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ABSTRACT

We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass
transfer in eccentric binaries, allowing for both mass and angular momentum loss from the system.
Adopting a delta function mass transfer rate at the periastron of the binary orbit, we find that,
depending on the initial binary properties at the onset of mass transfer, the orbital semi-major axis
and eccentricity can either increase or decrease at a rate linearly proportional to the magnitude of
the mass transfer rate at periastron. The range of initial binary mass ratios and eccentricities that
leads to increasing orbital semi-major axes and eccentricities broadens with increasing degrees of mass
loss from the system and narrows with increasing orbital angular momentum loss from the binary.
Comparison with tidal evolution timescales shows that the usual assumption of rapid circularization
at the onset of mass transfer in eccentric binaries is not justified, irrespective of the degree of systemic
mass and angular momentum loss. This work extends our previous results for conservative mass
transfer in eccentric binaries and can be incorporated into binary evolution and population synthesis
codes to model non-conservative mass transfer in eccentric binaries.
Subject headings: Celestial mechanics, Stars: Binaries: Close, Stars: Mass Loss

1. INTRODUCTION

Many astrophysically interesting binary systems pass
through at least one mass-transfer phase during the
course of their evolution. These mass transfer episodes
not only affect the internal evolution of the stellar com-
ponents, but also impact the binary properties. In par-
ticular, changes in the mass ratio and transfer of linear
and angular momentum between the stars cause changes
in the orbital elements which affect the evolution of the
binary and can cause a feedback on the mass transfer
process.

In binaries with eccentric orbits, the stars are closest to
each other at the periastron of their relative orbit, so that
any mass transfer is expected to take place first during
periastron passage. The standard assumption in current
binary evolution and population synthesis codes to deal
with such mass transfer phases is that the orbit circular-
izes instantaneously at the onset of mass transfer. This
assumption is in contrast with recent theoretical find-
ings (Sepinsky et al. 2007b) as well as observations of
semi-detached binaries with non-zero orbital eccentrici-
ties (Petrova & Orlov 1999; Raguzova & Popov 2005).

Sepinsky et al. (2007b, hereafter Paper I) studied the
orbital evolution due to mass transfer in eccentric bi-
naries by deriving a set of perturbed equations of mo-
tion for the binary components, as outlined initially by
Hadjidemetriou (1969). The authors found that, under
the assumption of conservation of total system mass and
orbital angular momentum, the orbital semi-major axis
and eccentricity can increase as well as decrease, depend-
ing on the initial orbital elements, binary component
masses, and donor rotation rate. Furthermore, the or-
bital evolution timescales can be short enough to com-
pete with or enhance any tidally driven orbital evolution.

In this paper, we extend the analysis presented in Pa-
per I to account for mass and angular momentum loss
from the binary. In § 2 and 3, we briefly recall the rele-

vant ingredients for the study of mass transfer in eccen-
tric binaries derived in Paper I, and update the formal-
ism to account for systemic mass and angular momen-
tum loss. In §4, we present timescales for the evolution
of the orbital semi-major axis and eccentricity due to
mass transfer for different degrees of mass and angular
momentum loss and we compare the timescales to the
timescales of orbital evolution due to tidal dissipation.
The final section is devoted to concluding remarks.

2. BASIC ASSUMPTIONS

We consider a close binary consisting of two stars with
masses M1 and M2 in an eccentric orbit with period Porb,
semi-major axis a, and eccentricity e. The stars are as-

sumed to rotate uniformly with angular velocities ~Ω1 and
~Ω2 around an axis perpendicular to the orbital plane and
in the same sense as the orbital motion. Since, in eccen-
tric binaries, the magnitude of the orbital angular veloc-

ity ~Ωorb is a periodic function of time, the stellar rotation
rates cannot be synchronized with the orbital motion at
all orbital phases.

At some time t, one of the stars is assumed to fill
its Roche lobe initiating mass transfer to its compan-
ion through the inner Lagrangian point L1. We assume
this point to lie on the line connecting the mass cen-
ters of the stars, even though non-synchronous rotation
may cause it to oscillate in the direction perpendicular to
the orbital plane (Matese & Whitmire 1983). Since the
donor’s equatorial plane coincides with the plane of the
orbit, the transferred mass can furthermore be assumed
to remain in the orbital plane at all times. In what fol-
lows, we refer to the Roche lobe filling star as star 1 and
to the companion star as star 2.

