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ABSTRACT

Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular
clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in
the core tends to increase with time over a range of initial cluster central densities for initial binary fractions
�90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries
into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the
preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions
that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass
radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true
binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure)
is nonlinear and rather complicated. We also consider the importance of soft binaries, which not only modify
the evolution of the binary fraction, but can also drastically change the evolution of the cluster as a whole.
Finally, we briefly describe the recent addition of single and binary stellar evolution to our cluster evolution code.
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1. THE BINARY FRACTION

Observations and recent theory strongly suggest that the ini-
tial mass function (IMF) is universal among non-zero metallic-
ity stars (e.g., Chabrier 2003). Indeed, Bate (2009b) suggested
that radiative feedback may naturally regulate the star formation
process so as to produce an IMF that is only weakly dependent
on the properties of the progenitor molecular cloud. Naively,
one would also expect that other features of the initial stellar
population—like the binary fraction—should be nearly univer-
sal. Hydrodynamical star formation simulations yield compan-
ion star frequencies and binary fractions that are largely in-
dependent of the properties of the progenitor molecular cloud
(although the statistics in some cases are marginal), and are quite
consistent with observations (Bate 2009a; Bate et al. 2003; Bate
& Bonnell 2005).

Observations of stars in low stellar density environments
where dynamics is unimportant, such as the solar neighbor-
hood, yield a binary fraction of ∼50% among solar-type stars,
with an increasing trend with primary mass (e.g., Duquennoy &
Mayor 1991; Fischer & Marcy 1992). Open clusters similarly
show such large binary fractions (Fan et al. 1996). However, ob-
servations of dense globular cluster cores typically yield binary
fractions that are significantly smaller. Hubble Space Telescope
(HST) observations of the core-collapse cluster NGC 6397 yield
a binary fraction of ≈5% in the core and ≈1% beyond the half-
mass radius (Davis et al. 2008). For the canonical non core-
collapse cluster 47 Tuc, the binary fraction is ≈13% (Albrow
et al. 2001). The core binary fraction generally ranges from a
few percent to tens of percent, approaching 50% in some cases
for less dense clusters (Sollima et al. 2007). Where measured,
the binary fraction outside the core is always smaller (see the
table in Davis et al. 2008). The question naturally arises: are
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the currently observed relatively small core binary fractions in
globular clusters consistent with initially larger binary fractions
of ∼50%?

There are many strongly coupled processes that determine the
evolution of the core binary fraction in a dense stellar system.
Stellar evolutionary processes alone can affect the properties of
a binary greatly, causing it to expand or shrink via mass transfer
or winds, circularize via dissipative effects, lose mass, receive a
systemic velocity kick due to a supernova, or disrupt or merge.
The properties of the binary feed into the dynamical interaction
rate with other stars or binaries, causing it to interact more or
less frequently depending on its semimajor axis, eccentricity,
mass, and systemic velocity. A strong dynamical interaction
of a binary can disrupt it, exchange one of its members for
an incoming star, cause its orbit to expand or shrink, modify
its eccentricity, increase its systemic velocity via gravitational
recoil, or cause two or more stars to physically collide. The
dynamically modified binary properties feed back into binary
stellar evolution, possibly initiating or halting mass transfer,
or increasing tidal effects. In contrast to stellar evolutionary
processes, the dynamical interaction rate depends on the cluster
density and velocity dispersion, which evolve with time. Since
binaries are typically more massive than single stars, mass
segregation can increase their numbers in the core at the
expense of single stars. The tidal effects of the host galaxy
will preferentially strip single stars from the halo of the cluster.

For a globular cluster of typical mass (∼105 M�) and size
(half-mass radius rh ∼ 3 pc), its global evolution can be
divided into three phases according to the timescales of the
relevant physical processes. At early times (∼few × 10 Myr),
the evolution is largely driven by stellar evolutionary mass loss
from the most massive stars in the cluster. At intermediate times
(∼few Gyr), as mass loss from stellar evolution has slowed, the
evolution is driven primarily by two-body relaxation. At late
times (possibly beyond a Hubble time; Hurley 2007), when the
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core has reached sufficiently high density for binaries to strongly
interact dynamically and release enough energy to prevent
core collapse, the properties of the cluster are determined by
the makeup of the binary population in this quasi-equilibrium
“binary burning” phase.

The core binary fraction is clearly a quantity that is affected
by nearly all physical processes operating in a cluster, and is
of obvious observational interest. Comparing observed core
binary fractions with simulation results (in combination with
other observables) is thus a good measure of our theoretical
understanding of cluster evolution. There can be dramatic
differences in definition between the observed binary fraction
and what theorists call the binary fraction, however.

