
ar
X

iv
:1

20
6.

58
78

v1
 [

as
tr

o-
ph

.I
M

]
 2

6
Ju

n
20

12

A Parallel Monte Carlo Code for Simulating Collisional N-body

Systems

Bharath Pattabiraman1,2

bharath@u.northwestern.edu

Stefan Umbreit1,3

Wei-keng Liao1,2

Alok Choudhary1,2

Vassiliki Kalogera1,3

Gokhan Memik1,2

and

Frederic A. Rasio1,3

Received ; accepted

1Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern

University, Evanston, USA.

2Department of Electrical Engineering and Computer Science, Northwestern University,

Evanston, USA.

3Department of Physics and Astronomy, Northwestern University, Evanston, USA.

http://arxiv.org/abs/1206.5878v1

– 2 –

Abstract

We present a new parallel code for computing the dynamical evolution of

collisional N -body systems with up to N ∼ 107 particles. Our code is based

on the the Hnon Monte Carlo method for solving the Fokker-Planck equation,

and makes assumptions of spherical symmetry and dynamical equilibrium. The

principal algorithmic developments involve optimizing data structures, and the

introduction of a parallel random number generation scheme, as well as a par-

allel sorting algorithm, required to find nearest neighbors for interactions and

to compute the gravitational potential. The new algorithms we introduce along

with our choice of decomposition scheme minimize communication costs and en-

sure optimal distribution of data and workload among the processing units. The

implementation uses the Message Passing Interface (MPI) library for communi-

cation, which makes it portable to many different supercomputing architectures.

We validate the code by calculating the evolution of clusters with initial Plummer

distribution functions up to core collapse with the number of stars, N , spanning

three orders of magnitude, from 105 to 107. We find that our results are in good

agreement with self-similar core-collapse solutions, and the core collapse times

generally agree with expectations from the literature. Also, we observe good total

energy conservation, within less than 1% throughout all simulations. We analyze

the performance of the code, and demonstrate near-linear scaling of the runtime

with the number of processors up to 64 processors for N = 105, 128 for N = 106

and 256 for N = 107. The runtime reaches a saturation with the addition of

more processors beyond these limits which is a characteristic of the parallel sort-

ing algorithm. The resulting maximum speedups we achieve are approximately

60×, 100×, and 220×, respectively.

– 3 –

Subject headings: Methods: numerical, Galaxies: clusters: general, globular clusters:

general

– 4 –

1. Introduction

The dynamical evolution of dense star clusters is a problem of fundamental importance

in theoretical astrophysics. Important examples of star clusters include globular clusters,

spherical systems containing typically 105 - 107 stars within radii of just a few parsec,

and galactic nuclei, even denser systems with up to 109 stars contained in similarly small

volumes, and often surrounding a supermassive black hole at the center. Studying their

evolution is critical to many key unsolved problems in astrophysics. It connects directly

to our understanding of star formation, as massive clusters are thought to be associated

with major star formation episodes, tracing the star-formation histories of their host

galaxies. Furthermore, globular clusters can trace the evolution of galaxies over a significant

cosmological time span, as they are the brightest structures with which one can trace the

halo potential out to the largest radii, and they are very old, potentially even predating the

formation of their own host galaxies. Unlike stars and planetary nebulae, globular clusters

are not simply passive tracers of galaxy kinematics as their internal dynamics are affected

by the galactic tidal field. Therefore, their internal properties and correlations with their

host galaxies are, thus, likely to contain information of the merger history of galaxies and

haloes.

Dynamical interactions in dense star clusters play a key role in the formation of many of

the most interesting and exotic astronomical sources, such as bright X-ray and gamma-ray

sources, radio pulsars, and supernovae. The extreme local stellar densities, which can reach

of the order of 106 pc−3, give rise to complex dynamical processes: stellar encounters, tidal

captures, physical collisions, mergers, and high-speed ejections (Heggie & Hut 2003). The

primary challenge in modeling dense clusters lies in the tight coupling of these processes

and their scales as they influence and inform one another both locally, e.g., through close

encounters or collisions on scales of 1 − 100R⊙, or 10−8 − 10−6 pc, and globally on the

– 5 –

scale of the whole system through long-range, gravitational interactions. Close binary

interactions can occur frequently every 106 − 109 yr depending on the cluster density,

relative to the global cluster evolution timescale. Furthermore, in the time between close

encounters, stellar particles, single and binary, change their physical properties due to their

internal chemical and nuclear evolution and due to mass and angular momentum transfer

or losses. All these changes affect the rates of close encounters and couple to the overall

evolution of the cluster.