In Paper I, we assumed that all mass transfered by the
donor was accreted by the companion, and that any or-
bital angular momentum transported by the transferred
matter was immediately returned to the orbit (presum-
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ably through an accretion disk). Here, we relax those
assumptions and assume some fraction β of the trans-
ferred mass to be lost from the system:

ṀT = β Ṁ1, (1)

where MT = M1 + M2 is the total system mass. Conse-
quently, the amount of matter accreted by the companion
is

Ṁ2 = −γ Ṁ1 (2)

where γ = 1 − β. The angular momentum carried away
by the mass lost from the system is parameterized in
terms of the specific angular momentum of the orbit as

J̇orb = µ
Jorb

MT
ṀT . (3)

In the particular case where the matter lost from the
system carries the specific orbital angular momentum of
the accretor, µ = M1/M2 (e.g., Kolb et al. 2001). For
our purpose, we assume that no other sources of angular
momentum loss besides mass loss are operating on the
system. Any other sinks of orbital angular momentum
such as tidal interactions, magnetic braking, and gravi-
tational radiation can, at the lowest order of approxima-
tion, be added to Eq. (3) and Eqs. (18)–(19) derived in
the next section to obtain the total rate of change of the
orbital angular momentum and of the orbital elements.

With these assumptions, the equations governing the
motion of the two stars around their common center of
mass can be written in the form of a perturbed two-body
problem as

d2~r

dt2
= −

G (M1 + M2)

|~r|
3 ~r + S x̂ + T ŷ + W ẑ, (4)

where G is the Newtonian constant of gravitation, ~r is
the position vector of the accretor with respect to the
donor, x̂ is a unit vector in the direction of ~r, ŷ is a
unit vector in the orbital plane perpendicular to ~r in the
direction of the orbital motion, and ẑ is a unit vector
perpendicular to the orbital plane parallel to and in the

same direction as ~Ωorb. The functions S, T , and W are
the components of the perturbing force arising from the
mass transfer between the binary components. They can
be shown to be equal to

S =
f2,x

M2
−

f1,x

M1
+

Ṁ2

M2

(

vδM2,x − |~Ωorb||~rA2
| sin φ

)

−
Ṁ1

M1
vδM1,x +

M̈2

M2
|~rA2

| cosφ −
M̈1

M1
|~rA1

|, (5)

T =
f2,y

M2
−

f1,y

M1
+

Ṁ2

M2

(

vδM2,y + |~Ωorb||~rA2
| cosφ

)

−
Ṁ1

M1

(

vδM1,y + |~Ωorb||~rA1
|
)

+
M̈2

M2
|~rA2

| sin φ, (6)

W =
f2,z

M2
−

f1,z

M1
, (7)

where A1 denotes the point on the donor’s surface from
which mass is lost (the L1 point), A2 denotes the point
on the accretor’s surface at which mass is accreted, ~rA1

and ~rA2
are the position vectors of A1 and A2 with re-

spect to the donor’s and the accretor’s center of mass,
respectively, and the subscripts x, y, and z denote vector

components in the x̂, ŷ, and ẑ directions. Moreover, ~f1

is the gravitational force exerted by particles in the mass

transfer stream on the donor star, ~f2 the gravitational
force exerted by particles in the mass transfer stream on
the accretor, ~vδM1

the velocity of the matter ejected at
L1 with respect to the mass center of the donor star,
~vδM2

the velocity of the accreted matter at A2 with re-
spect to the mass center of the accretor, and φ the angle
between x̂ and the vector from the center of mass of the
accretor to A2. More details can be found in Paper I.