When measured with the common offset main-sequence (MS)
method, MS–MS binaries are detected by their appearance as
distinctly brighter MS objects. The observed binary fraction is
defined as the ratio of the number of these “binary sequence”
objects to the total number of objects in the MS and the binary
sequence, corrected for the assumed number of binaries with
mass ratio so small they would blend in with the MS.

The theorists’ definition of the binary fraction is typically the
ratio of the number of binaries to the total number of “objects”
(single stars or binaries). Furthermore, computational theorists
tend to consider only “hard” binaries. That is, binaries with
binding energy greater than the typical particle energy, which
typically become more tightly bound (harden) as a result of
encounters (Heggie & Hut 2003). Soft binaries—binaries with
binding energy less than the typical particle energy in a cluster,
which typically become less tightly bound (soften) or dissociate
completely—are less frequently considered. We consider in
detail the difference between the observational and theoretical
definitions of the binary fraction below, as well as the importance
of soft binaries.

Recently, two very different simulation methods have been
used to study the evolution of the binary fraction. Ivanova et al.
(2005) have developed a simplified Monte Carlo (MC) method
in which a dense, massive cluster is modeled as a constant-
density core plus halo (to simulate the long-lived binary burning
phase that clusters may reach late in their evolution). Binaries
and stars are evolved via the population synthesis code StarTrack
(Belczynski et al. 2008), and the strong dynamical interactions
of binaries are integrated numerically with Fewbody (Fregeau
et al. 2004). Objects move between the core and the halo due to
mass segregation and systemic velocity changes resulting from
dynamical encounters. In this approach, the core mass increases
slowly with time, with very few stars leaving the core after mass
segregating into it.

Ivanova et al. (2005) found, generally, that the core binary
fraction decreases significantly with time. Even for a modest
core density of 103 pc−3, they found that an initial binary
fraction of 100% yields a core binary fraction of 27% at 14 Gyr.
For the density of 47 Tuc, they found that a 100% initial binary
fraction yields an 8% core binary fraction at 14 Gyr. It should be
noted, however, that these figures include substantial numbers
of soft binaries—binaries that are so wide they are quickly
destroyed by dynamical encounters. If only the hard binaries
in these simulations are counted, an initial binary fraction of
25% in a 103 pc−3 core density cluster yields a 15% core binary
fraction at 14 Gyr. For a density of 105 pc−3 the core binary
fraction evolves from an initial 25% to 7%.

Hurley et al. (2007) have used a direct N-body method,
coupled with the BSE single and binary stellar evolution routines
(Hurley et al. 2000, 2002), to study the evolution of the binary

Figure 1. Evolution of N-body (e.g., Hurley et al. 2007) and simplified MC
(Ivanova et al. 2005) cluster models in core number density–binary fraction
space. Each model’s evolution is represented as a simple arrow, with the tip at
the final properties, and the tail at the initial properties. For simplified MC the
final properties are measured at an age of 14 Gyr. For N-body they are measured
at ∼15 Gyr in most cases, with the 50% initial binary fraction model measured
at 4 Gyr, and the 103.5 pc−3 core density model measured at 9 Gyr. Note that
the binary fractions plotted here include only hard binaries. For reference, we
plot as open circles the current observed properties for several Galactic globular
clusters where measurement is possible, with binary fraction data taken from
the table in Davis et al. (2008). Observed cluster core densities are estimated
from the Harris catalog (Harris 1996), with an assumed mass-to-light ratio of
1.6, and an average stellar mass of 0.6 M�.

fraction. The great benefit of this method is that it makes no
simplifying assumptions about the underlying cluster evolution.
On the other hand, it is computationally expensive, currently
limiting its application to open clusters or globulars with low
initial binary fractions. Hurley et al. (2007) found that the core
(hard) binary fraction generally increases with time. For a cluster
of 5 × 104 stars with a central density of ∼103.5 pc−3, the core
binary fraction rises from an initial 20% to 52% at 9 Gyr. For
lower initial densities, the degree of increase of the core binary
fraction is similar.

On the face of it, the discrepancy between the two methods
appears irreconcilable. However, the two methods operate
at very different core densities and cluster masses, both of
which affect the half-mass relaxation time and hence the
mass segregation timescale, as well as the binary dynamical
interaction rate. Figure 1 shows the evolution of the various
models in core number density–binary fraction space. Note that
the binary fractions plotted here include only hard binaries. Each
model’s evolution is represented as a simple arrow, with the tip at
the final properties, and the tail at the initial properties. It is clear
from this figure that the two methods represent very different
regions of parameter space, and could simply be displaying
different aspects of the same underlying physics. The only point
of concern is the N-body model starting at ∼103.5 pc−3 and
evolving toward a higher binary fraction, nestled between two
MC models evolving in the opposite direction.