Due to these enormous ranges in spatial and temporal scales that have to be modeled,

simulating dense star clusters with a million stars or more is a formidable computational

challenge. A thorough analysis of the scaling of the computational cost of the direct N -body

methods is presented in Hut et al. (1988). Although direct N -body methods are free of any

approximations in the stellar dynamics , their steep ∝ N2 scaling has limited simulations

to an initial N ∼ 105 stars (Zonoozi et al. 2011; Jalali et al. 2012). However, the number

of stars in real systems like globular clusters and galactic nuclei can be several orders of

magnitude larger.

On the contrary, the Monte Carlo method calculates the dynamical evolution of the

cluster in the Fokker-Planck approximation, which applies when the evolution of the cluster

is dominated by two-body relaxation, and the relaxation time is much larger than the

dynamical, or orbital, time. In the end, this allows for a scaling closer to N logN , but

assumptions of spherical symmetry and dynamical equilibrium have to be made. The Hnon

Monte Carlo (MC) technique (Hénon 1971) which is based on orbit averaging, represents a

balanced compromise between realism and speed. The MC method allows for a star-by-star

realization of the cluster, with its N mass shells representing the N stars in the cluster.

Integration is done on a relaxation timescale, and the total computational cost scales as

N logN (Hénon 1971). Our work here is based on the Hnon-type MC cluster evolution code,

– 6 –

CMC (“Cluster Monte Carlo”), developed over many years by Joshi et al. (2000, 2001);

Fregeau et al. (2003); Fregeau & Rasio (2007); Chatterjee et al. (2010); Umbreit et al.

(2012). CMC now includes a detailed treatment of strong binary star interactions and

physical stellar collisions (Fregeau & Rasio 2007), as well as an implementation of single and

binary star evolution (Chatterjee et al. 2010), and the capability of handling the dynamics

around a central massive black hole (Umbreit et al. 2012).

A typical simulation of about a million stars up to average cluster ages of 12 Gyr

using the CMC code can be run on a modern desktop computer in a reasonable amount of

time (days to weeks). However, given the scaling of the computational cost, simulations of

clusters of 107 stars will take a prohibitive amount of time which makes simulating nuclear

star clusters not feasible. Scaling up to even larger number of stars becomes possible only

through parallelization of our code.

In this paper, we present in detail the latest version of CMC, which is capable of

simulating collisional systems of up to N ∼ 107. In Section 2, we take a look at the

components of the code and summarize both its numerical and computational aspects.

In Section 3, we describe the flow of the parallel code, elucidating how we designed each

part to achieve optimal performance on distributed parallel architectures. In addition, we

describe in the Appendix an optional CMC feature that accelerates parts of the code using

a general purpose Graphics Processing Unit (GPU). We show a comparison of results and

analyze the performance of the code in Section 4. Conclusions and lines of future work are

discussed in Section 5.

– 7 –

2. Code Overview

2.1. Numerical Methods

Starting with an initial spherical system of N stars in dynamical equilibrium, we begin

by assigning to each star a mass, position and velocity (radial and transverse components)

by sampling from a distribution function f(E, J), where E and J are the orbital energy and

angular momentum (e.g., Binney & Tremaine 2008). We assign positions to the stars in a

monotonically increasing fashion, so the stars are sorted by their radial position initially.

The system is assumed to be spherically symmetric and hence we ignore the direction of the

position vector and transverse velocity. Following initialization, the algorithm goes through

the following sequence of steps iteratively over a specified number of time steps. Figure 1

shows the flowchart of our basic algorithm.

1. Potential calculation. The stars having been sorted by increasing radial positions in

the cluster, the potential at radius r, which lies between two stars at positions rk and

rk+1, is given by

Φ(r) = G

(

−1

r

k
∑

i=1

mi −
N
∑

i=k+1

mi

ri

)

. (1)

where mi is the mass, and ri the position of star i. It is sufficient to compute and store

the potential Φk = Φ(rk) at radial distances rk (k = 1, ..., N) i.e., at the positions of

all stars. This can be done recursively as follows::

ΦN+1 = 0 ,

MN =

N
∑

i=1

mi ,

Φk = Φk+1 −GMk

(

1

rk
− 1

rk+1

)

, (2)

Mk−1 = Mk −mk .