3. ORBITAL EVOLUTION EQUATIONS

3.1. Secular Variation of the Orbital Elements

The perturbing force with components S, T , and W
in the equations governing the motion of the two stars
around their common center of mass causes changes in
the orbital semi-major axis a and eccentricity e at rates
given by (e.g., Sterne 1960; Brouwer & Clemence 1961;
Danby 1962; Fitzpatrick 1970)

da

dt
=

2

n(1 − e2)1/2
[Se sin ν + T (1 + e cos ν)], (8)

de

dt
=

(1 − e2)1/2

na

×

{

S sin ν + T

[

2 cos ν + e
(

1 + cos2 ν
)

1 + e cos ν

]}

, (9)

where n = 2π/Porb is the mean motion, and ν the true
anomaly. The long-term secular evolution of the orbital
elements is obtained by averaging these equations over
one orbital period:

〈

da

dt

〉

sec

≡
1

Porb

∫ Porb/2

−Porb/2

da

dt
dt, (10)

〈

de

dt

〉

sec

≡
1

Porb

∫ Porb/2

−Porb/2

de

dt
dt. (11)

As in Paper I, the integrals are most conveniently com-
puted in terms of the true anomaly ν.

3.2. Orbital Angular Momentum Loss

The perturbing functions S and T depend on the prop-
erties of the mass transfer stream. Calculation of the
orbital semi-major axis and eccentricity evolution there-
fore, in principle, requires the calculation of the trajecto-
ries of the particles in the stream. In Paper I we bypassed
such a calculation by assuming conservation of total sys-
tem mass and orbital angular momentum. Here, we relax
this assumption and generalize the formalism presented
in Paper I by parameterizing systemic mass and angular
momentum loss by means of Eqs. (2) and (3).

As shown in Paper I, the rate of change of the orbital
angular momentum is related to the perturbing function
T by

J̇orb

Jorb
=

Ṁ1

M1
+

Ṁ2

M2
−

1

2

ṀT

MT
+

(

1 − e2
)1/2

na(1 + e cos ν)
T. (12)

If the only sink of orbital angular momentum is mass loss
from the system, elimination of J̇orb from this equation
and Eq. (3) yields

(

µ +
1

2

)

ṀT

MT
−

Ṁ1

M1
−

Ṁ2

M2
=

(

1 − e2
)1/2

na(1 + e cos ν)
T. (13)
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4. ORBITAL EVOLUTION TIMESCALES

Since in binaries with eccentric orbits, mass transfer
is expected to occur first at the periastron of the binary
orbit, we approximate the mass transfer rate by a Dirac
delta function as

Ṁ1 = Ṁ0 δ (ν) , (14)

where Ṁ0 < 0 is the instantaneous mass transfer rate,
and δ(ν) the Dirac delta function.

To calculate the rates of secular change of the orbital
semi-major axis and eccentricity, we neglect the gravita-
tional force exerted by the particles in the mass-transfer
stream on the binary components and set

f1,x = f2,x = 0, (15)

f1,y = f2,y = 0. (16)

With these assumptions, elimination of the perturbing
function T between Eqs. (6) and (13), and averaging over
one orbital period yields

γqvδM2,y + vδM1,y = −|~Ωorb,P ||~rA1,P |

−na

(

1 + e

1 − e

)1/2 [

γq − 1 + (1 − γ)

(

µ +
1

2

) (

q

1 + q

)]

−γq|~Ωorb,P ||~rA2
| cosφP

[

1 −

(

dφ

dν

)

P

]

, (17)

where the subscript P indicates quantities evaluated at
periastron, and q = M1/M2 is the binary mass ratio. In
the limiting case of conservative mass transfer (γ = 1),
Eq. (17) reduces to Eq. (35) in Paper I.