To elucidate the evolution of the binary fraction, and to
address the discrepancy between the existing N-body and
simplified MC models, we have performed a grid of simulations
with our newly upgraded MC cluster evolution code. Note that
our MC code is very different from that of Ivanova et al. (2005).
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While their code assumes a constant core density with time
and samples binary interactions using MC techniques, our code
self-consistently models the global evolution of a cluster, using
MC techniques to sample the stellar distribution function when
applying the effects of two-body relaxation. The naming clash is
the unfortunate consequence of the popularity and applicability
of MC techniques in general.

2. MODERN SIMULATIONS

Our MC code self-consistently models the evolution of star
clusters due to the effects of two-body relaxation, evaporation
through a Galactic tidal boundary, dynamical scattering inter-
actions of binaries, physical stellar collisions, and now single
and binary stellar evolution. The details of the method and its
implementation are described in detail elsewhere (Joshi et al.
2000, 2001; Fregeau et al. 2003; Fregeau & Rasio 2007). Here
we focus on the addition of stellar evolution.

For coding simplicity and for more directed comparisons
with existing N-body simulations, we have incorporated the
BSE single and binary stellar evolution routines in our MC
code (Hurley et al. 2000, 2002). In our code stellar evolution is
performed for each object (single star or binary) during a time
step in step with dynamics. Since at early times a cluster can
lose a lot of mass due to supernovae, we make sure to limit the
time step so that no more than a small fraction of the total cluster
mass is lost in one step (typically we set this fraction to 10−3).

To test that our inclusion of the stellar evolution routines is
accurate, we have compared with the N-body results of Hurley
(2007), who evolved N = 105 cluster models with binary
fractions ranging from 0% to 10%. The results are shown in
Figure 2, which displays the evolution of the core to half-
mass radius ratio (rc/rh) with time. The data from Hurley
(2007) were extracted from that paper using ADS’s Dexter
Applet (Demleitner et al. 2001). For reference, we also plot
the evolution of a model with stellar evolution turned off, and a
model without an external tidal field. Since the model without
stellar evolution reaches core collapse in under 1 Gyr, and since
the model with no tide differs only minimally from the models
with all physics turned on, it is clear that stellar evolution drives
the evolution of the cluster. These models are thus a good test of
our treatment of stellar evolution. The agreement with N-body is
quite good given the vastly different methods, although the MC
models tend to expand more at early times due to supernovae.
The peculiar feature that the evolution does not appear to depend
strongly on initial binary fraction is reproduced in our models.
At late times (�15 Gyr), our models begin to diverge with N-
body. This is likely due to the fact that the clusters have lost
roughly 70% of their stars by this time, and our apocenter-based
treatment of the tide will tend to underestimate tidal mass loss
as the number of cluster stars decreases, when an energy-based
criterion is more appropriate (e.g., Giersz et al. 2008).

A more detailed discussion of the implementation of stellar
evolution in our MC code, and a suite of tests verifying the
accuracy of implementation, will be presented in the next paper
in the MC series (S. Chatterjee et al. 2010, in preparation). Given
the vast differences between the N-body method and our MC
method, we take the agreement between our models and those
of Hurley (2007) in Figure 2 as a sign that our implementation
of BSE in our code is at least consistent with that in N-body.

There is one aspect of our method that deserves special
mention, however. It is generally believed that if a cluster avoids
a collisional runaway phase (e.g., Freitag et al. 2006a, 2006b)
the stellar-mass black holes (BHs) formed early in a cluster’s
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Figure 2. Evolution of the core to half-mass radius ratio for N = 105 initial
models with 0%, 5%, and 10% primordial binaries, comparing our new MC
results with those of direct N-body (Hurley 2007). The thick solid lines show
the N-body models, with color denoting initial binary fraction, fb. The thin
solid lines show our MC simulation with all relevant physics turned on (stellar
evolution in singles and binaries, physical collisions, binary interactions, and a
tidal boundary), again with color denoting the initial binary fraction. For the sake
of comparison, MC simulations with stellar evolution turned off, and without a
tidal boundary are shown in the thin dashed and dotted lines, respectively. For
clarity, only the 0% initial binary fraction runs for these comparison models
are shown, since the 5% and 10% do not differ appreciably from the 0%
case. Clearly, the evolution of this model is driven primarily by the effects
of stellar evolution. With the exception of the increased expansion of the cluster
core at early times in the MC model, there is very good agreement between
MC and N-body for all three binary fractions considered, suggesting that the
implementation of stellar evolution in the MC code is consistent with that of
N-body. Note that for the sake of comparison, the core radius here is calculated
using the standard definition for N-body simulations (Casertano & Hut 1985).

