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ABSTRACT

We study the dynamical evolution of globular clusters containing primordial binaries, including full single and
binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and
binary stellar evolution codes SSE and BSE from Hurley et al. We describe the modifications that we have made
to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of
the code. We show that our code finds very good agreement with direct N-body simulations including primordial
binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated
clusters using stellar evolution compared with simulations without any stellar evolution. In particular, we find that
the mass loss from the stellar evolution acts as a significant energy production channel simply by reducing the total
gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the
binary-burning quasi-steady state of the cluster evolution. We simulate a large grid of models varying the initial
cluster mass, binary fraction, and concentration parameter, and we compare properties of the simulated clusters
with those of the observed Galactic globular clusters (GGCs). We find that simply including stellar evolution in
our simulations and assuming the typical initial cluster half-mass radius is approximately a few pc independent
of mass, our simulated cluster properties agree well with the observed GGC properties such as the core radius
and the ratio of the core radius to the half-mass radius. We explore in some detail qualitatively different clusters
in different phases of their evolution and construct synthetic Hertzsprung–Russell diagrams for these clusters.

Key words: binaries: general – blue stragglers – Galaxy: kinematics and dynamics – globular clusters: general –
methods: numerical
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1. INTRODUCTION

Star clusters in general, and the Galactic globular clusters
(GGCs) in particular, have been studied extensively for many
years. As tracers of the galactic potential, their dynamical
history tells us something about the formation and evolution
of our Galaxy. As dense stellar environments, their interesting
constituent populations (including, e.g., blue straggler stars,
cataclysmic variables, and low-mass X-ray binaries) inform our
understanding of binary stellar evolution through its interaction
with dynamics. The study of the evolution of globular and
other dense star clusters has had a somewhat long and varied
history (e.g., Heggie & Hut 2003). Before observations showed
that globular clusters contained dynamically significant number
of binaries, theoretical efforts focused on understanding the
process of core collapse and the ensuing post-collapse evolution
driven by three-body binary formation. Once it became clear
in the early 1990s from observations that clusters contained a
sufficient number of binaries such that they must have been born
with substantial “primordial” populations, theory emphasized
properties of clusters in the “binary burning” phase, in which
the cluster core is supported against collapse by super-elastic
dynamical scattering interactions of binary stars. More recently
it has been realized that pure point-mass interactions of binaries
result in equilibrium cluster core radii in the binary burning
phase that are a factor of ∼10 smaller than what is observed, and
therefore many efforts have focused on alternative cluster energy
sources such as central intermediate-mass black holes, expedited
stellar mass loss from compact object formation via collisions,
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or prolonged mass segregation of compact objects (Heggie et al.
2006; Fregeau & Rasio 2007; Trenti 2006; Chatterjee et al.
2008; Merritt et al. 2004). In a similar vein, recent theoretical
work, combined with observations showing that the core binary
fraction in many clusters is fairly low (�10%), suggests that
clusters may be born with remarkably low binary fractions of
just a few percent (Fregeau et al. 2009). Such a small primordial
binary fraction would be surprising since observations of young
stars suggest that star formation yields binary fractions on the
order of ∼50% (Duquennoy & Mayor 1991; Fischer & Marcy
1992). Clearly, our understanding of globular cluster evolution
has changed considerably over the past few decades, much of
which has been driven by numerical simulations.

Among computational tools for studying the dynamical evo-
lution of star clusters, the Hénon Monte Carlo (MC) technique
(Hénon 1971a, 1971b) represents a balanced compromise be-
tween precision and speed. The MC method allows for a star-by-
star realization of the cluster, with its N mass shells representing
the N stellar objects in the cluster (either single or binary stars).
It assumes, most importantly, spherical symmetry and diffusive
two-body relaxation, allowing time integration on a relaxation
timescale, and a computational cost that scales as N log N . We
have developed our Hénon MC cluster evolution code (which
we call CMC, for “Cluster Monte Carlo”) over the past decade
(Joshi et al. 2000, 2001; Fregeau et al. 2003; Fregeau & Rasio
2007; henceforth Papers I, II, III, and IV, respectively). Since
it allows for a star-by-star description of the cluster at each
timestep, it is relatively easy to add physical processes beyond
two-body relaxation to the code. We have previously added the
effects of a Galactic tidal field, dynamical scattering interac-
tions of binary star systems, and physical collisions between
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stars. In this paper, we describe the addition of stellar evolution
of single and binary star systems. Many stars in a cluster evolve
internally on a timescale shorter than the age of the cluster. At
early times, they may lose a substantial fraction of their mass
via stellar winds. At later times, they may evolve off the main
sequence, changing their masses and radii (and hence collision
cross section), and possibly receiving systemic velocity kicks
when they become compact objects. Since the binding energy
of binary stars is an important fuel source that can postpone the
deep core collapse of star clusters, stellar evolution of binary
systems directly affects their global evolution. Conversely, the
properties of the cluster environment feed back on stellar evo-
lution, modifying the evolutionary pathways of binary systems
and the properties and number of interesting binary systems
relative to the low-density Galactic field (e.g., X-ray binaries;
Ivanova et al. 2006, 2008).

Previous cluster evolution studies that include stellar evolu-
tion have improved our understanding of the global evolution
of clusters greatly, identifying several distinct stages of evo-
lution. At early times, as the stars are forming and the most
massive stars have already begun nuclear burning, the cluster
loses mass through residual gas expulsion and stellar winds, re-
sulting in cluster expansion during the first few Myr of evolution
(Hurley et al. 2001, 2002). Shortly thereafter, if a runaway col-
lision scenario is avoided (e.g., Freitag et al. 2006a), two-body
relaxation dominates, resulting in a fairly long-lived (from a few
to tens of Gyr) phase of core contraction. Once the core density
becomes high enough for the energy generated in binary scatter-
ing interactions to balance the energy carried out of the core by
two-body relaxation, a potentially very long-lived (up to tens of
Hubble times or more) phase of “binary burning” ensues (e.g.,
Hurley 2007; Fregeau & Rasio 2007). Once the population of
binaries is exhausted in the core, the cluster goes into deep core
collapse. In the classical, point-mass limit, deep core collapse
is arrested by the formation of a “three-body binary” and fol-
lowed by a phase of gravothermal oscillations (Heggie & Hut
2003). However, three-body binary formation may be inhibited
by stellar collisions in sufficiently young and massive clusters
(Freitag et al. 2006b).

With the exception of a few recent simulations, most nu-
merical studies that include stellar evolution have either been
limited in the number of stars they can treat or have adopted a
narrow initial mass function (IMF) with very simplified stellar
evolution recipes (e.g., Giersz 1998; Giersz & Spurzem 2000;
Joshi et al. 2000, 2001; Fregeau et al. 2003; Fregeau & Rasio
2007). Stars in star clusters are born with a range of masses up
to ∼100 M�, and down to at least the hydrogen-burning limit
(e.g., Salpeter 1955; Miller & Scalo 1979; Kroupa 2001), so one
should evolve the full spectrum of stellar masses as realistically
as possible to properly treat the influence of stellar evolution on
global cluster evolution. Emphasis has recently been placed on
comparing observed properties of GGCs with theoretical pre-
dictions. Comparison of observed cluster structural properties
with theory (e.g., Hurley 2007; Fregeau & Rasio 2007) suggests
that either an additional energy source is “puffing” up cluster
cores (Mackey et al. 2008; Trenti et al. 2007a; Chatterjee et al.
2008), or perhaps the clusters are not in the expected evolution-
ary states, namely binary burning (Fregeau 2008). For example,
recent N-body simulations by Hurley (2007) show that the core
contraction phase can last a Hubble time, resulting in a cluster
core radius that is larger than one would expect were the cluster
in the binary burning phase. In these simulations, the core con-
traction phase is prolonged by mass loss from stellar evolution.

Clearly, stellar evolution may be an important component in
globular cluster evolution.

To more properly treat stellar evolution, we have recently
coupled to CMC the stellar evolution recipes of Hurley et al.
(2000, 2002, hereafter referred to as SSE and BSE, respectively).
We choose SSE and BSE for ease of implementation, and
for more direct comparisons with N-body calculations, which
commonly use the same software packages to treat stellar
evolution. In Section 2, we describe the implementation of stellar
evolution in our code. In Section 3, we validate it by comparing
with existing cluster evolution calculations in the literature. In
Section 4, we demonstrate the importance of stellar evolution
by comparing simulations that do not include it. In Section 5,
we apply our newly updated code to the evolution of a large grid
of cluster models, highlighting typical behavior and comparing
with observations. Finally, in Section 6, we summarize and
conclude.

2. METHOD

CMC treats a number of important physical processes, includ-
ing two-body relaxation, the tidal effects of a host galaxy, strong
binary–binary (BB) and binary–single (BS) scattering interac-
tions, and direct physical collisions between stars (Paper IV).
Here, we describe the recent addition of SSE and BSE (Hurley
et al. 2000, 2002) to treat stellar evolution of single and binary
stars.

2.1. Stellar Evolution

For ease of implementation and for more direct comparisons
with direct N-body, we use the SSE and BSE stellar evolution
routines, as described in detail in Hurley et al. (2000, 2002).
For single stars, SSE comprises analytic functional fits to
theoretically calculated stellar evolution tracks as a function
of metallicity and mass. Binary star systems are treated using
BSE, which uses the same fitting formulae for each star, but with
treatments of physics relevant to binaries, including stable and
unstable mass transfer, common envelope evolution, magnetic
braking, tidal coupling, and the effects of neutron star and
black hole birth kicks. Thus, BSE is in effect a superset of
routines which can treat binary stellar evolution and calls the
SSE routines to evolve the individual binary components. To
simplify our discussion we refer to SSE and BSE collectively as
BSE with the understanding that single stars are evolved using
SSE and binary stellar evolution is treated using BSE.

As described above, CMC allows for a star-by-star description
of the cluster at every timestep, allowing for the inclusion of
additional physics. The stellar properties of binary and single
stars are updated in step with dynamics via function calls to the
BSE library. As described in detail in Papers I–IV, CMC uses
a shared timestep which must be set as small as the smallest
characteristic timescale for each physical process. We set the
characteristic timescale for stellar evolution to the timescale for
the cluster to lose a fraction of 0.001 of its current total mass. In
this way, any cluster expansion from stellar evolutionary mass
loss is properly resolved.

One aspect of our BSE implementation requires special
mention, however. The evolution of high-mass stars (�100 M�)
is rather uncertain and can vary greatly depending on the wind
mass-loss prescription. These high-mass stars are also quite rare
and short-lived, so observational constraints are limited. In BSE,
stars with mass >100 M� are evolved as if they were 100 M�



No. 1, 2010 MONTE CARLO CLUSTER EVOLUTION. V. 917

stars. When their dynamical properties are returned from BSE,
their original (>100 M�) masses are returned.