Finally, we substitute Eqs. (15)–(17) into Eqs. (10)
and (11) to derive the following rates of secular change of
the orbital semi-major axis and eccentricity due to mass
transfer at the periastron of eccentric binaries:

〈

da

dt

〉

sec

=
a

π

Ṁ0

M1

1

(1 − e2)1/2

×

[

e
|~rA1,P |

a
+ γqe

|~rA2
|

a
cosΦP

+(γq − 1)(1 − e2)

+ (1 − γ)(µ +
1

2
)(1 − e2)

q

1 + q

]

, (18)

〈

de

dt

〉

sec

=
(1 − e2)1/2

2π

Ṁ0

M1

×

[

γq
|~rA2

|

a
cosΦP +

|~rA1,P |

a

+2(γq − 1)(1 − e)

+ 2(1 − γ)(µ +
1

2
)(1 − e)

q

1 + q

]

. (19)

The rates of orbital evolution are thus linearly propor-
tional to the magnitude Ṁ0 of the mass transfer rate
at periastron and dependent on the orbital semi-major
axis a, the orbital eccentricity e, the donor mass M1,
and the binary mass ratio q. They also depend on the
donor’s rotational angular velocity Ω1 through the posi-
tion vector ~rA1

of the inner Lagrangian point L1 (e.g.,
Sepinsky et al. 2007a). Since |~rA1,P | ∝ a, the timescales

explicitly depend on the orbital semi-major axis a only
through the ratio |~rA2

|/a of the accretor’s equatorial ra-
dius to the orbital semi-major axis. In the limiting case
of conservative mass transfer (γ = 1), Eqs. (18) and (19)
reduce to Eqs. (39) and (40) in Paper I.

In Figure 1, the evolutionary timescales τa = a/ȧ and
τe = e/ė for the semi-major axis a and orbital eccen-
tricity e due to mass transfer in an eccentric binary are
shown as a function of the binary mass ratio q, for differ-
ent values of the orbital eccentricity and the parameters γ
and µ [see Eqs. (2) and (3)]. While the actual timescales
are given by the absolute values of τa and τe, we here
allow the timescales to be negative as well as positive to
distinguish between negative and positive rates of change
of the orbital elements.

For the calculation of the timescales, we assume the
donor to rotate synchronously with the orbital angu-
lar velocity at periastron, and take the accretor to be
a 1.44 M⊙ neutron star. The donor mass is then fixed
by the binary mass ratio. Since the radius of the neu-
tron star is much smaller than the semi-major axis of
the orbit, the terms in Eqs. (18) and (19) containing the
ratio |~rA2

|/a are negligible compared to the other terms.
We therefore set |~rA2

| = 0, so that the timescales τa

and τe are independent of a. For the mass transfer rate
we adopt a constant Ṁ0 = −10−9 M⊙ yr−1, but note
that the linear dependence of the rates of change of the
orbital semi-major axis and eccentricity on Ṁ0 allows
for an easy rescaling of the timescales to different mass
transfer rates.

The overall shape of the curves shown in Figure 1 is
similar to that of the curves shown in Figure 2 of Paper I
in the case of conservative mass transfer. For a given
fraction γ of mass loss from the system, increasing µ im-
plies more angular momentum loss from the binary, and
thus faster orbital shrinkage or slower orbital expansion.
For a given degree µ of specific orbital angular momen-
tum loss, on the other hand, decreasing γ implies more
mass loss from the binary, causing faster orbital expan-
sion and slower orbital contraction. The timescales for
the evolution of the orbital eccentricity show a similar
dependence on the parameters γ and µ.

The evolutionary timescales of the orbital semi-major
axis a and eccentricity e can be negative as well as pos-
itive, depending on the initial binary properties. The
transition from shrinking to growing orbital elements is
illustrated more clearly by the contour plots shown in
Figure 2. In these plots, the gray shades represent differ-
ent timescales of orbital evolution and the thick black line
marks the transition from shrinking (right of the thick
black line) to growing (left of the thick black line) orbital
elements. For comparison, the dashed black line marks
the transition in the case of fully conservative mass trans-
fer presented in Paper I1. As γ decreases, more mass is
lost from the system and the transition from negative to
positive rates of change of the semi-major axis and ec-
centricity moves to larger mass ratios. Conversely, as µ
increases, more angular momentum is lost from the sys-