(A color version of this figure is available in the online journal.)

lifetime will quickly sink to the core and dynamically decouple
from the rest of the cluster, undergoing their own evolution,
much like an independent small star cluster (Sigurdsson &
Hernquist 1993). The BH subsystem will quickly dissolve
through its own internal dynamics, ejecting all but one or two of
the BHs on a timescale of �1 Gyr. Aside from removing nearly
all BHs from the cluster, the result is a mild energy injection
into the cluster core, causing it to expand somewhat at early
times (Mackey et al. 2007). A typical star cluster of N = 106

objects will contain a subsystem of up to ≈10−3N = 103 BHs
evolving independently in the core (O’Leary et al. 2006). For
the N = 105 clusters considered in this work, the number is
≈100. The MC method is not designed to handle subsystems of
less than a few hundred objects, since they are often far from
spherically symmetric, and large angle scattering dominates.
(Note that we treat small-N encounters up to N = 4 via direct
integration.) We therefore truncate the mass function at 18.5 M�
(the largest progenitor mass not resulting in a BH) for the runs
presented here. The resulting discrepancy in rc/rh is important
only at early times and as Figure 2 shows is minimal.

We have performed several simulations of evolving clusters
for a grid in initial binary fraction and initial cluster virial radius
(or equivalently, central density). All our simulations start with
N = 105 objects initially (an object being either a binary or a
single star), and like the simulations of Hurley et al. (2007),
assume a Plummer density profile with no primordial mass
segregation, a “standard” Galactic tide (cluster at 8.5 kpc from
Galactic center, 1011 M� Galactic mass enclosed), a Kroupa
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Figure 3. Evolution of our MC cluster models in core number density–binary
fraction space. Conventions are as in Figure 1. Solid arrowheads represent values
measured at 14 Gyr, while dotted arrowheads are values measured before tidal
disruption (since these models did not last for 14 Gyr) at times between ∼8 and
∼13 Gyr for the medium initial density models, and between ∼2 and ∼12 Gyr
for the high initial density models. For reference, the detailed evolution of the
low-density fb = 0.05 model is shown in small gray dots. The low initial
density models have initial half-mass relaxation times of trh = 0.8 Gyr, the
medium density models have trh = 0.3 Gyr, and the high density models have
trh = 0.09 Gyr.

et al. (1993) IMF, and only hard binaries. Our IMF extends
from 0.15 to 18.5 M�, binary secondary masses are drawn
from a distribution flat in the mass ratio, the semimajor axis
a is drawn from a distribution flat in log a from a minimum
of amin = 5(R1 + R2), where Ri are the individual stellar
radii, to a maximum corresponding to an orbital velocity of
the lighter member equal to the local velocity dispersion, and
the eccentricity is drawn from a thermal distribution truncated at
the value corresponding to contact at amin. Note that our large a
cutoff for wide binaries is equivalent to the hard–soft boundary
for equal-mass stars (Fregeau et al. 2006).

Figure 3 shows the evolution of our models in core number
density–binary fraction space. It is clear that for all the but the
highest initial binary fraction cases, the core binary fraction
increases with time. The observational data points seem to be
consistent only with cluster models that started with relatively
low central densities (∼103 pc−3) and small hard binary
fractions (∼5%). As we discuss in the following section, the
core binary fraction is typically estimated observationally by
measuring the fraction of MS stars belonging to the binary MS,
and convolving it with an assumed binary mass ratio distribution.
It is not a priori evident that this MS binary fraction reflects the
underlying true binary fraction.

Why does the core binary fraction generally tend to increase
with time? As mentioned above, there are many strongly coupled
processes that affect the core binary fraction. However, the
general trend can be understood approximately as an interaction
between mass segregation of binaries into the core, and the
destruction of binaries preferentially in the core.