– 8 –

To get the potential Φ(r) at any other radius, one first finds k such that rk ≤ r ≤ rk+1

and then computes:

Φ(r) = Φk +
1/rk − 1/r

1/rk − 1/rk+1

(Φk+1 − Φk) . (3)

2. Time step calculation. Different physical processes are resolved on different time

scales. We use a shared time step scheme where time steps for all the physical

processes to be simulated are calculated and their minimum is chosen as the global

time step for the current iteration. The time steps are calculated using the following

expressions (see Fregeau & Rasio 2007; Goswami et al. 2011, for more details):

Trel =
θmax

π/2

π

32

〈vrel〉3

ln(γN)G2n
〈

(M1 +M2)
2
〉 , (4)

T−1
coll = 16

√
πns

〈

R2
〉

σ

(

1 +
G 〈MR〉
2σ2 〈R2〉

)

, (5)

T−1
bb = 16

√
πnbX

2
bb

〈

a2
〉

σ

(

1 +
G 〈Ma〉

2σ2Xbb 〈a2〉

)

, (6)

T−1
bs = 4

√
πnsX

2
bs

〈

a2
〉

σ

(

1 +
G 〈M〉 〈a〉
σ2Xbs 〈a2〉

)

. (7)

where Trel, Tcoll, Tbb, and Tbs are the relaxation, collision, binary-binary and binary-

single time steps respectively. Here θmax is the maximum angle of deflection of the two

stars undergoing a representative two-body encounter ; vrel their relative velocities,

and n the local number density of stars; ns and nb are the number densities of single

and binary stars, respectively; σ is the one-dimensional velocity dispersion, and a

is the semi-major axis. Xbb and Xbs are parameters that determine the minimum

closeness of an interaction to be considered a strong interaction..

The value of Trel is calculated for each star after which the minimum is taken as the

value of the global relaxation time step. We use sliding averages over the neighboring

10 stars on each side to calculate the mean quantities shown in < . . . > in Equations

– 9 –

4 to 7. The other three time-steps, Tcoll, Tbb and Tbs are averaged over the central 300

stars as in the procedure followed in Goswami et al. (2011). Our choice of the number

of stars averages are calculated over gives a good compromise between accuracy and

computational speed.

3. Relaxation and strong interactions. Depending on the physical system type, one

among the following three are performed on each pair of stars (i) Two-body

relaxation evaluates an analytic expression for a representative encounter between two

nearest-neighboring stars. (ii) Binary interactions (binary-binary and binary-single)

are simulated using Fewbody, an efficient computational toolkit for evolving small-N

dynamical systems (Fregeau et al. 2004). Fewbody does a direct integration of

Newton’s equations for 3 or 4 bodies using the 8th order Runge-Kutta Prince-

Dormand method. (iii) Stellar collisions are treated in the simple “sticky sphere”

approximation, where two bodies are merged based on the probability that their radii

touch and their properties are changed correspondingly.

4. Stellar Evolution. We use the SSE (Hurley et al. 2000) and BSE (Hurley et al. 2002)

stellar evolution routines, which are based on analytic functional fits to theoretically

calculated stellar evolution tracks, to simulate the evolution of single and binary stars.

5. New orbits computation. Due to the changes in the orbital properties of the stars

following the interactions they undergo, new positions and velocities are assigned in

orbits that are consistent with their new energies and angular momentums. Then, a

new position is randomly sampled according to the amount of time the star spends at

a given point along the orbit.

We start by finding the pericenter and apocenter distances of a star’s new orbit.

Given a star with energy E and angular momentum J moving in the gravitational

potential Φ(r), its rosette orbit r(t) oscillates between two extreme values rmin and

– 10 –

rmax, which are roots of:

Q(r) = 2E − 2Φ(r)− J2/r2 = 0 . (8)

Since we store the potential values only at the positions of the stars, this equation

cannot be analytically solved before determining the interval in which the root lies.