2.2. Collisions

As described in Paper IV, collisions are treated in the sticky-
sphere approximation, which was shown to be remarkably
accurate for the velocity dispersions found in globular clusters
(Freitag et al. 2006a, 2006b). When two stars collide, their
properties (e.g., stellar type and effective age) are set according
to the BSE merger matrix and prescriptions as described in
Hurley et al. (2002). In CMC, this is implemented in the
following simple way. The two stars are passed to BSE as a
very tight, eccentric binary with nearly zero pericenter distance
and evolved for a very short time until they merge. The
properties of the merger product are then naturally set within
BSE and returned to CMC as a single star. BSE by default
assumes full mixing of nuclear fuel during a collision involving
main-sequence stars (MSSs). We adopt this same rejuvenation
prescription for the simulations presented in this paper, but
note that the amount of mixing in the collision product should
depend on the details of the interaction parameters leading
to the collision, as well as the evolutionary stages of the
collision progenitors (e.g., Lombardi et al. 1995, 1996, 2002;
Sills et al. 1997, 2001). In fact, using detailed smoothed particle
hydrodynamics (SPH) calculations, it is found that the amount
of mixing as a result of a collision may be minimal, especially
for collisions involving evolved stars (Lombardi et al. 1995,
1996).

2.3. Tidal Truncation Treatment

Globular clusters are not isolated systems, but are in fact
subject to the tidal field of their host galaxy. The assumption
of spherical symmetry inherent in MC codes like CMC does
not allow for a direct calculation of stellar loss at the tear-
drop-shaped tidal boundary. Instead, MC codes employ an
effective tidal mass-loss criterion that attempts to match the
tidal mass loss found in direct N-body simulations. Since stars
are lost from the tidal boundary on a dynamical timescale and
MC codes operate on the (much longer) relaxation timescale,
the appropriate effective criterion is not obvious. There have
been two main suggestions in the literature for the appropriate
tidal truncation criterion. Perhaps the most natural one is to
immediately strip any star whose apocenter (ra) lies outside the
Roche lobe radius of the cluster (which we call the tidal radius,
rt):

ra > rt . (1)

This “apocenter criterion” has been used exclusively in CMC
previously (Papers I–IV). Earlier, in the absence of large-
N direct N-body simulations, comparisons were made with
two-dimensional (2D) Fokker–Plank models and the apocenter
criterion showed excellent agreement (for details see Papers I
and II).

Another simple criterion is the “energy criterion,” in which
any star with a specific orbital energy above some critical energy
is immediately stripped:

Eorb > φt , (2)

where φt is the cluster potential at the tidal radius (Spitzer 1987).
However, a stellar orbit that instantaneously satisfies the above
criterion may still remain bound if it is scattered back to a lower
energy orbit before it can escape. To account for this effect, a

less obvious but empirically validated correction factor to the
energy criterion above is suggested by Giersz et al. (2008):

Eorb > αφt , (3)

where α is an N-dependent parameter given by

α = 1.5 − 3

[
ln(γN )

N

]1/4

. (4)

We have re-examined and tested these two criteria (Equations (1)
and (3)) for tidal stellar loss to determine which one agrees
better with the latest results from direct N-body simulations.
Baumgardt & Makino (2003) study in detail the tidal dissolution
timescales of a cluster in a tidal field varying the initial number
of stars and the initial mass of the cluster. We have repeated a
large subset of this extensive study of tidal disruption using
CMC with both tidal truncation criteria and compared the
results.

We followed the exact same prescription for setting up the
initial conditions of the clusters as described in Baumgardt &
Makino (2003). Each cluster in this set of runs is assumed to
have a circular orbit around the Galactic center with radius
RG = 8.5 kpc. A logarithmic potential (φ(RG) = V 2

G ln RG) for
the galaxy is assumed with circular velocity VG = 220 km s−1

to calculate the tidal radius. The initial position and velocity of
each star of the cluster are chosen from a King model distribution
function with central concentration parameter W0 = 7. The
initial virial radius (rv) is adjusted in such a way that the King
tidal radius is equal to the tidal radius of the galactic field
calculated according to

rt =
(

Gmc

2V 2
G

)1/3

R
2/3
G , (5)

where mc is the cluster mass (Baumgardt & Makino 2003). The
initial masses of the stars are chosen according to Kroupa (2001,
their Equations (1) and (2); henceforth, simply referred to as
K01 without the equation numbers) mass function in the range
0.1–15 M�. We vary the initial number of stars in the clusters
between 16 × 103 and 106. There are no primordial binaries in
these simulations. We use γ = 0.02 (see Paper IV, Equations (4)
and (5)) in the Coulomb logarithm for these simulations.

Figure 1 shows the evolution of the bound mass in a cluster in
the standard Galactic tidal field as described above. We find
that the energy criterion results agree better with the direct
N-body results, when available from Baumgardt & Makino
(2003). The agreement is much poorer when using the apocenter
criterion. For example, for the direct N-body run with initial
N = 64 × 103, the time when the cluster loses 80% of its initial
mass is ≈11 Gyr. Using CMC with the energy criterion this
value is ≈10 Gyr, whereas with the apocenter criterion the same
cluster does not lose 80% of its initial mass within 20 Gyr, the
integration stopping time.

Since the energy criterion originally suggested by Giersz et al.
(2008) gives significantly better agreement with existing direct
N-body results (Figure 1; see also more detailed comparisons
in Section 3), we adopt the energy criterion here, in contrast
to what was used in our earlier works (Papers II – IV), unless
otherwise mentioned.

One should note, however, that the cluster mass range where
direct N-body results are available is not representative of the
actual GGC population. Since no direct N-body results exist
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Figure 1. Evolution of the total cluster mass for clusters with various initial
number of stars and masses. In each case, a Galactocentric distance rG = 8.5 kpc
and a standard Galactic tidal field are assumed. The initial number of stars (N)
is noted in each panel. The solid black line and the dashed black line in each
panel show CMC results with the apocenter criterion and energy criterion,
respectively. The dotted blue lines in the first four panels show the NBODY4
results for the same initial clusters for comparison. The NBODY4 data are
taken from the simulations described in Baumgardt & Makino (2003). Similar
simulations using NBODY4 do not exist for a higher N. In each case, the energy
criterion leads to a higher mass-loss rate than the apocenter criterion. When
available, the results using the energy criterion agree better with the direct
N-body results.

(A color version of this figure is available in the online journal.)

for more massive clusters, it is not possible at present to
determine which approximation is more accurate for larger N.
Nevertheless, Heggie & Giersz (2009) have confirmed that the
present-day mass-loss rate from NGC6397 (N ∼ 105) using
an MC model with the energy criterion agrees well with their
direct N-body model for the same cluster during its last ∼1 Gyr
evolution.

The two criteria above are treated as initial options in CMC
and either one can be selected at the beginning of a simulation.
At each timestep, the amount of mass lost is calculated using
the chosen criterion in an iterative way to obtain the bound mass
(see Paper II for details).

3. COMPARISON WITH DIRECT N-BODY RESULTS

In this section, we validate our treatment of stellar evolution
by comparing with results from previously published studies
using the popular direct N-body code NBODY4 (Aarseth 2003).
Since the direct N-body simulations make few approximating
assumptions, we treat them as a standard for validation.

One of the largest simulations treating all relevant physical
effects including primordial binaries and stellar evolution was
performed by Hurley et al. (2007) and Hurley (2007). In
particular, they studied the evolution of the core properties,
binary number fraction in the core as well as in the full cluster,
and the evolution of the bound number of stars. Since both
these works present data from a common set of simulations we
henceforth collectively call them Hurley07.

3.1. Initial Conditions

We choose from Hurley07 the simulations with a number
Ni = 105 initial objects (the largest initial Ni in their set of
simulations), with primordial binary fractions fb = 5% and
fb = 10% (their K100-5 and K100-10 models, respectively).
Throughout this work we count each binary as one object. Thus
a cluster with Ni = 105 and fb,i = 5% initially has 95,000
single stars and 5000 binaries. We simulate clusters using CMC
with initial conditions as close as possible to the Hurley07
simulations mentioned above. The initial stellar positions and
velocities are chosen from a virialized Plummer sphere. The
stellar masses for the single stars are chosen from the IMF
presented in Kroupa et al. (1993, Equation (14)) in the range
0.1–50 M�. The binary masses and their orbital properties, such
as the semimajor axes and eccentricities are directly obtained
from Hurley07 (private communication). Although the binary
masses and their orbital properties are directly imported, their
initial positions are not. These binaries are randomly inserted
in the cluster. For each set of simulations we use two different
initial seed values to create the velocities, positions, and single
star masses, and obtain two realizations of the same initial
cluster.

Metallicity is fixed at z = 0.001. Each cluster has an
initial virial radius rv = 8.5 pc which corresponds to a Roche-
filling cluster with tidal radius rt ∼ 50 pc, consistent with a
Galactic tidal field with a Galactic rotation speed 220 km s−1 at
a Galactocentric distance 8.5 kpc (for a detailed description see
Hurley 2007, and references therein). We call these simulations
hcn1e5b5 and hcn1e5b10, respectively (Table 1).

Throughout this section for comparison with direct N-body
results we use γ = 0.02 in the Coulomb logarithm. Following
the default setup for BSE used in NBODY4 black hole birth
kicks are not considered. Neutron star birth kicks are drawn
from a Maxwellian distribution with velocity dispersion σ =
190 km s−1 (Hansen & Phinney 1997).

3.2. Comparison of Results

For the global evolution of a dense cluster, the evolution of the
core is extremely important since throughout the evolution the
global properties of the cluster are determined by the balance of
energy in and out of the core. In addition, the core radius (rc) is
an observable structural property of a cluster. The evolution of
rc is one of the most convenient theoretical ways to characterize
the distinct phases of a cluster’s evolution. Thus, a basic test
for the validity of a cluster simulation is to compare the evolution
of the core radius (rc) and the ratio of the core to half-mass radius
(rc/rh).

Note that for all our simulated clusters in this work, rc is
the density-weighted core radius (Casertano & Hut 1985) com-
monly used in N-body simulations, unless otherwise specified.
This is not a directly observable quantity and can differ from
the observed rc by a factor of a few (Hurley 2007; Trenti et al.
2010). To be consistent in our comparisons with direct N-body
results, in this section we use the definition of rc as used in
NBODY4 (Trenti et al. 2007b, Equation (6)) which is a variant
of the density-weighted core radius in Casertano & Hut (1985).