Figure 4 shows the evolution of our MC cluster evolution
model starting with fb = 0.05 and nc ≈ 102.5 pc−3. As the
evolution of rc/rh in the top panel shows, the cluster core
contracts steadily until it enters a phase of binary burning at
the relatively late time of ∼12 Gyr. The bottom panel shows the
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Figure 4. Evolution of our MC cluster model starting with fb = 0.05 and
nc ≈ 102.5 pc−3. The top panel shows the evolution of rc/rh with time. The
cluster enters a binary burning phase at ∼12 Gyr. The bottom panel shows
the evolution of the half-mass radius of single stars, rh,s (solid line), and the
half-mass radius of binaries, rh,b (dashed line), relative to the overall cluster
half-mass radius, rh. The differential mass segregation between the single and
binary populations is evident, with the single stars expanding slightly relative to
the bulk of the cluster, and the binaries contracting significantly. The quantity
rh,b/rh decreases steadily until ∼11 Gyr due to mass segregation, at which point
it begins to increase due to destruction of binaries preferentially in the cluster
core.

evolution of the half-mass radius of single stars, rh,s (solid line),
and the half-mass radius of binaries, rh,b (dashed line), relative
to the overall cluster half-mass radius, rh. The differential
mass segregation between the single and binary populations
is evident, with the single stars expanding slightly relative to
the bulk of the cluster, and the binaries contracting significantly.
The quantity rh,b/rh decreases steadily until ∼11 Gyr due to
mass segregation. It then begins to increase due to destruction
of binaries preferentially in the cluster core by strong dynamical
interactions and perturbed stellar evolution (see, e.g., Ivanova
et al. 2005, for a discussion of perturbed binary evolution).

Figure 5 shows the evolution of the number of single stars in
the core, Nc,s (solid line), and number of binaries in the core,
Nc,b (dashed line) for the same model. The quantity Nc,s declines
steadily due to standard gravothermal evolution, in which the
cluster core becomes denser and smaller in number with time
(e.g., Binney & Tremaine 2008). The quantity Nc,b, on the other
hand, is roughly steady until ∼11 Gyr due to mass segregation
of binaries into the cluster core.

As suggested by Figure 5, the core mass decreases with time,
as expected from standard gravothermal evolution. This is in
contrast to the simplified MC method of Ivanova et al. (2005), in
which the core mass steadily increases with time, due primarily
to mass segregation of binaries into a core of fixed density.

We note also that mass segregation of a binary into the
core implies, by energy conservation, a preferential expansion
of lighter single stars in the vicinity of the binary. (Energy
conservation is roughly applicable because the mass segregation
timescale is shorter than the local relaxation timescale, by a
factor of M/m, where M is the mass of the segregating object
and m is the mass of a background star.) This effect is not
included in the code of Ivanova et al. (2005), and is likely an
important factor in the discrepancy between their results and
ours.

Another important factor, as suggested by Figures 2 and 4, is
that the long-lived, high-density binary burning phase assumed
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Figure 5. Evolution of the number of single stars in the core, Nc,s (solid line),
and number of binaries in the core, Nc,b (dashed line), in our MC cluster
evolution model starting with fb = 0.05 and nc ≈ 102.5 pc−3. The quantity
Nc,s declines steadily due to standard gravothermal evolution, in which the
cluster core becomes denser and smaller in number with time. The quantity
Nc,b is roughly steady until ∼11 Gyr due to mass segregation of binaries into
the cluster core.

by Ivanova et al. (2005) may not be generic for globular clusters.
Instead, the “core contraction” phase may last a Hubble time,
and the cluster cores we observe now may have been much less
dense in the past (Fregeau 2008). Although the central density
in our models increases steadily with time, the local density
at the half-mass radius decreases with time, resulting in final
half-mass relaxation times that are a factor of ∼3 longer than
their initial values. In the cases where our models do enter the
binary burning phase before a Hubble time, we find that the core
binary fraction in this phase steadily decreases with time. This
behavior is consistent with the results of Ivanova et al. (2005).

While the core binary fraction in the majority of our models
increases with time, the overall cluster binary fraction remains
roughly constant with time. This is in good agreement with the
Hurley et al. (2008) N-body models inspired by NGC 6397,
and supports their use of the currently observed binary fraction
near the half-mass radius as a measure of the primordial binary
fraction (although the validity of comparison with NGC 6397
is not obvious, since the N-body models end with a factor of
5–10 fewer stars than NGC 6397 currently contains). For the
low-density fb = 0.05 model just described, 39% of the initial
binary population remains at 14 Gyr, 43% escape the cluster
due to the tidal field (compared with the 60% of single stars
that escape in the same fashion), 9% are destroyed via strong
dynamical interactions of binaries, and 8% are destroyed via
binary stellar evolutionary processes (possibly perturbed by
dynamics). In other words, in this case the overall binary fraction
remains roughly constant with time due to a balance between
preferential tidal stripping of single stars in the outskirts and
preferential destruction of binaries in the cluster core.