In other words, we need to determine k such that Q(rk) < 0 < Q(rk+1). We use the

bisection method, which, starting with two values of k, kleft and kright, repeatedly

divides the interval into two parts, retaining only the one in which the solution is

contained while discarding the other until the interval converges on to the root. Once

the interval is found, Φ, and thus Q, can be computed analytically in that interval,

and so can rmin and rmax.

The next step is to select a position of the star in the new orbit between rmax and

rmin. The probability to choose a position in an interval dr should be equal to the

fraction of time spent by the star in dr, i.e.:

dt

T
=

dr/ |vr|
∫ rmax

rmin

dr/ |vr|

with the radial velocity vr = [Q(r)]1/2. We use the von Neumann rejection sampling

technique to sample a position according to this probability. We take a number F

which is everywhere larger than the probability distribution f(r). Then we draw two

random numbers X and X ′ and compute

r0 = rmin + (rmax − rmin)X

f0 = FX ′

If the point (f0, r0) lies below the curve, i.e., if f0 < f(r0), we take r = r0 as the new

position; else we reject it and draw a new point in the rectangle with a new pair of

random numbers. We repeat this until a point below the curve is obtained. In our

– 11 –

code, a slightly modified version of the method is used, since f(r) = 1/|vr| becomes

infinite at both ends of the interval. A detailed description can be found in Joshi et al.

(2000).

6. Sort stars by radial distance. This part uses the Quicksort algorithm (Hoare 1961) to

sort the stars based on their new positions. Sorting the stars is essential to determine

the nearest neighbors for relaxation and strong interactions, and also for computing

the gravitational potential.

7. Diagnostics and program termination. These involve other minor calculations which

include the computation of diagnostic values and control the program termination.

Examples are, half-mass radius, core radius, number of core stars among others.

This does not appear in the flowchart shown in Figure 1 since it represents minor

book-keeping calculations that are done at various places in the code.

2.2. Time Complexity Analysis

In addition to the flow of the code, Figure 1 also shows the time complexity for

each of the above steps. The calculation of Trel involves averaging over a fixed number of

neighboring stars and hence has constant time complexity, O(1). As these averages are

performed on each star to estimate their individual time steps from which the the minimum

is chosen, the time step calculation scales as O(N). The effect of relaxation and strong

interactions is calculated between pairs of stars that are radially nearest neighbors. Since

these calculations involve constant time operations for each star, the time complexity of the

perturbation step is O(N). Stellar evolution operates on a star-by-star basis performing

operations of constant time for a given mass spectrum, and hence also scales as O(N).

Determination of new orbits for each star involves finding the roots of an expression on an

– 12 –

Fig. 1.— A flowchart of the CMC (Cluster Monte Carlo) code with the following steps.

(1) Potential Calculation-calculates the spherically symmetric potential. (2) Time-step

Calculation-computes a shared time-step used by all processes. (3) Relaxation and Strong

interactions-depending on the physical system type, performs two-body relaxation, strong

interaction, or physical collision on every pair of stars. (4) Stellar Evolution-evolves each

star and binary using fitting formulae (5) New Positions and Orbits-samples new positions

and orbits for stars. (6) Sorting-sorts stars by radial position.

– 13 –

unstructured one-dimensional grid using the bisection method. The bisection method scales

as O(logN)and as this is done for each star, this part has a time complexity of O(N logN).

The radial sorting of stars is done using Quicksort which has the same time complexity

(Hoare 1961).

3. Parallelization

Achieving optimal performance of parallel machines requires algorithms to be

carefully designed, and hence, parallel algorithms are often very different than their serial

counterparts and require a considerable effort to develop. The key to a successful algorithm

is (1) good load balance, i.e., the efficient utilization of the available processing units,

and (2) minimal communication between these units. The communication cost depends

directly on the choice of domain decomposition, i.e, the way in which work and/or data

is partitioned into smaller units for processing in parallel. For example, a good domain

decomposition for ideal load balance would be distributing the data of the stars evenly

among the processors assuming the computational cost for processing each star is similar.

This will ensure the workload is evenly balanced across processors given that they all

perform the same number of operations, as in a Single Program, Multiple Data (SPMD)

programming model. However, how such a decomposition would influence the need for

communication between processing units is very specific to the algorithm. In essence, a

thorough knowledge of the algorithm, and its data access patterns is necessary for designing

any efficient parallel application.

