calculated
from Eq. 1 and 6 with the estimated stellar ages for the
systems in Table 1. For most systems the tidal damping
in the star is negligible. Two systems with non-negligible
stellar damping are WASP-14 and HAT-P-2. Both have
a large planetary mass (see Table 1), and thus the first
term in Eq. 1 is significant. Clearly, the estimated cir-
cularization times are always shorter than stellar ages,
which implies that all these planets should have been
circularized by now if their tidal Q values were similar
to those of their solar-system analogues. However, our
sample contains at least 6 systems with a non-zero or-
bital eccentricity. Possible explanations are that (1) the
structure of these planets is different and their actual Q
is greater than what we assumed; or (2) they currently
experience external perturbations which maintain their
orbital eccentricities against tidal dissipation.

2. CONSTRAINTS ON THE TIDAL Q VALUE OF CLOSE-IN
PLANETS

Now we use Eq. 1 to place constraints on the tidal Q
values of the planets. An upper limit on Q is provided
for planets with circular orbits since the circularization
must have occurred within the lifetime of the systems
(τcirc < τage). Our assumption here is that these close-in
planets formed through tidal circularization of initially
eccentric orbits. Nagasawa et al. (2008) showed that
about one third of multiple planetary systems could form
close-in planets through tidal circularization following a
large eccentricity gain through planet–planet scattering
or Kozai-type perturbations. Direct observational evi-
dence for initially large orbital eccentricities comes from
the absence of planetary orbits within twice the Roche
limit around the star (Faber et al. 2005; Ford & Rasio
2006).

On the other hand, close-in, eccentric planets impose
a lower limit on Q values, since τcirc ≥ τage is expected

Fig. 2.— Estimated tidal Q factors for the case of slowly ro-
tating stars (Ω∗/n < (Ω∗/n)crit). Upper/lower limits calculated
from Eq. 6 are shown in black down/up triangles for planets with
zero/non-zero eccentricities. Open triangles are the corresponding
estimates from Eq. 1, which approach black ones as we take 2, 5,
and 10 times the minimum stellar tidal Qs (blue, orange, and green
triangles, respectively) obtained from Eq. 9.

for these systems, provided that they are not currently
subject to any eccentricity excitation mechanism.

For P∗,rot ∼ 3 − 70 d, all planets in Table 1 take
Ω∗,rot/n < (Ω∗,rot/n)crit, and hence F∗ > 0 and τcirc,0 >
τcirc. For planets with zero (non-zero) eccentricity, we
require τcirc < τcirc,0 < τage (τage < τcirc < τcirc,0). In
other words, we assume that zero (non-zero) eccentric-
ity planets have been (have not been) circularized within
the lifetime of the system, independent of the rotation
period of the star. This gives the upper and lower limits
for circular and eccentric planets, respectively, as
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The latter also gives the lower limit for the stellar tidal
Q factor, since the denominator must be positive:

Q′

∗
>

81

2
n

(

Mp

M∗

)(

R∗

a

)5

F∗τage ≡ Q′

∗,min . (9)

This corresponds to a minimum stellar Q value of Q′

∗
∼

3 × 104 − 4 × 107, with a median value of 0.4 − 1 × 106

for P∗,rot = 3 − 70 d, which agree well with observations
(e.g. Carone & Pätzold 2007).

Figure 2 shows the upper and lower limits for the plan-
ets’ Q values as a function of semi-major axis for circular
and eccentric orbits, respectively. Since the lower limits
on Q values for eccentric planets depend on Q′

∗
, we take

three different cases of Q′

∗
= 2, 5, and 10 Q′

∗,min as exam-

ples. Note that, with this definition of Q′

∗
, Q′

p becomes
independent of the stellar spin rate. Since circularization
times are shorter for planets with smaller orbital radii,
we tend to overestimate the maximum Q values at the
shortest-period end. All transiting planets appear within
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the range 105 . Q′

p . 109. The figure also shows that the
high eccentricities of some planets (marked with upper
triangles) can be explained by assuming relatively large
(Q′

p & 106) but reasonable (Q′

p . 109) tidal Q values.
Although these estimated Q values are larger than

those of Jupiter or Neptune, they cannot be excluded.
Recent theoretical studies of the excitation and dissipa-
tion of dynamical tides within rotating giant planets have
shown that tidal Q values fluctuate strongly depending
on the tidal forcing frequency, and the effective Q’s could
go up to ∼ 109 depending on the spin rate and internal
structure of the planet (e.g., presence/absence of a core,
radiative envelope, or a density jump, see Ogilvie & Lin
2004; Wu 2005). According to these recent models, it
appears possible that some planets maintain large eccen-
tricities simply because of their larger Q values.