3. HIDING BINARIES

When using the offset MS method, what observers measure is
in fact the number of MS–MS binaries with mass ratios q � 0.5
relative to the total number of objects appearing in the MS
(which may include apparent single MS stars, comprised of a
MS star plus dim compact object companion). This fraction is
then corrected to account for the low mass ratio MS–MS binaries
that blend into the single MS, by adopting an assumed mass ratio
distribution. This final corrected figure is what is usually quoted
as the “observed binary fraction.” However, there is no a priori

Figure 6. Same as Figure 3, but for MS binaries.

reason to believe this quantity reflects the underlying binary
fraction among stars of all types. Hurley et al. (2008) showed
that, for the low binary fraction cluster models they considered
(fb � 10%), the observed binary fraction is a good measure of
the true binary fraction in the outer regions of a cluster, but can
be a serious overestimate in the core.

Since the general nature of the relationship between the
observed and true binary fraction is not obvious, we have plotted
in Figure 6 the evolution of our models in core number density–
observed core binary fraction space. The observed binary
fraction is calculated as NMS−MS/(NMS−MS + NMS + NMS−CO),
where NMS−MS is the number of MS–MS binaries of any mass
ratio in the core, NMS is the number of single MS stars in
the core, and NMS−CO is the number of MS–compact object
binaries in the core that appear near the MS. We count a MS–
compact object binary as near the MS if the total luminosity
of the binary is less than 10% more than that of the MS star
(this corresponds to a magnitude increase of 0.1), and if the
luminosity-weighted temperature of the binary is less than 10%
different from that of the MS star. Like the true binary fraction
plotted in Figure 3, small initial binary fraction models evolve
toward larger binary fractions. However, large initial binary
fraction models evolve toward drastically smaller observed
binary fractions. As a relatively extreme example, the model
with an initial binary fraction of 75% and initial central density
of ∼102.5 pc−3 has an observed core binary fraction of just 33%
at the end of the simulation. The true core binary fraction at
the end of the simulation is 91%. Of the core binaries, 23%
are MS–MS binaries, 32% are compact object–compact object
binaries, and 44% are MS–compact object binaries (see Table 1
for more details). As expected, the discrepancy between the
observed and the true binary fraction is due to compact object–
compact object binaries not being counted in the observed tally,
and MS–compact objects masquerading as single stars on the
MS.

4. THE IMPORTANCE OF SOFT BINARIES

An initial population of binaries that contains a substantial
soft component can be a significant cluster energy sink, since the
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Table 1
Population Breakdown of Core Binaries at 14 Gyr for the ∼102.5 pc−3 Initial

Core Density, 75% Initial Binary Fraction Model

Type Number Fraction (%)

MS–WD 139 44
WD–WD 101 32
MS–MS 74 23
NS–WD 1 0.3
HG–WD 1 0.3

Notes. The third column is the fraction of the total number of
core binaries represented by that binary type. “MS” denotes main
sequence, “WD” denotes white dwarf, “NS” denotes neutron star,
and “HG” denotes Hertzsprung gap star.

soft binaries are destroyed in dynamical scattering interactions.
The result is that the core of a cluster born with many soft
binaries will quickly contract as those binaries are ionized.
Could soft binaries increase the concentration of a cluster so
much that it would become core collapsed?

The total energy in soft binaries, for a distribution flat in the
log of the semimajor axis, is simply

Eb,s = Nb(Eb,hs − Eb,amax)

ln(amax/amin)
≈ NbEb,hs

ln(amax/amin)
, (1)

where amin and amax are the limits on the semimajor axis
distribution, Eb,hs is the energy of a binary at the hard–soft
boundary, Eb,amax is the energy of the least-bound binary, Nb
is the total number of binaries, and we have assumed that
amax � ahs. Note that this can also be written in the physically
more insightful form:

Eb,s ≈ Nb,sEb,hs

ln(amax/ahs)
, (2)

where Nb,s is the number of soft binaries, and ahs is the semi-
major axis at the hard–soft boundary. Assuming for simplicity a
cluster of equal-mass objects (binaries in this case) of mass mave
with mean one-dimensional velocity dispersion σ , this becomes

Eb,s ≈
3
2Nbmaveσ

2

ln(amax/amin)
. (3)

From the virial theorem, the total mechanical energy of a cluster
is simply Eclus = − 3

2Nmaveσ
2, where N is the number of cluster

objects, so
Eb,s

|Eclus| ≈ Nb

N ln(amax/amin)
. (4)

For an admittedly optimistic binary fraction of 1 (Nb = N ), and
realistic binary semimajor axis limits of amin = 5 × 10−2 AU
(corresponding to a contact binary during the pre-MS phase) and
amax = 103 AU (corresponding to a 107 day orbital period), the
energy in soft binaries is ≈10% of the total cluster mechanical
energy.