– 14 –

3.1. Data Dependencies and Parallel Processing Considerations

While deciding upon the domain decomposition, we have to take into account any

dependencies, i.e., the way the data is accessed by various parts of the application, as they

may directly influence both the load balance and the communication cost between the

processing units. A good parallel algorithm should distribute the workload in such a way

that the right balance is struck between load balance and communication to ensure optimal

performance.

In CMC, the physical data of each star (mass, angular momentum, position etc.) are

stored in a structure, a grouping of data elements. The data for N stars are stored using

N structures, one for each star, and grouping them together into an array. For a system

with p processors and N initial stars, we will first consider the scenario where we try to

achieve ideal load balance and navely distribute the data for N/p stars to each processor.

We will assume here that N is divisible by p for now, and analyze the data dependencies in

the various modules of CMC for this decomposition.

1. Time-step Calculation:

(a) For calculating the relaxation time of each star we need the local density, which

is calculated using the masses of the 10 nearest neighboring stars on either side

of the radially sorted list of stars. A parallel program requires communication

between processors to exchange data of the neighboring stars that are at the

extreme ends of the local array.

(b) Calculation of the time step requires the computation of quantities in the

innermost regions of the cluster, in particular the central density, and the

half-mass radius. If the particles are distributed across many processors,

irrespective of the specific data partitioning scheme, identification of the particle

– 15 –

up to which the enclosing stellar mass equals half the total mass of the cluster

might require communication of intermediate results between adjacent data

partitions, and also introduces an inherent sequentiality in the code.

2. Relaxation and strong interactions:

For the perturbation calculation, pairs of neighboring stars are chosen. Communication

might be needed depending on whether the number of stars in a processor is even or

odd.

3. New orbits computation:

To determine the new orbits of each star we use the bisection method which involves

random accesses to the gravitational potential profile of the cluster. Since the data

will be distributed in a parallel algorithm, communication will be needed for data

accesses that fall outside the local subset.

4. Sorting :

Putting the stars in order according to their radial positions naturally needs

communication irrespective of the decomposition.

5. Potential Calculation: The potential calculation as explained in Section 2 is inherently

sequential and requires communication of intermediate results.

6. Diagnostics and program termination:

The diagnostic quantities that are computed on different computational units need

to be aggregated before the end of the time step to check for errors or termination

conditions.

– 16 –

3.2. Domain Decomposition and Algorithm Design

Based on the considerations in the previous section, we design the algorithms and

decompose the data according to the following scheme so as to minimize communication

costs, and at the same time not degrading the accuracy of the results.

Since the relaxation time-step calculation procedure introduces additional communi-

cation cost irrespective of the choice of data partitioning, we modify it in the following

way. Instead of using sliding averages for each star, we choose radial bins containing a fixed

number of stars to calculate the average quantities needed for the time-step calculation.

We choose a bin size of 20 which gives a good trade off between computational speed

and accuracy. We tested this new time-step calculation scheme, and we did not find any

significant differences compared to the previous scheme. In addition, we distribute the

stars such that the number of stars per processor is a multiple of 20 (for the time-step

and density estimates) for the first (p − 1) processors and the rest to the last processor.

Since 2 is a multiple of 20, this removes any dependencies due to the interactions part too.

Our choice of data partitioning also ensures a good load balance as, in the worst case, the

difference between the maximum and minimum number of stars among the processors could

be at most 19.

The gravitational potential (Φ(r)) is accessed in a complex, data dependent manner

as we use the bisection method to determine new orbits of the stars. Hence, we do not

partition it among the processors, but maintain a copy of it on all nodes. We also do

the same for the stellar masses, to remove the dependency in the potential calculation.

This eliminates the communication required by the new orbits and potential calculations.

However, it introduces the requirement to keep these data arrays synchronized at each time

step and hence adds to the communication. We estimate the communication required for

synchronization to be much less than what would be added by the associated dependencies

– 17 –

without the duplicated arrays.