Figure 2 shows the evolution of rc for run hcn1e5b5 (Table 1)
and K100-5 in Hurley07. The scale-free quantity rc/rh is also
plotted for each run. The core radius expands due to stellar
evolution mass loss during the first ∼200 Myr. The core then
contracts at a steady rate until a short time after ∼1.5×104 Myr.
The core radius then attains a relatively steadier value as
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Table 1
Initial Conditions for Comparison Runs with Hurley07

Name N M (104 M�) Profile IMF rt (pc) rv (pc) fb

hcn1e5b5 105 5 Plummer K93a [0.1, 50] M� 51 8.5 0.05
hcn1e5b10 105 5 Plummer K93 [0.1, 50] M� 51 8.5 0.1

Note. a Kroupa mass function as described in Kroupa et al. (1993, Equation (14)).

Figure 2. Evolution of rc (top) and rc/rh (bottom). In each panel, the solid
black lines show results from simulations using CMC. The two black lines
show the results using two different realizations of the same initial cluster
using two different initial seeds for model hcn1e5b5 (Table 1). The red
dashed lines show results from Hurley07 for their K100-5 model. In the top
and bottom panels, Hurley07 results are taken from Hurley et al. (2007) and
Hurley (2007), respectively. Although they are from the same simulation (private
communication), the results for rc/rh are not shown beyond 16 Gyr in Hurley
(2007). All data from Hurley07 used for comparison in this work are extracted
using ADS’s Dexter data extraction applet (Demleitner et al. 2001).

(A color version of this figure is available in the online journal.)

the cluster reaches the binary-burning phase (e.g., Fregeau &
Rasio 2007). All of these qualitatively different phases of the
evolution of a cluster are reproduced using CMC with excellent
agreement.

One of the key results of Hurley07 is that the overall binary
fraction (fb) remains close to the primordial value throughout
the evolution of the cluster (also see Fregeau et al. 2009). This
result has immense observational significance. In practice, only
the present-day properties of a cluster are observed. This result
from Hurley07 indicates that if a present-day binary fraction of
the cluster close to rh can be observed the primordial hard fb
should have been close to this observed value. Figure 3 shows
the evolution of the core (fb,c) and the overall fb from CMC
simulation hcn1e5b5 and direct N-body simulation presented in
Hurley07. Binaries preferentially sink to the center due to mass
segregation and the single stars typically get tidally disrupted
from the tidal boundary. These two effects compete with each
other—the first reduces and the second increases fb outside
the core. For the simulated cluster these two effects more or
less balance each other. For the simulated cluster we reproduce
the results presented in Hurley07 and verify that the overall fb
remains close to the primordial value whereas fb,c increases over

Figure 3. Comparison of evolution of the core and the overall binary fraction.
Dashed red lines show results from Hurley et al. (2007, their K100-5 run). Solid
black lines show results from CMC runs using two realizations of the model
hcn1e5b5 (Table 1). In each set, the top line shows the binary fraction within
the core and the bottom line shows that for the whole cluster.

(A color version of this figure is available in the online journal.)

Figure 4. Same as Figure 3, but using results from simulation hcn1e5b10. The
CMC results are compared with the K100-10 simulation of Hurley07.

(A color version of this figure is available in the online journal.)

time. Similar results are found for the simulation hcn1e5b10
(Figure 4).

We now focus on the evolution of the number of binaries
in the core (Nb,c). The evolution of the total number of core
binaries is interesting for various reasons. The formation rates
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Figure 5. Evolution of number of binaries within rc (Nb,c). The solid black
lines show the results from CMC runs hcn1e5b5 and the red dashed line shows
results from direct N-body run K100-5 from Hurley07.

(A color version of this figure is available in the online journal.)

of interesting stellar objects such as X-ray binaries and blue
straggler stars and their properties are directly dependent on
Nb,c, motivating many detailed studies focusing on its evolution
(e.g., Hurley et al. 2002; Ivanova et al. 2005, 2006, 2008;
Fregeau et al. 2009). On the one hand, the core binary number
(Nb,c) increases due to mass segregation. On the other hand,
strong interactions involving BS and BB encounters can lead to
direct physical collisions or destruction of binaries and reduce
Nb,c. In addition, binary stellar evolution can destroy binaries via
evolution-driven mergers and disruptions. Since the evolution
of Nb,c is dependent on these competing effects, it is not simple
to predict its evolution a priori. Figure 5 shows the evolution
of the number of core binaries (Nb,c) for CMC run hcn1e5b5
and direct N-body run K100-5 from Hurley07 for comparison.
The evolution of Nb,c is reproduced almost exactly within the
numerical fluctuations of the simulations. Over time the number
of core binaries (Nb,c) decreases.

It is also interesting to study the number fractions of binaries
and single stars within the core compared to the global popu-
lation. Although Nb,c decreases over time, due to mass segre-
gation effects the number single stars within rc decreases more.
Figure 6 shows the evolution of the number fractions of single
stars (ns,c) and binaries (nb,c) within rc for the same simulations
as above. During the first ∼104 Myr nb,c remains more or less
constant whereas ns,c decreases by ∼0.5 of the initial ns,c due
to mass segregation effects. Followed by this phase, BS/BB
interactions as well as stellar evolution destroy core binaries
decreasing nb,c. However, throughout the evolution nb,c > ns,c.
The combined effects of the above lead to the overall increase
in fb,c over time as seen in Figures 3 and 4. Note that al-
though qualitatively CMC results and the direct N-body results
agree, the agreement is not as excellent as the previous com-
parisons. For example, for the evolution of nb,c there can be up
to ≈20% difference in the absolute value depending on the age
of the simulated cluster. The reason behind this larger differ-
ence compared with the excellent agreement for the evolution
of Nb,c (Figure 5) originates from the approximations adopted

Figure 6. Evolution of the fraction (by number) of binary and single stars within
the core. Thick black lines show the results from CMC for model hcn1e5b5
(Table 1). Thin red lines show the same from Hurley07 (their model K100-5).
Solid and dashed lines show the number of singles and binaries within rc,
respectively. All numbers are normalized with the total number of that species
at that time in the cluster (e.g., Nb,c/Nb for the binaries). Both results clearly
show the effects of mass segregation since throughout the evolution a higher
fraction of binaries reside in the core.

(A color version of this figure is available in the online journal.)

Figure 7. Comparison of the evolution of the number of single and binary stars
that remain bound to the cluster. Red lines show results obtained from Hurley07
(their model K100-5). Black lines show results from CMC runs using two
different realizations of model hcn1e5b5 (Table 1). Solid lines for both cases
show the number of single stars bound at any given time. Dashed lines show the
same for binaries. All numbers are normalized to the initial number of the same
species (single or binary).

(A color version of this figure is available in the online journal.)

in the tidal treatment in MC methods. The energy criterion
(Equation (3); Giersz et al. 2008) based tidal removal of stars
adopted in CMC loses stars from the tidal boundary at a rel-
atively lower rate (Figure 7). Hence, at a given time the total
number of bound single and binary stars in CMC are higher
than those in Hurley07 making both nb,c and ns,c calculated
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Figure 8. Evolution of the fraction of double-degenerate binaries within rc with
respect to all core binaries. Black solid and red dashed lines show results from
CMC simulations (model hcn1e5b5, Table 1) and direct N-body simulation in
Hurley07 (their model K100-5), respectively.

(A color version of this figure is available in the online journal.)

using CMC systematically lower than the same calculated in
Hurley07.

Another interesting result presented in Hurley07 is the evo-
lution of the fraction of binaries in the core where both com-
ponents are compact objects. We call them double-degenerate
binaries following Hurley07. In Figure 8, we show the evolu-
tion of the fraction of double-degenerate core binaries for CMC
run hcn1e5b5 and direct N-body run K100-5. The fraction of
double-degenerate binaries in the core depends on all physi-
cal processes in the cluster in a complicated way. Two-body
relaxation drives mass segregation in the cluster determining
the densities at different radial regions of the cluster as well as
radius-dependent velocity dispersion. This in turn directly af-
fects the local BS/BB scattering cross section at a given time,
consequently determining the survivability of a given binary at
some radial position in the cluster, along with the properties of
the binary. Changing the binary stellar and orbital properties
in turn modifies the evolutionary pathways taken by the binary
members and, consequently, compact object formation. Stellar
evolution and dynamical effects thus in tandem affect the frac-
tion of double-degenerate binaries in the core. The CMC results
agree qualitatively with Hurley07 results indicating that not only
the dynamical effects but also the stellar evolution and the rate
of compact object formation are modeled reasonably accurately.
Nevertheless, CMC simulations tend to overproduce the double
degenerate binaries within the core compared to the Hurley07
simulations. Note that this result is subject to numerical fluctua-
tions to a high degree since there are only a small number (e.g.,
14 on an average for one realization of hcne5b5) of double
degenerate binaries in the core throughout the evolution. This
quantitative disagreement may also result if the version of BSE
used in NBODY4 and thus in Hurley07 simulations and that
integrated with CMC are not exactly the same.

4. COMPARISON WITH SIMULATIONS WITHOUT
STELLAR EVOLUTION

We now examine the effects of stellar evolution on the evolu-
tion of the global observable properties of a GC, by performing

Table 2
Initial Conditions for Comparison Runs Including and Leaving Out Stellar

Evolution

Name N Profile IMF fb

kw4b03 105 King K01 [0.1, 1.2] M� 0.03
kw4b1 105 King K01 [0.1, 1.2] M� 0.1
kw4b3 105 King K01 [0.1, 1.2] M� 0.3
kw7b0 5 × 105 King K01 [0.1, 18.5] M� 0
kw7b1 5 × 105 King K01 [0.1, 18.5] M� 0.1

comparisons to simulations without stellar evolution. The initial
conditions for these simulations are summarized in Table 2.

Our previous paper, Paper IV, showed results from simula-
tions without stellar evolution, but all other physical processes
were included. In the absence of an implementation of full sin-
gle and binary stellar evolution, Paper IV restricted itself to
simulations with a narrow range of masses in the IMF. We first
compare the results with stellar evolution with a small subset
of the previous runs from Paper IV without stellar evolution
with the narrow IMF as an example. Since this is for the pur-
pose of comparison, we use the apocenter criterion (Section 2)
for the tidal treatment to be consistent with Paper IV for these
simulations.

For each of these simulations, the initial stellar positions and
velocities are chosen from a King profile with the concentration
parameter W0 = 4. For each simulation Ni = 105. The stellar
IMF is chosen from the stellar MF presented in K01. The initial
binary fraction is fb = 0.03, 0.1, or 0.3. The mass of each binary
companion is chosen in the range 0.1–mp, where mp is the mass
of the primary, from a uniform distribution in mass ratios. The
binary periods are chosen from a distribution flat in log a within
physical limits, where the hardest binary has a > 5× the sum
of the stellar radii of the companions and the softest binary is at
the local hard–soft boundary. Binary eccentricities are thermal
(e.g., Heggie & Hut 2003). For each of these initial conditions,
one simulation is done including stellar evolution and the other
leaving it out.