The question, of course, is if this amount of energy is sufficient
to make a cluster concentrated enough to appear to be core
collapsed. For our working definition of core collapse we assume
that a cluster core can be resolved with HST if its radius is at
least 1 arcsec in size. At a typical cluster distance of 10 kpc, this
corresponds to ∼0.05 pc. Starting with a King model of a given
mass, binary fraction, central concentration W0, and half-mass
radius rh, we calculate the total mechanical energy of the cluster
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Figure 7. Evolution of the core radius and core binary fraction for our “high-
density” initial model with a 90% initial binary fraction, including soft binaries.
The core contracts rapidly at the start of the evolution due to the destruction of
soft binaries, and quickly enters the binary burning phase.

within the half-mass radius, Eh (Binney & Tremaine 2008).
We then calculate the energy of the soft binaries, Eb,s. This
energy will be absorbed from the cluster when those binaries
are destroyed in dynamical interactions in and around the cluster
core. Keeping rh fixed (since the timescale for destruction of
soft binaries is shorter than the half-mass relaxation time),
we then calculate a new King model with half-mass energy
E′

h = Eh − Eb,s (note that Eb,s > 0 by construction). For the
new King model we calculate the new central velocity dispersion
and hence the new hard–soft boundary (which has moved to a
smaller binary semimajor axis), calculate the energy available in
the newly soft binaries, and iterate until the solution converges.
For a 5 × 105 M� cluster with half-mass radius rh = 5 pc
and initial core radius rc = 1.9 pc (W0 = 6, concentration
c = log10(rt/rc) = 1.25), an initial binary fraction of 100% with
the semimajor axis distributed flat in log a from 5×10−2 AU to
103 AU is sufficient to drive the cluster to a W0 = 10, c = 2.3
King model with core radius rc = 0.16 pc. (A W0 = 10 King
model has maximal binding energy within rh for fixed rh and
mass.) This is quite close to core collapsed, and may even be
classified as such if viewed with a ground-based telescope. In
fact, Wiyanto et al. (1985) showed that clusters enter the self-
similar stage of evolution (the “onset” of core collapse) when
W0 > 7.4, so such a model would reach core collapse quickly.
We have repeated this calculation with a binary distribution
that is lognormal in orbital period, as in Duquennoy & Mayor
(1991) or Fischer & Marcy (1992), with 〈log10 Pd〉 = 4.8 and
σlog10 Pd

= 2.3, where Pd is the period in days, and with the same
limits on the semimajor axis as above. The results are unchanged
with this binary distribution, largely because its peak lies at
wider orbits than the hard–soft boundary for globular clusters.

To test this scenario numerically, we have run models with
a binary distribution extending well beyond the hard–soft
boundary, to P = 107 days. Our “high density” model (cluster
mass 9 × 104 M�, standard wide mass spectrum, rh = 1.0 pc
initially) with fb = 0.9 (including soft binaries), evolves from
fb,c = 0.9 and rc = 0.6 pc to fb,c = 0.4 and rc = 0.05 pc
in just 3 Myr (see Figure 7). This is in striking agreement with
the energy argument above, which predicts rapid evolution to
rc = 0.1 pc for this model. Note that the energy argument
assumes all soft binaries will be destroyed on a short timescale.
To achieve this in practice requires efficient mass segregation
of binaries into the core, which has been aided in this case by a
wide mass spectrum, at the expense of inaccuracy in calculating
Eb,s. After the rapid initial contraction of the core, the cluster
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quickly (after a few Myr) enters into a long-lived binary burning
phase.

From the preceding discussion, it is evident that the dynamical
importance of soft binaries should not be ignored. If a cluster
is born with significant numbers of soft binaries, its evolution
may be vastly different from a similar cluster containing only
hard binaries. First, the rate of binary destruction is greatly
enhanced in clusters containing soft binaries, yielding a starkly
decreasing binary fraction with time. Second, the binary burning
phase is reached quickly (within a few Myr) due to soft binary
destruction. When only hard binaries are present, the binary
burning phase may not be reached within a Hubble time,
as shown, for example, by Figure 2. The implications for
our understanding of the current dynamical states of Galactic
globular clusters are profound, as certain properties of clusters
can be explained by the majority of clusters currently being
in the initial “core contraction” phase, and not yet in binary
burning (Fregeau 2008). We have provided here just a cursory
analysis of the effects of soft binaries. A more detailed study
should certainly be undertaken in the future.