Most modules of the code perform computations in loops over the local subset of stars

which have been assigned to the processor. Depending on the computation, each processor

might need to access data from the local and duplicated arrays. While the local arrays can

be accessed simply using the loop index, any accesses of the duplicated arrays (potential,

position, or mass) require an index transformation. For instance, let us consider a simple

energy calculation routine that calculates the energy of each star in the local array over a

loop using the equation

Ei = Φgi + 0.5 (v2r,i + v2t,i) .

where Ei, vr,i and vt,i are the energy, radial and transverse velocities of star i in the

local array. The potential array having been duplicated across all processors, the potential

at the position of the ith star is Φgi, where gi is the global index given by the following

transformation which directly follows from our data partitioning scheme explained above:

gi =

i+ id
⌊⌊

N
nm

⌋

1
p

⌋

nm + id nm for id <
⌊

N
nm

⌋

mod p

i+ id
⌊⌊

N
nm

⌋

1
p

⌋

nm +
⌊

N
nm

⌋

mod p nm for id ≥
⌊

N
nm

⌋

mod p

where id the id of the processor that is executing the current piece of code, which

ranges between 0 to p− 1, nm is the number of which we would want the number of stars

in each processor to be a multiple of, which as per our choice, is 20, and the terms between

⌊. . .⌋ are rounded to the lowest integer.

3.3. Parallel Flow

The following gives an overview of the parallel workflow:

1. Initial partitioning of the star data and distribution of duplicated arrays (mass, and

– 18 –

radial positions)

2. Calculate potential

3. Perform interactions, stellar evolution, and new orbits calculation

4. Sort stars by position in parallel

5. Re-distribute/load-balance data to concur with domain decomposition

6. Synchronize duplicated arrays (mass, and radial positions)

Then the whole procedure is repeated starting from step 2. The first step is to distribute

the initial data among processors as per our data partitioning scheme mentioned in Section

3.2. This is done only once per simulation. This also includes the distribution of a copy

of the duplicated arrays. In Section 2, we saw that the calculation of the potential is

inherently sequential requiring communication, since it is calculated recursively starting

from the outermost star and using the intermediate result to compute the potential of the

inner stars. However, since now every processor has an entire copy of the potential, the

positions and mass arrays, it can calculate the potential independently. This does not give a

performance gain since there is no division of workload, however nullifies the communication

requirement. Performing interactions, stellar evolution and new orbits calculation too don’t

require any communication whatsoever due to our choice of data partitioning and use of

duplicated arrays. We use sample sort as the parallel sorting algorithm which is described

in much greater detail in a subsequent section. With a wise choice of parameters, the

sample-sort algorithm can provide a near equal distribution of particles among processors.

However, since we require the data to be partitioned in a very specific way, following the

sort, we employ a re-distribution/load-balancing phase to redistribute the sorted data as

per our chosen domain decomposition. Sorting and re-distribution are steps that naturally

require the most communication. Before the beginning of the next time-step, we synchronize

– 19 –

the duplicated arrays on all processors which requires message passing. Some non-trivial

communication is also required at various places in the code to collect and synchronize

diagnostic values.

3.4. Sorting

The input to a parallel sorting algorithm consists of a set of data elements (properties

of N stars in our case), each having a key (radial positions in our case) based on which the

data need to be sorted. An efficient parallel sorting algorithm should collectively sort data

owned by individual processors in such a way that their utilization is maximum, and at the

same time the cost of redistribution of data across processors is kept to a minimum. In order

to implement a parallel sorting algorithm, there are a wide array of solutions to consider.

Each of these solutions cater to a parallel application and/or in some cases a particular

machine architecture/platform. In general, a parallel programmer should consider many

different design decisions with careful consideration of the application characteristics. The

proper assessment of application knowledge often can suggest which initial distributions of

data among processors are likely to occur, allowing the programmer to implement a sorting

algorithm that works effectively for that application.

The importance of load balance is also immense, since the application’s execution time

is typically bound by the local execution time of the most overloaded processor. Since our

choice of domain decomposition requires a fairly good load balance, our sorting algorithm

should ensure that the final distribution of keys among processors closely agree with our

decomposition. This is a challenge since during their evolution, dense star clusters have

a very strong density contrast, and stars are very unevenly distributed radially with a

substantial number of stars in the high density core, and a the rest in the extremely low

density halo. A good parallel sorting algorithm for our application should be able to judge

– 20 –

the distribution of keys and perform the sort accordingly so that near-equal amount of data

ends up in each processor at the end of the sorting phase.