1 The sharp bend of the dashed line toward smaller q values for
e . 0.95 was not observed in Paper I due to the lower resolution
of the orbital eccentricity grid considered in that paper. Equations
(41) and (42) of Paper I still fit the line to better than 1.5% (10%)
for e . 0.8 (e . 0.95) in the case of the orbital semi-major axis
and for e . 0.85 (e . 0.95) in the case of the orbital eccentricity.
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Fig. 1.— Orbital evolution timescales for the semi-major axis a (left) and orbital eccentricity e (right) for a delta function mass transfer

rate Ṁ1 = Ṁ0 δ(ν) with Ṁ0 = −10−9 M⊙ yr−1. The timescales are calculated as a function of the binary mass ratio q = M1/M2 under the
assumptions that the donor star rotates synchronously with the orbital angular velocity at periastron and that the accretor is a neutron
star of mass M2 = 1.44 M⊙. The different panels show timescales for different values of γ and µ. The µ = q panels correspond to the case
where the matter lost from the system carries the specific orbital angular momentum of the accretor.

Fig. 2.— Contour plots of the orbital evolution timescales for the semi-major axis a (left) and orbital eccentricity e (right) in the
(q, e)-plane for the same set of assumptions as adopted in Fig. 1. From the darkest to the lightest gray, the different gray shades represent
timescales from 0 to 1Gyr, 1 to 5 Gyr, 5 to 10 Gyr, 10 to 15Gyr, and more than 15 Gyr, respectively. The thick black line in each panel
separates the regions of the (q, e) space where ȧ > 0 or ė > 0 (left of the thick black line) from the regions of the (q, e) space where ȧ < 0
or ė < 0 (right of the thick black line). The timescales in the bottom left panel (γ = 0 and µ = 0.1) are positive for all values of q and
e displayed. For comparison, the dashed black line shows the dividing line between between increasing and decreasing orbital elements in
the case of fully conservative mass transfer.
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tem and the transition from negative to positive rates
of change of the semi-major axis and eccentricity moves
to smaller mass ratios. In the particular case where
matter leaving the system carries away the specific or-
bital angular momentum of the accretor (µ = q), the
critical mass ratio separating increasing from decreasing
orbital semi-major axes and eccentricities increases by
about 30% when going from fully conservative to fully
non-conservative mass transfer.

To assess the role of mass transfer in the overall evo-
lution of the binary, we compare the timescales shown
in Figures 1 and 2 with the orbital evolution timescales
due to tidal dissipation in the Roche-lobe filling star.
The tidal evolution timescales are determined as in
Hurley et al. (2002) assuming the donor is a zero-age
main-sequence star. The variations of the tidal evolu-
tion timescales as a function of the orbital eccentricity
and binary mass ratio are shown in Figure 4 of Paper I.
The discontinuity of the timescales at q ≃ 0.87 corre-
sponds to the transition from donor stars in which con-
vective damping is the dominant tidal dissipation mech-
anism (M2 . 1.25 M⊙) to donor stars in which radia-
tive damping is the dominant tidal dissipation mecha-
nism (M2 & 1.25 M⊙).

The timescales of orbital evolution due to the combined
effects of mass transfer and tides are shown as contour
plots in Figure 3. As before, the thick black line in-
dicates the transition from shrinking (right of the thick
black line) to growing (left of the thick black line) orbital
semi-major axis and eccentricity. For comparison, the
transition line for conservative mass transfer is shown by
means of the dashed black line. The vertical white line
at q ≃ 0.87 separates donor stars in which tidal energy
is dissipated by convective damping from donor stars in
which tidal energy is dissipated by radiative damping. As
noted in Paper I, in the case of conservative mass trans-
fer, there are large regions in the (q, e) parameter space
where the combined effects of mass transfer and tidal
interactions do not lead to rapid circularization of the
orbit after the onset of mass transfer and where eccen-
tricity pumping occurs instead of eccentricity damping.
When mass loss from the system is taken into account,
the parameter space for eccentricity pumping becomes
even larger, though the timescales of orbital evolution in
the newly accessible ė > 0 regions are long (& 15Gyr).
Similar behavior is observed for the evolution of the or-
bital semi-major axis.

5. CONCLUDING REMARKS

We extended the formalism to study the orbital evo-
lution due to mass transfer in eccentric binaries derived

in Paper I to account for the effects of mass and angu-
lar momentum loss from the system. Adopting a delta
function mass transfer rate at the periastron of the bi-
nary orbit, we find that the usually adopted assumption
of rapid orbital circularization during the early stages
of mass transfer remains unjustified when systemic mass
and angular momentum loss are taken into account. Or-
bital eccentricities can therefore persist for observation-
ally relevant periods of time.