5. DISCUSSION

Independent of the details, it seems clear that the hard binary
fraction in the core of a dense stellar system will generally
increase with time (with the exception of an initial hard binary
fraction �90%). Yet there is no compelling evidence that
clusters should be born with binary fractions smaller than the
typical field value of ∼50%, and observations yield core binary
fractions of just ∼10% in Galactic globular clusters. If the
observations are to be taken at face value, how then can they be
consistent with large initial binary fractions? One possibility, as
pointed out by Davis et al. (2008), is that the binary fraction is
a strong function of primary mass (Lada 2006), with the single
star fraction increasing to ∼75% for M dwarfs and lighter stars.
A Kroupa et al. (1993) IMF with a 25% binary fraction from
0.1 to 0.5 M� and a 50% binary fraction from 0.5 to 100 M�
yields an overall binary fraction of just 32%.

Another possibility is that most binaries born in clusters
are soft relative the cluster velocity dispersion, in which case
they will be destroyed very quickly by dynamics. If the binary
period distribution is uniform in log P from 0.1 to 107 days
as in Ivanova et al. (2005), the 32% overall binary fraction just
suggested corresponds to a hard binary fraction of merely ∼10%
for a cluster with central density 106 pc−3. As demonstrated
above, the early, rapid destruction of soft binaries may lead to a
binary burning phase within a short time (�5 Myr, depending
on initial conditions).

Aside from the initial binary properties, could it be that ob-
servations are under-counting the binary fraction significantly?
When we measure the binary fraction using an offset MC method
similar to what observers use, we find that clusters with large ini-
tial binary fractions (fb � 0.5) evolve toward smaller observed
core binary fractions (fb � 0.5). The discrepancy between the
observed and true core binary fractions is caused by compact
object–compact object binaries not being counted in the sample,
and MS–compact object binaries masquerading as single stars.

Could a binary be sufficiently wide to be resolved as two
single stars and hence missed as a binary? For the wide-field
camera on HST, one requires two turnoff mass stars in a binary
to be separated by roughly 4 pixels for the binary to be resolved.
For a cluster at a distance of 10 kpc, this corresponds to a
binary separation of ∼4 × 103 AU. For a cluster with a velocity
dispersion of 10 km s−1, this corresponds to a binary hardness

of Gm/av2
σ ≈ 2×10−3, which is too soft to survive dynamically

for even a short time.

6. SUMMARY

We have briefly described our inclusion of the BSE single
and binary stellar evolution routines in our MC globular cluster
evolution code (Hurley et al. 2000, 2002). We have compared
with the results of direct N-body simulations and found good
agreement, suggesting that our implementation of BSE in our
code is consistent with that in N-body.

We have used our newly upgrade MC code to study the
evolution of the core hard binary fraction in star clusters,
and in particular attempt to settle the apparent disagreement
between direct N-body and simplified MC techniques on its
evolution. We find that the core binary fraction generally
increases with time, even for low initial core density models
(nc ≈ 102.5 pc−3), with only very small initial binary fraction
models (fb � 0.05) producing the core binary fractions of
∼10% observed today. The increase in the core binary fraction
with time can be understood as an imbalance between mass
segregation of binaries into the core (and single stars out of
the core) and the destruction of binaries in the core directly
via strong dynamical encounters, and indirectly via dynamical
perturbation of binary stellar evolution processes. The overall
cluster binary fraction remains roughly steady with time, due to
the additional effect of preferential tidal stripping of single stars
from the cluster outskirts.

This evolution, however, refers to the true binary fraction.
When measuring the core binary fraction using an offset MC
method analogous to what observers use, we find that the
observed core binary fraction can seriously underestimate the
true core binary fraction. This results from compact object–
compact object binaries not being counted and MS–compact
object binaries masquerading as single stars in the observed
tally. In the course of creating more detailed models of M 67,
47 Tuc, M 4, and NGC 6397 to be compared with observations,
we are now developing a data reduction pipeline that includes
simulations of spectra for every star. Among our near future
plans is the creation of a cluster sky map in different bands,
to which we can apply the MS binary detection method to
determine more accurately how many binaries are missed by
the method.

Most of our discussion concerned hard binaries. However,
we also considered the effects of a substantial population of
soft binaries. We found that the energy sink represented by soft
binaries (for a typical binary period distribution) is sufficient
to cause the core of a typical globular cluster to contract
significantly. The result is not only a rapid, efficient destruction
of a significant number of binaries at early times, but also a much
earlier onset of the binary burning phase, resulting in enhanced
binary destruction in the core with time.
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