Sample Sort is a splitter-based parallel sorting algorithm that performs a load balanced

splitting of the data by sampling the global key set. This sampling helps judge the initial

distribution of keys and accordingly perform the sort, hence resulting in a near-equal

distribution of data among processors. Given N data elements distributed across p

processors, sample sort consists of 5 phases, shown in Figure 2:

1. Sort Local Data: Each processor has a contiguous block of data in accordance

with our data partition (close to N/p in number, see Section 3.2). Each processor, in

parallel, sorts this local block using sequential Quicksort.

2. Sampling: All p processors, in parallel, uniformly sample s keys to form a

representative sample of the locally sorted block of data. These set of p samples, of

size s from each processor, are collected on one designated processor. This aggregated

array of samples represent the distribution of the entire set of keys.

3. Splitter Selection: The combined sample key array is sorted, and keys at indices

s, 2s, 3s, ..., (p− 1)s are selected as splitters and are broadcasted to all processors.

4. Exchange partitions: The positions of the (p− 1) splitter points in the local array

are determined by each processor using binary search; this splits the local array into

p partitions. In parallel, each processor retains the ith partition and sends the jth

partition to the jth processor i.e. each processor keeps 1 partition and distributes

(p− 1) partitions. At the same time it receives 1 partition from every other processor.

This might not be true always, particularly in cases of a poor choice of sample size s,

some splitter points might lie outside the local data array and hence some processors

might not send data to all (p− 1) processors but only a subset of them. However, for

– 21 –

Fig. 2.— The Sample Sort Algorithm

– 22 –

the current discussion we will assume a good choice of sample size is made.

5. Merge Partitions: Each processor, in parallel, merges its p partitions into a single

list and sorts it.

One chooses a sufficiently large enough value for the sample size s so as to sample

the distribution of keys accurately, and hence this parameter varies depending on the

distribution of keys as well the data size N . More comments on the choice of sample size

can be found in Li et al. (1993).

Let us now try to derive the time complexity of sample sort on a hypercube parallel

architecture with cut-through routing. The local sort requires O(N
p
log(N

p
)) since there

are close to N/p keys per processor. The selection of s sample keys requires O(s) time.

Collecting s keys from p processors on to one of the processors is a single-node gather

operation for which the time required is O(sp). The time to sort these sp samples is

O((sp) log(sp)), and the time to select (p − 1) splitters is O(p). The splitters are sent

to all the other processors using an one-to-all broadcast which takes O(p log p) time. To

place the splitters in the local array using binary search takes O(p log(N
p
)). The all-to-all

communication that follows costs a worst case time of O(N
p
) + O(p log p). So the time

complexity of the entire algorithm becomes

O
(

N

p
log

N

p

)

+O((sp) log(sp)) +O
(

p log
N

p

)

+O(N/p) +O(p log p) . (9)

3.5. Data Redistribution

In theory, , with a good choice of sample size, sample sort guarantees to distribute the

particles evenly among processors within a factor of two (Li et al. 1993). However, we would

like to partition the data in such a way that each processor has close to N/p elements, and

– 23 –

at the same time being multiple of 20. Since the final distribution of data among processors

after sample sort is not deterministic, we include an additional communication phase to

ensure the required data distribution is maintained.

We first calculate the global splitter points that would partitioned the entire data

among processors as per our required data partitioning scheme. We also do a parallel prefix

reduction (MPI Exscan), so each processor knows the cumulative number of stars that

ended up in processors before it. Using this, it can calculate the range of global indices

corresponding to the list of stars it currently holds. Now, each processor checks if any of

the global splitter points other than its own map on to its local array, and if they do, it

marks the corresponding chunk of data to be sent to the respective processor. The, we do

an all-to-all communication to send the data, which is then rearranged locally within each

processor.

Let us consider and example where there are 4 processors and they receive 100, 130,

140 and 80 respectively after the sort phase. For a total of 450 stars to be divided among

4 processors, the expected distribution would be 120, 120, 100 and 110 stars respectively

as per our scheme. The corresponding global splitter points would be 120, 240, and 340.

By doing the prefix reduction on the received number of stars, processor 3, for instance,

knows there are in total 230 stars in processors before it. Since it received 140 stars after

sorting, it also calculates that it has stars with indices between 231 - 370. Now, two global

splitter points i.e., 240 and 340 of processors 2 and 4 lie with this index range, and hence

the corresponding stars i.e., 231 - 240 and 341 - 370 need to be sent to processors 2 and 4

respectively. These data chunks are exchanged by performing an all-to-all communication

which is followed by a rearrangement if required.