We find that, even for the simulations with a small range of
initial stellar masses, where the stellar evolution mass loss is
not as severe as in a realistic cluster, for low fb stellar evolution
can influence the overall cluster evolution to a certain extent.
Figure 9 shows the evolution of rc/rh. The results are shown for
runs kw4b0.03, 0.1, 0.3 (see Table 2). From top to bottom
the primordial binary fractions fb are 0.03, 0.1, 0.3, respectively.
For fb = 0.03 even with the narrow mass range, the two curves
start diverging when the most massive stars (in this case 1.2 M�)
evolve off their MS and lose mass via compact object formation
after ≈3.4 Gyr.

Binary interactions take place throughout the evolution of
the cluster. As the initial fb is increased, energy available
from super-elastic scattering of binaries becomes relatively
more important compared to the energy produced from stellar
evolution mass loss. Thus for this narrow range of masses, as the
binary fraction is increased, the difference between the results
from simulations including stellar evolution and results without
including stellar evolution reduces. For example, evolution of
the cluster with initial fb = 30% is very similar with and
without stellar evolution taken into account. The only difference
is that at the quasi-steady binary-burning phase including stellar
evolution makes rc/rh bigger by about 30%. In each of these
clusters, the central densities are not very high (∼104 M� pc−3)
so direct SS collisions are not dominant. When direct SS
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Figure 9. Comparison of the evolution of rc/rh with (solid black) and without
(dashed red) stellar evolution, both using CMC. Results without stellar evolution
were already presented in Paper IV. Each run starts with 105 objects. The
velocities and positions of the objects are chosen from a King profile with
an initial W0 = 4. The masses are chosen from a Salpeter MF in the range
0.2–1.2 M�. From top to bottom, models kw4b03, kw4b1, and kw4b3 (Table 2)
with initial binary fractions 0.03, 0.1, and 0.3, respectively, are shown.

(A color version of this figure is available in the online journal.)

collisions are more important in a much denser cluster, this
behavior may change (Chatterjee et al. 2008).

The difference in the evolution of the global properties
depending on whether stellar evolution was included or not
is, of course, a lot more dramatic when a more realistic IMF
with a wider mass range is used. Here we use a King profile
with central concentration parameter W0 = 7. The IMF is
according to the K01 stellar MF in the range 0.1–18.5 M�. Two
such clusters are simulated, one with no primordial binaries
and the other with fb = 0.1. Note the dramatic difference
in the evolution of the simulated clusters in Figure 10. The
evolution during the initial ∼102 Myr is dominated by the mass
loss via stellar evolution of the high-mass stars and compact
object formation (Figure 11). This phase is clearly distinguished
by the initial steep expansion of the cluster (Figure 10). Note
that the initial steep expansion of rc lags behind the initial peak
in the mass-loss rate (Figures 10 and 11). This is because initially
the cluster is not mass segregated and the high-mass stars are
distributed throughout the cluster. The high-mass stars sink to
the core at the mass segregation timescale (∼0.1 Gyr at the rh
for model kw7b0). Mass loss due to stellar evolution becomes
fully effective only after the high-mass stars sink to the core
due to mass segregation. After this time, most of the mass is
lost from inside the core resulting in a rapid expansion of rc.
Thus, the rapid core expansion lags behind the initial peak of
the mass-loss rate by approximately the initial mass segregation
timescale.

This phase is followed by a slow contraction phase. In this
phase, two-body relaxation drives the evolution. The high-mass
stars have already evolved off the MS and the stars remaining
in the cluster are evolving at a much slower rate. The transition
between the initial stellar evolution driven expansion and the
slow contraction happens when the energy generation rate from
stellar evolution mass loss becomes less than the outward
energy diffusion rate from the core due to relaxation. The

Figure 10. Comparison between two sets of simulations, all using CMC, but in
one set stellar evolution is included and in the other it is not. Models kw7b0,
1 (Table 2) are used. Both panels show simulations with an initial King profile
cluster with W0 = 7 and a Kroupa (2001) IMF in the range 0.1–18.5 M�. The
top panel shows results with no primordial binaries. The bottom panel shows
results with 0.1 initial fb. For all simulations the initial number of objects is
5 × 105. On both panels, dashed red lines are for simulations leaving out stellar
evolution and solid black lines are for simulations including stellar evolution.
A dramatic difference is clearly noticeable caused by stellar evolution mass
loss. In each case, the simulations are stopped when either of the following is
fulfilled: a deep collapse stage is reached, a binary burning stage is reached, or
cluster is simulated for 12 Gyr.

(A color version of this figure is available in the online journal.)

Figure 11. Rate of stellar evolution mass loss as a function of time for model
kw7b0 (Table 2). Within 10–100 Myr most of the mass is lost due to stellar
evolution, while high-mass stars M� � 5 M� evolve off their MS. Followed by
this initial phase the mass-loss rate from winds and compact object formation
is low.

cluster then keeps contracting until the central density increases
so much that BS/BB interaction rates become high enough
and the energy injected by the hard binaries (via super-elastic
scattering) balances the energy diffusion rate from relaxation.
The cluster then reaches the binary-burning phase (bottom panel
of Figure 10).
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Even with this moderately broad range of mass, the models
without stellar evolution contract rapidly and are driven toward
a quick collapse. If there are primordial binaries, the binary-
burning phase starts relatively early (∼1 Gyr, Figure 10). On
the other hand, when stellar evolution is included, even without
any primordial binaries the same cluster may still be in the
slow contraction phase after a Hubble time. For the cluster with
primordial binaries in this case the binary-burning starts only
after 11 Gyr (Figure 10).

5. RESULTS FOR REALISTIC GALACTIC GLOBULAR
CLUSTERS

We have validated CMC by extensive comparisons with
direct N-body results (Section 3). Moreover, we have shown the
importance of including stellar evolution in cluster modeling
using a realistic stellar IMF (Section 4). We now simulate
a large grid of clusters with realistic initial conditions for
12 Gyr taking all physical processes into account, including
primordial binaries and single and binary stellar evolution,
and the full observed stellar mass range spanning 3 orders of
magnitude. Our goal here is to simulate clusters with realistic
initial conditions motivated from observations of young clusters
(e.g., Scheepmaker et al. 2007) and find whether at a simulated
cluster age of ≈12 Gyr, a typical age for the GGCs, the simulated
clusters show similar observable properties (e.g., rc and rc/rh)
as the observed population.

The proper initial conditions for the GGCs are uncertain,
however. Moreover, it is hard to uniquely infer the initial
conditions from the present-day observed cluster properties
since the observed cluster global properties as well as their
galactic orbits can be quite uncertain (e.g., Heggie & Giersz
2008). Hence, rather than trying to create a detailed model
for any particular cluster we compare the collective results
of all our grid runs with the observed GGC properties as
a whole. The GGC properties are extracted from the Harris
Catalog for GGCs (Harris 1996, and references therein; also
see http://www.physics.mcmaster.ca/Globular.html). When an
observable is not reported in the catalog for a cluster, we exclude
that cluster from comparison. In the following subsections, we
explain the initial setup of the grid of simulations and present
our results.

5.1. Initial Conditions

We simulate clusters with a large grid of initial conditions.
All simulated clusters have a fixed initial virial radius rv = 4 pc
(corresponds to an initial rh ≈ 3 pc). Indeed, observations
indicate that the effective radii of both young and old clusters
are rather insensitive to the cluster mass, and metallicity (e.g.,
Ashman & Zepf 2001; Scheepmaker et al. 2007, 2009) and
have a median value of ∼3 pc. In addition, observations of old
massive LMC clusters, old GCs in NGC 5128, old clusters in
M 51, as well as the GGCs indicate that the effective cluster
radii show only a weak correlation with the distance from the
galactic center (Hodge 1962; Harris et al. 1984; Hesser et al.
1984; Mateo 1987; van den Bergh et al. 1991; Scheepmaker
et al. 2007; Hwang & Lee 2008).

To restrict the huge parameter space to a certain extent
we place all our simulated clusters in a circular orbit at a
Galactocentric distance of rG = 8.5 kpc, where the Galactic
field is not so strong that the tidal stellar loss dominates the
cluster’s evolution. Choosing a circular orbit for the simulated
clusters is a simplification; however, the results should still be

valid for eccentric orbits with some effective Galactocentric
distance (>8.5 kpc; e.g., Baumgardt & Makino 2003). The
Galactic tidal field and consequently the initial rt for the clusters
are calculated using a Galactic rotation speed vG = 220 km s−1

following Equation (5).
For the set of runs we vary Ni between 4 and 10 × 105, the

initial W0 for King models in the range 4–7.5, and initial fb
between 0 and 0.1. For each case we choose the stellar masses
of the primaries from the MF presented in K01 in the range
0.1–100 M�. The mass of each binary companion is chosen from
a uniform distribution of mass ratios in the range 0.1 M�–mp.
a is chosen from a distribution flat in log within physical limits,
namely, 5× the physical contact of the components and the
local hard–soft boundary. Although initially each binary is hard
at its position it may not remain so during the evolution of
the cluster. The cluster contracts under two-body relaxation
and the velocity dispersion increases making initially hard
binaries soft. Moreover, binaries sink to the core due to mass
segregation where the velocity dispersion is higher than the
velocity dispersion for the binaries at t = 0. We include these
soft binaries in our simulations. We let the cluster dynamics
disrupt these binaries via BS/BB interactions. So at any instant
of time soft binaries are allowed in the cluster as long as they
have not been disrupted naturally via dynamical encounters yet.
This is closer to reality and this strategy is adopted because
soft binaries can act as an energy sink and can contribute to the
overall cluster energetics significantly (Fregeau et al. 2009).

Each cluster is evolved for 12 Gyr including all physical
processes—two-body relaxation, stellar evolution, and strong
encounters such as BB, BS, and SS collisions. For clusters
that reach a deep-collapse phase, the CMC time steps become
minuscule and the code grinds to a halt. We stop our simulations
at that point for these clusters. Note that in reality, the deep
collapse phase is halted via formation of the so-called three-body
binaries and the cluster enters into the gravothermal oscillation
phase. Since in CMC we do not include the possibility of
creating new binaries via three body encounters, we do not
address this phase at this stage. However, this is not a serious
limitation for this study since all simulated clusters that reach
this phase within 12 Gyr had a primordial fb = 0, which is not
realistic (e.g., see most recently Davis et al. 2008) and simulated
as limiting cases. None of the simulated clusters enter into
the deep-collapse phase before ≈9 Gyr. The properties of all
simulated clusters are summarized in Table 3. We use γ = 0.01
in the Coulomb logarithm for these simulations.