3. DYNAMICAL PERTURBATIONS

Candidate perturbation mechanisms that could excite
and maintain planetary eccentricities include (1) tidal
interaction with the central star (Dobbs-Dixon et al.
2004), (2) quadrupole or higher-order secular perturba-
tion from an additional body, or (3) resonant interaction
with another planet. Here we discuss the effects of these
competing mechanisms against tidal eccentricity damp-
ing.

Tidal dissipation inside the central star can increase
the planet eccentricity only when Ω∗,rot > n, or equiv-
alently de/dt > 0 in Eq. 1. For a synchronized planet
(Ωp,rot ∼ n) with a small eccentricity (e2 ≪ 1), we obtain
Ω∗,rot/n > 18/11(1+7/18(Q′

∗
/Q′

p)(M∗/Mp)
2(Rp/R∗)

5).
For a Jupiter-like planet around a main-sequence star,
this yields Ω∗,rot > 9.6n for Q′

∗
∼ Q′

p. Since the rota-
tion period for planet-hosting stars typically lies in the
range 3 – 70d, eccentricity excitation may occur for plan-
ets only if their orbital periods are within 29 – 673d or
longer. For a 10MJ planet with radius 1RJ, we have
Ω∗,rot > 1.7n, which corresponds to an orbital period
greater than 5.1 d. Therefore, this is unlikely to be re-
sponsible for the eccentricity of observed planets within
a ∼ 0.06–0.18AU.

Another possibility is an undetected additional planet
exciting the eccentricity of the detected planet. If there
is a large mutual inclination angle (i & 40◦) between
the two planets, Kozai-type perturbations can become
important (Kozai 1962). Such highly non-coplanar or-
bits could result from planet–planet scattering after dis-
sipation of the gaseous disk. Chatterjee et al. (2007);
Nagasawa et al. (2008) have performed extensive numer-
ical scattering experiments and showed that the final
inclination of planets could be as high as 70◦, with
a median of 10 – 20◦. If i . 40◦, octupole pertur-
bations may still moderately excite the eccentricity of
the close-in planet. The secular interaction timescale
of a pair of planets with small mutual inclination can
be derived from the classical Laplace-Lagrange theory
(Brouwer & Clemence 1961; Murray & Dermott 1999).

For this secular perturbation from an additional planet
to be causing the large eccentricity of the close-in planet,
it must occur fast enough compared to other perturba-
tions causing orbital precession. In particular, GR pre-
cession and tides are important effects that would com-
pete against the perturbation from the additional body
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Fig. 3.— Various secular eccentricity excitation timescales for
the planet GJ 436 b caused by a hypothetical planetary (or stel-
lar) companion GJ 436 c with mass Mc and semi-major axis ac.
The solid black lines show the predicted radial velocity amplitudes
caused by the undetected companion. The dot-dashed line shows
the threshold right of which the secular interaction between planets
with i . 40 deg is suppressed by GR precession, while the three
red dotted lines are the similar thresholds for the Kozai mechanism
with the assumed orbital eccentricity of the companion ec = 0.01,
0.5, and 0.9 from left to right. We use τpp, τKozai , and τGR as in
Takeda et al. (2008); Fabrycky & Tremaine (2007). Thresholds for
τcirc and τage are also shown for comparison.

2. For detailed discussions see Holman et al. (1997);
Kiseleva et al. (1998).

Figure 3 illustrates the constraints on the mass and
orbital radius of the hypothetical outer planet in the
GJ 436 system. These are set by comparing the GR pre-
cession and secular timescales. Similar results are seen
for other systems with eccentric close-in planets. Gen-
erally GR precession occurs faster than any other per-
turbation mechanism. In order to induce Kozai cycles in
the inner planet (left of the dotted lines) while not caus-
ing radial-velocity amplitudes above the detection limit
of ∼ 5 m s−1 (below black lines), the mass upper limit
of the hypothetical planet is ∼ 1MNeptune. For near-
coplanar systems even tighter constraints are placed on
the properties of the secondary planet (left of the dot-
dashed line).

However, one caveat is that our diagram only rules
out the possibility of hypothetical bodies being cur-
rently responsible for the high eccentricity of GJ 436 b.
Also, while Kozai-type perturbations are almost al-
ways suppressed by GR precession, eccentricity exci-
tation through secular octupole perturbations may be
occasionally enhanced by GR effects (Ford et al. 2000;
Adams & Laughlin 2006). For the case of the GJ 436
system, we have numerically tested the effect of a hypo-
thetical secondary planet c on the eccentricity evolution
of the inner planet b. We have found that, within the
detectable radial-velocity limit . 5 m/s, planet c can-
not excite the eccentricity of planet b from 0.01 to the
observed 0.15, even if its eccentricity is as high as 0.5.