The formalism presented in this paper and in Paper I
can be incorporated into binary evolution and population
synthesis code to provide a model for eccentric mass-
transferring binaries which are currently, by construc-
tion, absent in any population synthesis studies of in-
teracting binaries and their descendants. Possible appli-
cations include the modeling of systems such as CirX-
1 in which a neutron star is thought to accrete mat-
ter from a Roche-lobe filling or nearly Roche-lobe fill-
ing companion during each periastron passage and in
which near-IR and X-ray spectroscopy support the pres-
ence of an accretion-driven mass outflow (Clark et al.
2003; Iaria et al. 2008; Tennant et al. 1986). Another
example is the ultracompact X-ray binary 4U1820-30
which is thought to be a member of a hierarchical triple
(Chou & Grindlay 2001; Zdziarski et al. 2007). Futher-
more, dynamical interactions between single and binary
stars in dense stellar clusters can induce eccentricities
in circular binaries and enhance eccentricities in already
eccentric binaries (Heggie & Rasio 1996). This induced
eccentricity can directly lead to Roche Lobe overflow at
periastron, as has been suggested for the flaring X-ray bi-
naries in NGC 4697 (Maccarone 2005). In future work,
we intend to model the mass transfer rate at periastron
more realistically by taking into account the atmospheric
properties of the donor star and considering the feedback
of the orbital and radial evolution of the star on the mass
transfer rate.

This work is partially supported by NSF Award AST-
0525995//ASW01 (subcontract from Adler Planetarium
and Astronomy Museum), NSF CAREER Award AST-
0449558, and NASA BEFS Award NNG06GH87G to
VK. F.A.R. acknowledges support from NASA Grant
NNG06GI62G. Numerical simulations presented in this
paper were performed on the HPC cluster fugu available
to the Theoretical Astrophysics Group at Northwestern
University through NSF MRI grant PHY-0619274 to VK.

REFERENCES

Brouwer, D., & Clemence, G. M. 1961, Methods of celestial
mechanics (New York: Academic Press, 1961)

Chou, Y., & Grindlay, J. E. 2001, ApJ, 563, 934
Clark, J. S., Charles, P. A., Clarkson, W. I., & Coe, M. J. 2003,

A&A, 400, 655
Danby, J. 1962, Fundamentals of celestial mechanics (New York:

Macmillan, 1962)
Fitzpatrick, P. M. 1970, Principles of celestial mechanics (New

York, Academic Press [1970])
Hadjidemetriou, J. D. 1969, Ap&SS, 3, 330
Heggie, D. C., & Rasio, F. A. 1996, MNRAS, 282, 1064
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897

Iaria, R., D’Aı́, A., Lavagetto, G., Di Salvo, T., Robba, N. R., &
Burderi, L. 2008, ApJ, 673, 1033

Kolb, U., Rappaport, S., Schenker, K., & Howell, S. 2001, ApJ,
563, 958

Maccarone, T. J. 2005, MNRAS, 364, 971
Matese, J. J., & Whitmire, D. P. 1983, ApJ, 6, 776
Petrova, A. V., & Orlov, V. V. 1999, AJ, 117, 587
Raguzova, N. V., & Popov, S. B. 2005, ArXiv Astrophysics e-prints
Sepinsky, J. F., Willems, B., & Kalogera, V. 2007a, ApJ, 660, 1624
Sepinsky, J. F., Willems, B., Kalogera, V., & Rasio, F. A. 2007b,

ApJ, 667, 1170



6 Sepinsky et al.

Fig. 3.— Contour plots of the orbital evolution timescales for the semi-major axis a (left) and orbital eccentricity e (right) in the
(q, e)-plane due to the combined effects of mass transfer and tidal dissipation in the donor star of a semi-detached binary. The mass
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M2 . 1.25 M⊙) to radiative damping (for M2 & 1.25 M⊙) as the dominant energy dissipation mechanism.
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