5.2. Results

Here, we present some basic observable properties of the
simulated clusters and compare them with the same properties
of the observed GGCs. For each of these comparison plots, the
evolution of a cluster property is shown with the distribution of
the same property in the GGC population including all GGCs
where observation of the concerned property exists. Since we
restrict the galactocentric distance of our simulated clusters
for this study to be 8.5 kpc (Section 5.1) we also show the
observed distribution for the GGCs with pericenter distances
from the Galactic center within 7–10 kpc to be consistent in
the comparisons. Note that the purpose for this comparison is
simply to ensure that the simulated cluster properties agree well
with the observed GGC properties. We do not intend to create
a present-day distribution for these properties since for that a
probability distribution for the initial conditions is required,
which is poorly constrained and beyond the scope of this study.

http://www.physics.mcmaster.ca/Globular.html
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Table 3
List of Simulations

Name Initial Final

W0 M N rc rh ρc fb fb,c c t M N rc rc,obs rh ρc fb fb,c c cobs

c1f1n1 4 2.5 4 1.6 3.3 12.2 0.00 0.00 1.1 12 1.4 3 2.0 2.1 7.1 1.0 0.00 0.00 1.5 1.5
c1f1n2 4 3.8 6 1.6 3.3 16.2 0.00 0.00 1.5 12 2.1 5 2.3 2.2 7.0 1.1 0.00 0.00 1.5 1.5
c1f1n3 4 5.1 8 1.6 3.3 23.3 0.00 0.00 1.7 12 2.8 7 2.4 2.1 6.9 1.2 0.00 0.00 1.5 1.5
c1f1n4 4 6.4 10 1.6 3.3 29.0 0.00 0.00 1.6 12 3.5 9 2.5 2.0 6.8 1.4 0.00 0.00 1.5 1.6
c1f2n1 4 2.6 4 1.6 3.3 12.3 0.05 0.05 1.3 12 1.4 3 2.1 2.3 7.2 0.9 0.05 0.07 1.4 1.5
c1f2n2 4 3.9 6 1.6 3.3 17.3 0.05 0.05 1.6 12 2.1 5 2.3 2.2 7.1 1.1 0.05 0.07 1.5 1.5
c1f2n3 4 5.3 8 1.6 3.3 24.7 0.05 0.05 1.7 12 2.9 7 2.5 2.2 7.0 1.2 0.05 0.07 1.5 1.5
c1f2n4 4 6.6 10 1.6 3.3 30.2 0.05 0.05 1.7 12 3.6 9 2.5 2.0 6.9 1.4 0.05 0.06 1.5 1.6
c1f3n1 4 2.7 4 1.6 3.3 12.4 0.10 0.10 1.2 12 1.4 3 2.1 2.3 7.3 0.9 0.09 0.14 1.4 1.5
c1f3n2 4 4.0 6 1.6 3.3 17.7 0.10 0.10 1.3 12 2.2 5 2.3 2.2 7.2 1.1 0.09 0.14 1.5 1.5
c1f3n3 4 5.4 8 1.6 3.3 25.3 0.10 0.10 1.5 12 2.9 7 2.5 2.2 7.1 1.2 0.09 0.13 1.5 1.5
c1f3n4 4 6.8 10 1.6 3.3 30.9 0.10 0.10 1.7 12 3.7 9 2.6 2.1 7.0 1.4 0.09 0.12 1.5 1.5
c2f1n1 4.5 2.5 4 1.5 3.3 14.2 0.00 0.00 1.0 12 1.4 3 1.9 2.0 7.1 1.3 0.00 0.00 1.5 1.5
c2f1n2 4.5 3.8 6 1.5 3.3 18.8 0.00 0.00 1.5 12 2.1 5 2.1 2.0 7.0 1.4 0.00 0.00 1.5 1.5
c2f1n3 4.5 5.1 8 1.5 3.3 27.2 0.00 0.00 1.4 12 2.8 7 2.3 2.0 6.9 1.5 0.00 0.00 1.5 1.6
c2f1n4 4.5 6.4 10 1.5 3.3 33.3 0.00 0.00 1.4 12 3.5 9 2.3 2.0 6.9 1.7 0.00 0.00 1.5 1.6
c2f2n1 4.5 2.6 4 1.5 3.3 14.3 0.05 0.05 1.0 12 1.4 3 1.9 2.1 7.3 1.2 0.05 0.07 1.5 1.5
c2f2n2 4.5 3.9 6 1.5 3.3 20.1 0.05 0.05 1.7 12 2.1 5 2.2 2.1 7.2 1.3 0.05 0.07 1.5 1.5
c2f2n3 4.5 5.3 8 1.5 3.3 28.9 0.05 0.05 1.6 12 2.8 7 2.3 2.1 7.1 1.4 0.05 0.07 1.5 1.5
c2f2n4 4.5 6.6 10 1.5 3.3 34.7 0.05 0.05 1.7 12 3.6 9 2.4 2.0 7.0 1.7 0.05 0.07 1.5 1.6
c2f3n1 4.5 2.7 4 1.5 3.3 14.4 0.10 0.10 1.0 12 1.4 3 2.0 2.2 7.4 1.2 0.09 0.14 1.5 1.5
c2f3n2 4.5 4.0 6 1.5 3.3 20.5 0.10 0.10 1.8 12 2.2 5 2.2 2.1 7.3 1.3 0.09 0.14 1.5 1.5
c2f3n3 4.5 5.4 8 1.5 3.3 29.6 0.10 0.10 1.4 12 2.9 7 2.4 2.1 7.2 1.3 0.09 0.13 1.5 1.5
c2f3n4 4.5 6.8 10 1.5 3.3 35.4 0.10 0.10 1.4 12 3.7 9 2.4 2.0 7.1 1.7 0.09 0.13 1.5 1.6
c3f1n1 5 2.5 4 1.4 3.2 17.2 0.00 0.00 1.2 12 1.4 3 1.7 1.9 7.3 1.7 0.00 0.00 1.5 1.5
c3f1n2 5 3.8 6 1.4 3.3 22.4 0.00 0.00 1.4 12 2.1 5 2.0 2.0 7.1 1.7 0.00 0.00 1.5 1.6
c3f1n3 5 5.1 8 1.4 3.3 32.5 0.00 0.00 1.7 12 2.8 7 2.1 2.0 7.0 1.9 0.00 0.00 1.6 1.6
c3f1n4 5 6.4 10 1.4 3.3 40.0 0.00 0.00 1.6 12 3.5 9 2.2 2.0 7.0 2.1 0.00 0.00 1.6 1.6
c3f2n1 5 2.6 4 1.4 3.2 17.3 0.05 0.05 1.3 12 1.4 3 1.7 2.1 7.4 1.7 0.05 0.08 1.5 1.5
c3f2n2 5 3.9 6 1.4 3.3 24.0 0.05 0.05 1.3 12 2.1 5 2.0 2.0 7.3 1.6 0.05 0.07 1.5 1.5
c3f2n3 5 5.3 8 1.4 3.3 34.6 0.05 0.05 1.5 12 2.8 7 2.2 2.0 7.2 1.8 0.05 0.07 1.5 1.6
c3f2n4 5 6.6 10 1.4 3.3 41.6 0.05 0.05 1.7 12 3.6 9 2.2 2.0 7.1 2.0 0.05 0.07 1.5 1.6
c3f3n1 5 2.7 4 1.4 3.2 17.4 0.10 0.10 1.5 12 1.4 3 1.8 2.1 7.6 1.5 0.09 0.15 1.5 1.5
c3f3n2 5 4.0 6 1.4 3.3 24.5 0.10 0.10 1.5 12 2.2 5 2.0 2.1 7.4 1.6 0.09 0.14 1.5 1.5
c3f3n3 5 5.4 8 1.4 3.3 35.4 0.10 0.10 1.4 12 2.9 7 2.2 2.1 7.3 1.8 0.09 0.13 1.5 1.6
c3f3n4 5 6.8 10 1.4 3.3 42.5 0.10 0.10 1.5 12 3.6 9 2.3 2.0 7.2 2.0 0.09 0.13 1.5 1.6
c4f1n1 5.5 2.5 4 1.3 3.2 21.6 0.00 0.00 1.2 12 1.4 3 1.5 1.8 7.4 2.5 0.00 0.00 1.6 1.6
c4f1n2 5.5 3.8 6 1.3 3.2 27.6 0.00 0.00 1.7 12 2.1 5 1.8 1.9 7.3 2.4 0.00 0.00 1.6 1.6
c4f1n3 5.5 5.1 8 1.3 3.3 40.2 0.00 0.00 1.4 12 2.8 7 1.8 2.0 7.2 2.9 0.00 0.00 1.6 1.6
c4f1n4 5.5 6.4 10 1.3 3.2 49.6 0.00 0.00 1.8 12 3.5 9 2.0 2.0 7.1 2.9 0.00 0.00 1.6 1.6
c4f2n1 5.5 2.6 4 1.3 3.2 21.7 0.05 0.05 1.6 12 1.4 3 1.6 1.9 7.6 2.1 0.05 0.08 1.5 1.6
c4f2n2 5.5 3.9 6 1.3 3.2 29.7 0.05 0.05 1.3 12 2.1 5 1.8 1.9 7.4 2.4 0.05 0.08 1.6 1.6
c4f2n3 5.5 5.3 8 1.3 3.3 43.0 0.05 0.05 1.6 12 2.8 7 1.9 2.0 7.3 2.6 0.05 0.08 1.6 1.6
c4f2n4 5.5 6.6 10 1.3 3.2 51.5 0.05 0.05 1.8 12 3.6 9 2.0 2.0 7.2 2.8 0.05 0.07 1.6 1.6
c4f3n1 5.5 2.7 4 1.3 3.2 21.7 0.10 0.10 1.3 12 1.4 3 1.6 1.9 7.7 2.0 0.09 0.15 1.5 1.6
c4f3n2 5.5 4.0 6 1.3 3.2 30.3 0.10 0.10 1.3 12 2.2 5 1.9 1.9 7.5 2.3 0.09 0.15 1.6 1.6
c4f3n3 5.5 5.4 8 1.3 3.3 44.0 0.10 0.10 1.3 12 2.9 7 2.0 2.0 7.4 2.5 0.09 0.14 1.6 1.6
c4f3n4 5.5 6.8 10 1.3 3.2 52.5 0.10 0.10 1.8 12 3.6 9 2.1 2.0 7.3 2.6 0.09 0.13 1.6 1.6
c5f1n1 6 2.5 4 1.2 3.2 28.5 0.00 0.00 1.4 12 1.4 3 1.2 1.4 7.6 4.9 0.00 0.00 1.7 1.7
c5f1n2 6 3.8 6 1.2 3.2 35.7 0.00 0.00 1.3 12 2.1 5 1.4 1.4 7.5 4.7 0.00 0.00 1.7 1.8
c5f1n3 6 5.1 8 1.2 3.2 52.8 0.00 0.00 1.4 12 2.8 7 1.6 1.9 7.4 4.5 0.00 0.00 1.7 1.6
c5f1n4 6 6.4 10 1.2 3.2 64.3 0.00 0.00 1.7 12 3.5 9 1.7 2.0 7.3 4.9 0.00 0.00 1.7 1.6
c5f2n1 6 2.6 4 1.2 3.2 28.6 0.05 0.05 1.4 12 1.4 3 1.3 1.4 7.8 3.8 0.05 0.09 1.6 1.7
c5f2n2 6 3.9 6 1.2 3.2 38.5 0.05 0.05 1.3 12 2.1 5 1.5 1.9 7.7 4.1 0.05 0.08 1.6 1.6
c5f2n3 6 5.3 8 1.2 3.2 56.6 0.05 0.05 1.3 12 2.8 7 1.7 2.0 7.5 4.0 0.05 0.08 1.6 1.6
c5f2n4 6 6.6 10 1.2 3.2 66.5 0.05 0.05 1.7 12 3.6 9 1.8 2.0 7.4 4.3 0.05 0.07 1.6 1.6
c5f3n1 6 2.7 4 1.2 3.2 28.6 0.10 0.10 1.5 12 1.4 3 1.4 1.7 8.0 3.5 0.09 0.16 1.6 1.7
c5f3n2 6 4.0 6 1.2 3.2 39.3 0.10 0.10 1.3 12 2.2 5 1.6 1.9 7.8 3.8 0.09 0.16 1.6 1.6
c5f3n3 6 5.4 8 1.2 3.2 57.9 0.10 0.10 1.4 12 2.9 7 1.7 2.0 7.6 3.9 0.09 0.14 1.6 1.6
c5f3n4 6 6.8 10 1.2 3.2 67.9 0.10 0.10 1.8 7 3.8 9 2.3 1.9 6.9 1.9 0.09 0.13 1.5 1.6
c6f1n1 6.5 2.5 4 1.1 3.2 40.1 0.00 0.00 1.3 12 1.4 3 0.6 0.6 8.0 47.6 0.00 0.00 2.0 2.1
c6f1n2 6.5 3.8 6 1.1 3.2 49.3 0.00 0.00 1.4 12 2.1 5 1.1 1.2 7.7 9.7 0.00 0.00 1.8 1.8
c6f1n3 6.5 5.1 8 1.1 3.2 73.0 0.00 0.00 1.7 12 2.8 7 1.2 1.3 7.6 11.6 0.00 0.00 1.8 1.8
c6f1n4 6.5 6.4 10 1.1 3.2 88.8 0.00 0.00 1.6 12 3.5 9 1.3 1.3 7.5 9.4 0.00 0.00 1.8 1.8
c6f2n1 6.5 2.6 4 1.1 3.2 40.3 0.05 0.05 1.5 12 1.4 3 0.7 1.0 8.1 25.6 0.05 0.11 1.9 1.9
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Table 3
(Continued)