2 Although stellar and planetary rotational distortions cause ad-
ditional precession (Sterne 1939), GR precession dominates unless
the stellar rotation is on the high end.
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TABLE 1
Data are from http://exoplanet.eu/. Ages are computed using the stellar evolution database in Takeda et al. (2007),

unless marked with ∗. Median values of the derived posterior age probability distribution functions are presented here,
together with the 95% credible intervals in parenthesis.

Planet ID Mp [MJ ] Rp [RJ ] a [AU] e M∗ [M⊙] R∗ [R⊙] Age [Gyr]

OGLE-TR-56 b 1.29 1.3 0.0225 0 1.17 1.32 0.92 (0.20 –3.00)
OGLE-TR-113 b 1.32 1.09 0.0229 0 0.78 0.77 13.28 (11.00 – 13.92)
GJ 436 b ∗ 0.072 0.38 0.02872 0.15 0.452 0.464 6.00 (1.00 – 10.00)
OGLE-TR-132 b 1.14 1.18 0.0306 0 1.26 1.34 0.96 (0.12 – 3.84)
HD 189733 b 1.15 1.156 0.0312 0 0.8 0.753 8.96 (1.04 – 13.72)
TrES-2 ∗ 1.98 1.22 0.0367 0 0.98 1 5.10 (2.40 – 7.80)
WASP-14 b ∗ 7.725 1.259 0.037 0.095 1.319 1.297 0.75 (0.5 – 1)
WASP-10 b ∗ 3.06 1.29 0.0371 0.057 0.71 0.783 0.8 (0.6 – 1)
HAT-P-3 b ∗ 0.599 0.89 0.03894 0 0.936 0.824 0.40 (0.10 – 6.90)
TrES-1 0.61 1.081 0.0393 0 0.87 0.82 11.40 (3.20 – 13.84)
HAT-P-5 b ∗ 1.06 1.26 0.04075 0 1.16 1.167 2.60 (0.80 – 4.40)
OGLE-TR-10 b 0.63 1.26 0.04162 0 1.18 1.16 1.20 (0.16 – 4.64)
HD 149026 b ∗ 0.36 0.71 0.0432 0 1.3 1.45 2.00 (1.20 – 2.80)
HAT-P-4 b ∗ 0.68 1.27 0.0446 0 1.26 1.59 4.20 (3.60 – 6.80)
HD 209458 b 0.69 1.32 0.045 0.07 1.01 1.12 2.40 (0.48 – 4.60)
OGLE-TR-111 b 0.53 1.067 0.047 0 0.82 0.831 5.17 (0.17 – 13.41)
HAT-P-6 b ∗ 1.057 1.33 0.05235 0 1.29 1.46 2.30 (1.60 – 2.80)
HAT-P-1 b ∗ 0.524 1.36 0.0553 0.067 1.133 1.115 3.60
HAT-P-2 b ∗ 8.64 0.952 0.0677 0.517 1.298 1.412 2.70 (1.30 – 4.10)

This result holds for other systems since they have even
heavier planets. Therefore, we can safely exclude the
possibility that these planets obtain their current high
eccentricities through secular perturbation from an un-
detected outer planet with . MNeptune if their orbits are
initially near-circular.

Yet another possibility is a resonant perturbation from
an undetected planet. Recently Ribas et al. (2008) sug-
gested that the eccentricity of GJ 436 b might be caused
by a mean-motion resonance (MMR) with an unseen
super-Earth, but there is little observational support for
this (e.g. Bean & Seifahrt 2008). Also, the combined ef-
fects of GR precession and MMR are not fully understood
yet. In any case, it is unlikely that such resonances are
responsible for all the close-in eccentric planets, consid-
ering the small fraction of extrasolar multiple planets in

MMR.

4. SUMMARY

In this letter, we have investigated the origins of close-
in planets on an eccentric orbit. We place constraints on
the tidal Q factor of transiting planets by comparing the
stellar age with the tidal circularization time, and find
that 105 . Q′

p . 109, which agrees well with current
theoretical estimates, can explain these eccentric plan-
ets. We also show that it is difficult to explain the high
eccentricities of these planets by invoking a current inter-
action with an unseen second planet. Our results suggest
that at least some of the close-in eccentric planets may
be simply in the process of getting circularized.

This work was supported by NSF Grant AST-0507727.
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