Name Initial Final

W0 M N rc rh ρc fb fb,c c t M N rc rc,obs rh ρc fb fb,c c cobs

c6f2n2 6.5 3.9 6 1.1 3.2 53.4 0.05 0.05 1.4 12 2.1 5 1.1 1.3 7.9 9.6 0.05 0.09 1.7 1.8
c6f2n3 6.5 5.3 8 1.1 3.2 78.5 0.05 0.05 1.7 12 2.8 7 1.3 1.4 7.8 8.1 0.05 0.08 1.7 1.8
c6f2n4 6.5 6.6 10 1.1 3.2 91.7 0.05 0.05 1.6 12 3.6 9 1.4 1.4 7.7 8.7 0.05 0.08 1.7 1.8
c6f3n1 6.5 2.7 4 1.1 3.2 40.2 0.10 0.10 1.4 12 1.4 3 1.0 1.3 8.2 11.2 0.09 0.18 1.8 1.8
c6f3n2 6.5 4.0 6 1.1 3.2 54.4 0.10 0.10 1.4 12 2.2 5 1.2 1.5 8.0 8.3 0.09 0.16 1.7 1.8
c6f3n3 6.5 5.4 8 1.1 3.2 80.2 0.10 0.10 1.4 12 2.9 7 1.4 1.5 7.9 8.1 0.09 0.15 1.7 1.8
c6f3n4 6.5 6.8 10 1.1 3.2 93.6 0.10 0.10 1.6 12 3.6 9 1.4 1.4 7.8 9.4 0.09 0.15 1.7 1.8
c7f1n1 7 2.5 4 0.9 3.2 61.0 0.00 0.00 1.5 11 1.4 3 0.3 1.3 8.2 241.9 0.00 0.00 2.3 1.8
c7f1n2 7 3.8 6 0.9 3.3 73.4 0.00 0.00 1.5 12 2.1 5 0.3 1.0 8.2 314.0 0.00 0.00 2.3 1.9
c7f1n3 7 5.1 8 0.9 3.3 110.3 0.00 0.00 1.5 12 2.8 7 0.7 0.8 8.0 56.3 0.00 0.00 2.0 2.1
c7f1n4 7 6.4 10 0.9 3.3 134.5 0.00 0.00 1.6 12 3.5 9 0.8 0.8 7.9 54.2 0.00 0.00 2.0 2.1
c7f2n1 7 2.6 4 0.9 3.2 61.1 0.05 0.05 1.5 12 1.4 3 0.8 0.8 8.5 19.3 0.05 0.11 1.8 2.0
c7f2n2 7 3.9 6 0.9 3.3 79.7 0.05 0.05 1.9 12 2.1 5 0.7 0.9 8.3 43.3 0.05 0.11 1.9 2.0
c7f2n3 7 5.3 8 0.9 3.3 118.9 0.05 0.05 1.5 12 2.8 7 0.9 1.1 8.2 29.5 0.05 0.10 1.9 1.9
c7f2n4 7 6.6 10 0.9 3.3 138.3 0.05 0.05 1.6 12 3.6 9 0.8 0.8 8.0 48.4 0.04 0.09 2.0 2.1
c7f3n1 7 2.7 4 0.9 3.2 60.8 0.10 0.10 1.7 12 1.4 3 0.9 1.1 8.6 17.4 0.09 0.19 1.8 1.8
c7f3n2 7 4.0 6 0.9 3.3 81.2 0.10 0.10 1.6 12 2.2 5 0.8 1.0 8.5 30.1 0.09 0.19 1.9 2.0
c7f3n3 7 5.4 8 0.9 3.3 121.3 0.10 0.10 1.5 12 2.9 7 1.1 1.2 8.2 15.9 0.09 0.17 1.8 1.8
c7f3n4 7 6.8 10 0.9 3.3 141.0 0.10 0.10 1.9 12 3.6 9 1.0 1.2 8.1 25.5 0.09 0.16 1.9 1.8
c8f1n1 7.5 2.5 4 0.7 3.3 103.6 0.00 0.00 1.6 9 1.4 3 0.3 0.4 8.4 267.0 0.00 0.00 2.3 2.3
c8f1n2 7.5 3.8 6 0.7 3.4 119.9 0.00 0.00 1.6 10 2.1 5 0.4 1.2 8.2 256.0 0.00 0.00 2.2 1.8
c8f1n3 7.5 5.1 8 0.7 3.4 181.1 0.00 0.00 1.6 10 2.8 7 0.4 1.0 8.2 275.1 0.00 0.00 2.2 1.9
c8f1n4 7.5 6.4 10 0.7 3.4 220.4 0.00 0.00 2.1 10 3.5 9 0.5 0.7 8.1 179.4 0.00 0.00 2.2 2.1
c8f2n1 7.5 2.6 4 0.7 3.3 103.6 0.05 0.05 1.6 12 1.4 3 0.7 0.9 8.9 27.0 0.05 0.11 1.9 2.0
c8f2n2 7.5 3.9 6 0.7 3.4 130.7 0.05 0.05 1.6 10 2.1 5 0.7 1.4 8.5 51.9 0.05 0.11 2.0 1.8
c8f2n3 7.5 5.3 8 0.7 3.4 195.8 0.05 0.05 1.6 10 2.8 7 0.8 1.2 8.3 44.3 0.05 0.10 1.9 1.8
c8f2n4 7.5 6.6 10 0.7 3.4 225.8 0.05 0.05 1.7 10 3.6 9 0.8 1.1 8.2 59.5 0.05 0.10 2.0 1.9
c8f3n1 7.5 2.7 4 0.7 3.3 103.0 0.10 0.10 1.6 11 1.4 3 0.9 1.3 8.9 18.4 0.09 0.20 1.8 1.8
c8f3n2 7.5 4.0 6 0.7 3.3 133.1 0.10 0.10 2.1 10 2.2 5 0.8 1.4 8.6 33.2 0.09 0.19 1.9 1.8
c8f3n3 7.5 5.4 8 0.7 3.4 199.3 0.10 0.10 1.6 10 2.9 7 0.9 1.3 8.4 40.9 0.09 0.18 1.9 1.8
c8f3n4 7.5 6.8 10 0.7 3.4 230.1 0.10 0.10 1.7 10 3.7 9 0.9 1.1 8.2 42.5 0.09 0.17 1.9 1.9

Notes. W0 is the central concentration parameter for a King Profile (King 1966), Cluster mass M is in 105 M�, number of bound cluster objects N is given in 105,
central Stellar mass density ρc is in 103 M� pc−3, rc and rh are in pc, time of final snapshot t is in Gyr, and c is the concentration parameter defined as log10(rt /rc).
All final values are extracted from the final snapshot of the simulated clusters. rc,obs and cobs are estimated from a single-mass best-fit King model to the 2D number
density at the final snapshot of the cluster.

Figures 12 and 13 show the evolution of rc and rc/rh,
respectively. Both the rc and rc/rh values of the simulated
clusters agree well with the observed values in the GGC
population, producing values at 12 Gyr close to the peak of the
observed distribution. We should remind the readers, however,
that these rc and rh values are not exactly the quantities observed
directly. As mentioned before, rc is the density-weighted core
radius (Casertano & Hut 1985), related to a virial radius in the
core, commonly used in N-body simulations, and can differ from
an observed rc by a factor of a few (Hurley 2007). Similarly, only
the half-light radius is observed which may differ from the half-
mass radius of a cluster. For example, for a typical simulated
cluster c1f3n4 the half-light radius including all stars is 4.7 pc.
If a luminosity cutoff of L� < 20 L� is used to exclude the
brightest giants (a common practice for observers, e.g., Noyola
& Gebhardt 2006) for the same cluster the half-light radius
is 4.1 pc. The theoretically calculated half-mass radius for the
same cluster at the same age is 7 pc.

Nevertheless, one should remember that without including
stellar evolution the simulated rc/rh values resulting from binary
burning were found to be about an order of magnitude smaller
than in the observed population (e.g., Paper IV; Vesperini &
Chernoff 1994) and several studies proposed different additional
energy generation mechanisms to explain the large observed

rc/rh values (e.g., Trenti et al. 2007a; Chatterjee et al. 2008;
Fregeau 2008; Mackey et al. 2008). It is thus pleasing to find
such an agreement simply by including stellar evolution in the
simulations and assuming that the initial typical cluster rh is
∼few pc independent of the cluster mass and Galactocentric
position (e.g., Scheepmaker et al. 2007, 2009), without the need
for fine tuning of initial conditions or invoking exotic scenarios.

To focus on the distinct evolutionary stages of the clusters
we now choose three models from our large grid of simulations.
These models are representative of clusters in three distinct end
stages. Cluster c1f3n4 is in the slow contraction phase at the
integration stopping time and cluster age tcl = 12 Gyr. Cluster
c3f2n1 completes the slow contraction phase at tcl ∼ 10 Gyr,
reaches the binary-burning quasi-steady phase, and remains in
the binary-burning phase until the integration stopping time
tcl = 12 Gyr. Cluster c8f1n1 reaches the deep collapse phase at
tcl ≈ 9 Gyr (Figure 14). Integration is stopped after this stage is
reached. As mentioned earlier, cluster c8f1n1 has no primordial
binaries and is shown only as a limiting case for comparison.
All simulated clusters first expand due to stellar evolution mass
loss during the first ∼1 Gyr. Followed by this initial expansion,
the clusters slowly contract due to two-body relaxation. This
slow contraction phase ends in the quasi-steady binary-burning
phase for clusters with primordial binaries (Table 3, runs except
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Figure 12. Evolution of rc for all simulated clusters. The black, red, and blue
lines are for clusters with initial fb = 0, 0.05, and 0.1, respectively. A few
(six) clusters with fb = 0 go into deep collapse within a Hubble time. We stop
integrations for those clusters when this phase is reached. The rc values for the
observed GGCs are also shown in histograms. The solid histogram is for GGCs
with Galactocentric distances between 7 and 10 kpc. The dashed histogram is
for all GGCs where a measurement for rc exists.

(A color version of this figure is available in the online journal.)

Figure 13. Same as Figure 12, but for rc/rh for all simulated clusters. The
rc/rh values for the observed GGCs are also shown in histograms. The solid
and dashed histograms are for GGCs selected as in Figure 12.

(A color version of this figure is available in the online journal.)

cxf1nx). Clusters without primordial binaries go into deep
collapse directly at the end of slow contraction.

The central density for each simulated cluster first decreases
sharply during the initial stellar evolution dominated phase due
to the early expansion of the core. During the slow contraction
phase the cluster stellar density increases steadily and reaches a
quasi-steady value during the binary-burning phase (Figure 15).

Figure 14. Evolution of rc/rh (top), rc (middle), and rh (bottom) for three
qualitatively different clusters. Results from runs c1f3n4, c3f2n1, and c8f1n1
are shown in all three panels with solid, short-dashed, and long-dashed
lines, respectively. Runs c1f3n4, c3f2n1, and c8f1n1 at their final stage of
simulation are in the slow contraction, binary-burning, and deep-collapse phase,
respectively.

(A color version of this figure is available in the online journal.)

Figure 15. Evolution of the central stellar mass density (ρc , top) and the central
rms velocity (vc,rms, bottom) for three example runs: c1f3n4 (solid), c3f2n1
(short-dashed), andc8f1n1 (long-dashed). ρc and vc,rms decrease sharply during
the initial stellar evolution driven expansion of the clusters. ρc increases slowly
during the slow-contraction phase. In the binary-burning phase, ρc attains a
quasi-steady value. A sharp increase in ρc is observed at the deep-collapse
phase. vc,rms remains more or less steady following the initial decrease. During
deep-collapse vc,rms rises.

(A color version of this figure is available in the online journal.)

The central velocity dispersion (vc,rms) decreases sharply during
the stellar evolution dominated phase. After that vc,rms reaches
a steady value of ∼10 km s−1. The final value of vc,rms depends
on the evolutionary stage of the cluster as well as the total
mass in the core. Note that the value of vc,rms for runs c3f2n1
and c8f1n1 are similar, since the core masses are comparable,
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Figure 16. Radial profiles for the stellar luminosity density (top) and the stellar
number density (bottom) at tcl = 12 Gyr for models c1f3n4, c3f2n1, and at
tcl = 12 Gyr for model c8f1n1, from left to right, respectively. The error bars
on each panel show the Poisson noise of the data. In the top panel, the black
circles show the luminosity density for all stars taken into account. The red
squares show the luminosity density taking into account only stars with stellar
luminosities L� < 20 L�. On each panel, the dashed blue line shows the best-fit
King model to the data. The bottom left panel is a cluster in the slow contraction
phase and is very well represented by a King density profile. The bottom middle
panel is a cluster in the binary burning phase. A King profile still works for most
parts, however, a hint of a power-law profile is observed (red long dash). The
bottom right panel is a deep-collapse cluster showing a clear power-law profile,
for which a King model is a very poor representation.

(A color version of this figure is available in the online journal.)

whereas a more massive cluster c1f3n4 shows a higher vc,rms
as expected. vc,rms for run c8f1n1 starts to diverge from vc,rms
for run c3f2n1 only when the former reaches the deep-collapse
phase.

Figure 16 shows the surface density profiles for the total
luminosity and number of stars for clusters c1f3n4, c3f2n1,
and c8f1n1 at the end of simulation. For each of these models,
the radial positions of each star are obtained from our MC
simulation. These stars are then distributed uniformly on a
sphere of that corresponding radius and 2D projected distances
are calculated. The whole cluster is then divided in equal
logarithmic bins in the 2D projected distance and the number
of stars in each bin is counted. The surface number densities
are calculated by dividing the number of stars in each radial bin
by the projected surface area in the bin. A similar method is
adopted for calculating the 2D surface luminosity density radial
profile. In each case, the error bars show the Poisson errors in
each bin.

For the first two clusters, tcl = 12 Gyr. The third suffers a
deep-collapse at ∼9 Gyr; the profile at the end of simulation
is shown in that case. We find the best-fit single-mass King
profile parameters minimizing the χ2 statistic from a grid of
detailed King models, solving the Poisson equation where the
mass density is calculated self-consistently (Miocchi 2006, the
fitting program was kindly provided by Miocchi). Since for old
GGCs, and similarly for our simulated clusters, the mass range
of the stars at the final stage is narrow, a single-mass King

profile is sufficiently accurate to predict the cluster parameters
such as the King core radius and concentration (see Figure 16).
Furthermore, we adopt a single-mass King fit since observers
often follow this assumption (e.g., Dalessandro et al. 2008). The
deep-collapsed cluster, c8f1n1, clearly shows a very different
projected density profile compared to the other two clusters and
cannot be represented with a King density profile (Figure 16).
The collapsed cluster does not have a well-defined core, as
seen in the steady increase in the stellar number surface density
with decreasing radius. For cluster c1f3n4, which is in the
slow contraction phase, a standard King density profile is an
excellent representation of the simulated density profile. The
density profile in the binary-burning cluster c3f2n1 is close
to a King profile; however, near the central region there is a
hint of a power-law density profile expected from observed
core-collapsed clusters. In this region, a power law is a better
representation than a King profile for this cluster indicating
a self-similar collapse (Figure 16; e.g., Heggie & Hut 2003;
Binney & Tremaine 2008).

We call the core radius and the concentrations calculated
using the best-fit King model as rc,obs and cobs, respectively.
Table 3 shows a full list of these values for all our simulated
clusters. However, as shown in Figure 16, these values are not
accurate for the deep-collapsed clusters. Furthermore, for the
binary burning clusters a King profile may not be a good fit.
Nevertheless, most of our simulated clusters are in the slow
contraction phase at tcl = 12 Gyr, where a King density profile
is an excellent fit to the data. The luminosity profile is noisy due
to the presence of a few high luminosity stars (Figure 16). If
only stars with a stellar luminosity L� < 20 L� are taken into
account, the profile is less noisy.

The stellar properties such as the stellar luminosity and
radius for each star in the simulated cluster are calculated in
tandem with the dynamical evolution of the cluster using BSE
(Section 2). From the stellar luminosity and the radius the black-
body effective temperature can be calculated. Figure 17 shows
an example of Hertzprung–Russell diagram (HRD) obtained
from the run c1f3n4 at tcl = 12 Gyr. All binaries for this
cluster are assumed to be unresolved. The effective temperature
of a binary is approximated by a luminosity-weighted average.
Features of a realistic HRD, including the MS, the binary
sequence, giant branch, and single and binary white dwarf (WD)
cooling sequences can clearly be seen. Moreover, exotic stars
such as the BSSs are produced. Here, we define any MSS with a
stellar mass M� > 1.1 MTO for the cluster as a BSS and find that
these stars populate the area of HRD expected from observations
(Figure 18). Here MTO is the MS turn-off mass for the cluster.
We find that the number of BSSs in these clusters depend on
the initial conditions as well as the evolutionary history. For
example, clusters c1f3n4, c3f2n1, and c8f1n1 host 52, 16,
and 0 BSSs, respectively, at the time when these snapshots were
taken (12 Gyr for the first two and integration stopping time
≈9 Gyr for the third; Figure 18). A more systematic study of the
correlations between the total number of BSSs and the cluster
observable properties is underway.

6. SUMMARY AND CONCLUSION

We report on the recent update in the development of the
Hénon based MC code CMC, developed at Northwestern. We
have added the single and binary stellar evolution software of
BSE (Hurley et al. 2000, 2002), in addition to the already in-
corporated physical processes that include two-body relaxation,
strong interactions of binaries, and stellar collisions (Papers



928 CHATTERJEE ET AL. Vol. 719

Figure 17. Example of a synthetic HRD for run c1f3n4 at tcl = 12 Gyr. Each
dot is a bound object in the cluster (a single star or a binary). All binaries are
assumed to be unresolved. The Teff for a binary is the luminosity-weighted
temperature. The single and binary MSs of the cluster are clearly seen. The
giant branch, WD cooling sequence, and BSSs are also observed. The stars in
between the single MS and the WD binary sequence are MS–WD binaries.

I–IV). Thus we are now able to model realistic, dense, and
massive clusters including all relevant physics with realistic stel-
lar IMFs in our simulations. We test the code extensively and
compare our results with previously published direct N-body
results to validate CMC (Sections 2.3 and 3).

In spite of the differences of the basic numerical methods we
find that the agreement between the CMC results and direct N-
body results is excellent (see in particular Figures 1–8). The
close reproduction of the evolution of the core fb and the
overall fb warrants special mention. The evolution of fb is
related to all physical processes relevant in the cluster. Two-
body relaxation drives mass segregation. Binaries, being more
massive than typical single stars, mass-segregate toward the
center. In the core, these binaries interact and can get destroyed
via BS/BB interactions. Throughout the evolution the cluster
binaries evolve and can merge or disrupt simply through binary
evolution. The galactic tidal field tidally strips low mass stars
from the cluster tidal boundary. Thus, obtaining the same
evolution of fb suggests that all these physical processes are
implemented as correctly as in NBODY4.

There is, however, a significant advantage in using CMC
to model massive clusters, in particular clusters typical for
the old GGCs with significant fb. The actual CPU time for
a CMC simulation of a realistic cluster varies depending on
the initial N, rv , concentration parameter, and when the cluster
reaches the binary burning phase. The dependences on N, rv ,
and the concentration parameter are the usual ones—through
the dependence of the relaxation time on these quantities. The
dependence of the CPU time on whether the cluster is in the
binary burning phase or not comes from the following. To
correctly resolve the changes to the cluster properties due to
the strong interactions involving binaries, we limit the number
of such interactions in a single timestep of CMC. During the
binary burning phase the timestep can be reduced by up to three

Figure 18. Synthetic HRD for the three sample simulated clusters c1f3n4,
c3f2n1, and c8f1n1. For each of the HRDs, the region near the tip of the
MS is shown. Each dot is one bound object (single or binary) in the cluster.
The BSSs for each cluster are shown as crosses; red and blue crosses denote
single and binary BSSs. Here, BSSs are defined as the MS stars with mass
m� > 1.1MTO for the cluster at its age. Cluster c1f3n4 has a higher number of
BSSs among the three example clusters (seven singles, 45 binaries) because of
this cluster’s higher Ni and initial fb compared to cluster c3f2n1 (nine singles,
seven binaries). Cluster c8f1n1 has no BSSs at this age.

(A color version of this figure is available in the online journal.)

orders of magnitude compared to the slow contraction phase.
Nevertheless, the longest run time for the simulations presented
in this study is �7 days on a single CPU. The quickest runs (e.g.,
N ∼ 4×105 and fB ∼ 5%) take only ∼3 days on a single CPU.

Although the core properties are accurately obtained using
CMC, a larger difference is found whenever a quantity involving
the total number of bound stars in the cluster is compared. For
example, the agreement in the evolution of the fractional number
of bound stars, although respectable (Figures 6 and 7) given the
drastically different methods of simulations, can differ by up to
≈20%. These differences are dominated by the tidal mass-loss
effects, which are hard to model within MC methods and can
only be addressed in a criterion-based way (Section 2.3; also
see, e.g., Paper IV; Giersz & Spurzem 2000). A more detailed
study in characterizing the orbits in a cluster potential and tidal
effects is underway, but is beyond the scope of this work.

Our results show that including stellar evolution and a
realistic IMF dramatically changes the evolution of a star cluster
(Section 4) and to model a realistic star cluster, inclusion of
this process is vital. Early on, high stellar evolution mass-loss
rates drive a cluster expansion, while later a sustained low rate
of stellar evolution mass-loss significantly prolongs the slow
contraction phase. Note that this dramatic difference between
results obtained including stellar evolution and leaving it out is
not surprising. At any given time (until the compact objects
are more massive than the stars) the most massive stars in
the cluster are the ones very near to the center of the cluster
due to mass segregation. These most massive stars also are the
ones losing mass at the highest rate. Thus at all times the mass
lost due to stellar evolution is being lost from the deepest part
of the cluster’s potential. Depending on the initial properties
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of the cluster, even without any primordial binaries the slow
contraction phase may last more than a Hubble time for clusters
typical for the GGCs (e.g., Figures 10 and 12). On the contrary,
turning off this important effect leads to a quick contraction of
the cluster due to mass segregation, even if only a moderately
broad range of stellar IMF is used (Figure 10). We also show that
even for simulations with a very narrow stellar mass range, for
a relatively low fb (Figure 9) the inclusion of stellar evolution
can give rc/rh values ≈10% larger compared to when it is left
out.

One of the biggest uncertainties of studying the evolution of
dense, massive star clusters is in determining the initial con-
ditions. The detailed evolution of a cluster depends on various
initial properties including the initial effective radius, mass, fb,
concentration, and the galactic tidal field. Estimating the initial
conditions using the present-day observed properties of a cluster
is clearly not an easy task. Moreover, starting from different ini-
tial conditions it is possible to achieve very similar present-day
properties, e.g., rc, and rc/rh (Figures 12 and 13). In addition,
the observed present-day values can also be quite uncertain, es-
pecially the three-dimensional orbit of a cluster in the galactic
potential, which is difficult to measure. Furthermore, although
it may be possible to qualitatively understand individual effects
of the various physical processes on the observable cluster prop-
erties, the collective effect is impossible to judge without actual
detailed simulations. Thus to understand a population of dense
clusters it is required to study a large parameter space and study
evolution of these clusters in a realistic way including all physics
in tandem.

With the recent improvement to CMC it is now possible to
truly scan the full parameter space realistically without any
loss of generality due to its significantly lower computational
cost compared to the direct N-body codes and the accuracy and
ability to treat all relevant physical processes. We have started
a detailed study to create a population of realistic globular
clusters, representative of the observed GGCs with a large
grid of simulations with realistic initial conditions motivated
by observations of young massive clusters (e.g., Scheepmaker
et al. 2007, 2009). Here, we have presented some of these
simulations to show that rather than creating specific clusters
it is now beginning to be possible to create a whole population
of GGCs using CMC with star-by-star detail. We show that
using observationally motivated initial conditions, without any
need for fine tuning, it is possible to create old dense clusters
that are very similar to the observed GGCs (Figures 12 and 13).

Each star in CMC has realistic stellar properties such as
luminosity, radius, and effective temperature in addition to the
mass and the position in the cluster (which are sufficient to
follow its dynamics). Hence, in addition to the global evolution
of the clusters it is possible to study individual stellar populations
in a cluster. For example, we show synthetic HRDs for a few
simulated clusters from our grid of simulations. All features,
including, e.g., the single and binary MS, WD cooling sequence,
the giant branch, and BSSs, of a realistic HRD can be seen
in the synthetic HRD (Figures 17 and 18). After this crucial
improvement to CMC, a large array of interesting problems are
now accessible. For example, a detailed study of the observed
GGC BSSs, their properties, and the correlations with various
cluster properties is underway.

We are especially thankful to Jarrod Hurley for his help with
the BSE code, in particular during the initial integration of BSE
with CMC. We also thank him for kindly sharing the initial

snapshots of his simulations. We also thank Paolo Miocchi for
providing us with his fitting codes for single-mass King models,
and the referee, Douglas Heggie, for many helpful comments.
This work was supported by NASA grants NNX08AG66G and
NNG06GI62G at the Northwestern University. J.M.F. acknowl-
edges support from Chandra/Einstein Postdoctoral Fellowship
Award PF7-80047. This research was partly done at KITP while
the authors participated in the Spring 2009 program on Forma-
tion and Evolution of Globular Clusters, and was supported in
part by NSF grant PHY05-51164.

REFERENCES

Aarseth, S. J. (ed.) 2003, Gravitational N-body Simulations (Cambridge:
Cambridge Univ. Press)

Ashman, K. M., & Zepf, S. E. 2001, AJ, 122, 1888
Baumgardt, H., & Makino, J. 2003, MNRAS, 340, 227
Binney, J., & Tremaine, S. (ed.) 2008, Galactic Dynamics (2nd ed.; Princeton,

NJ: Princeton Univ. Press)
Casertano, S., & Hut, P. 1985, ApJ, 298, 80
Chatterjee, S., Fregeau, J. M., & Rasio, F. A. 2008, in IAU Symp. 246, Dynamical

Evolution of Dense Stellar System, ed. E. Vesperini, M. Giersz, & A. Sills
(Cambridge: Cambridge Univ. Press), 151

Dalessandro, E., Lanzoni, B., Ferraro, F. R., Vespe, F., Bellazzini, M., & Rood,
R. T. 2008, ApJ, 681, 311

Davis, D. S., Richer, H. B., Anderson, J., Brewer, J., Hurley, J., Kalirai, J. S.,
Rich, R. M., & Stetson, P. B. 2008, AJ, 135, 2155

Demleitner, M., Accomazzi, A., Eichhorn, G., Grant, C. S., Kurtz, M. J., &
Murray, S. S. 2001, in ASP Conf. Ser. 238, Astronomical Data Analysis
Software and Systems X, ed. F. R. Harnden, Jr., F. A. Primini, & H. E. Payne
(San Francisco, CA: ASP), 321

Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
Fischer, D. A., & Marcy, G. W. 1992, ApJ, 396, 178
Fregeau, J. M. 2008, ApJ, 673, L25
Fregeau, J. M., Gürkan, M. A., Joshi, K. J., & Rasio, F. A. 2003, ApJ, 593, 772
Fregeau, J. M., Ivanova, N., & Rasio, F. A. 2009, ApJ, 707, 1533
Fregeau, J. M., & Rasio, F. A. 2007, ApJ, 658, 1047
Freitag, M., Gürkan, M. A., & Rasio, F. A. 2006a, MNRAS, 368, 141
Freitag, M., Rasio, F. A., & Baumgardt, H. 2006b, MNRAS, 368, 121
Giersz, M. 1998, MNRAS, 298, 1239
Giersz, M., Heggie, D. C., & Hurley, J. R. 2008, MNRAS, 388, 429
Giersz, M., & Spurzem, R. 2000, MNRAS, 317, 581
Hansen, B. M. S., & Phinney, E. S. 1997, MNRAS, 291, 569
Harris, W. E. 1996, AJ, 112, 1487
Harris, H. C., Harris, G. L. H., Hesser, J. E., & MacGillivray, H. T. 1984, ApJ,

287, 185
Heggie, D. C., & Giersz, M. 2008, MNRAS, 389, 1858
Heggie, D. C., & Giersz, M. 2009, MNRAS, 397, L46
Heggie, D. C., & Hut, P. 2003, The Gravitational Million-Body Problem: A Mul-

tidisciplinary Approach to Star Cluster Dynamics (Cambridge: Cambridge
Univ. Press)

Heggie, D. C., Trenti, M., & Hut, P. 2006, MNRAS, 368, 677
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