– 24 –

3.6. Parallel Random Number Generation

The accuracy of results of a parallel Monte Carlo code depends in general on both the

quality of the pseudo-random number generators (PRNGs) used and the approach adopted

to generate them in parallel. In our case we need to sample events with very low probability,

such as physical collisions between stars or binary interactions, which makes it necessary for

the generated random numbers to be distributed very evenly. More specifically, given Nr

random numbers uniformly distributed in the interval (0, 1), there should be one random

number in each sub-interval of size 1/Nr. A special class of random number generators for

which this property holds in even higher dimensions are the maximally equi-distributed

generators and we choose here the popular and fast combined Tausworth linear feedback

shift register PRNG in L’Ecuyer (1999).

PRNGs use a set of state variables which are used to calculate random numbers. Every

time a random number is generated, the values of these states are updated. A PRNG can

be initialized to an arbitrary starting state using a random seed. When initialized with the

same seed, a PRNG will always produce the same exact sequence. The maximum length of

the sequence before it begins to repeat is called the period of the PRNG. The combined

Tausworthe PRNG we are using here has a period of ≈ 2113 (L’Ecuyer 1999).

While generating random numbers in parallel, special care has to be taken to ensure

statistical independence of the results calculated on each processor. For instance, to

implement a parallel version, we could simply allocate separate state information for the

PRNGs on each processor and initialize them with a different random seed. However,

choosing different seeds does not guarantee statistical independence between these streams.

An efficient way to produce multiple statistically independent streams is to divide a

single random sequence into subsequences, with their starting states calculated using jump

functions (Collins 2008). Taking a starting seed and a jump displacement, D, as inputs,

– 25 –

jump functions can very quickly generate the Dth state of the random sequence . We use

this method to generate multiple starting states, one for each processor, by repeatedly

applying the jump function and saving intermediate results. The jump displacement is

chosen as the maximum number of random numbers each processor might require for the

entire simulation while still providing for a sufficiently large number of streams. Based on

that we choose D = 280.

3.7. Implementation

CMC is written in C, with some parts in Fortran. We use the Message Passing Interface

(MPI) library to handle communication. The MPI standard is highly portable to different

parallel architectures, and available on practically every supercomputing platform in use

today. The most common MPI communication calls used in our code are:

1. MPI Allreduce/MPI Reduce

MPI Reduce combines the elements of a distributed array by cumulatively applying

a user specified operation as to reduce the array to a single value. For instance,

when the operation is addition then the resulting value is the sum of all elements.

MPI Allreduce is MPI Reduce with the difference that the result is distributed to all

processors. The call is used in the following parts of the code:

(a) Diagnostics and program termination: accumulating diagnostic quantities such

as the half-mass radius, rh, and the core radius, rc.

(b) time-step calculation: to find the minimum time-step of all stars across

processors.

(c) Sorting and data redistribution: Since stars are created and lost throughout the

simulation, N is not a constant and changes during a time-step. It is calculated

– 26 –

during the sorting step by summing up the local number of stars on each

processor.

2. MPI Allgather/MPI Gather

In MPI Gather each process sends the contents of its local array to the root, or master,

process, which then concatenates all received arrays into one. In MPI Allgather this

concatenated array is distributed to all nodes. The calls are used in the following

parts of the code:

(a) Synchronization of duplicated arrays, i.e., Φ(r) and the stellar masses.

(b) Sorting and data redistribution: to gather samples contributed by all processors

on to a single node. See Section 3.4 for details.

3. MPI Alltoall

In MPI Alltoall the send and receive array is divided equally into p sub-arrays, where

p is the number of processors. The position of each sub-arryay within the send or

receive array determines to or from which processor the data is sent or received,

respectively. MPI Alltoall is only used in “Sorting and data redistribution”. See

Section 3.4 for details.

4. MPI Bcast

In MPI Bcast an array is sent from the root, or master, node to all other processes.

Used in “Sorting and data redistribution” to communicate the new splitter points

from a single specified processor to all other.

5. MPI Scan/MPI Exscan

MPI Scan essentially carries out a reduction as in MPI Allreduce except that

processor i receives the result of the reduction over the data of processors 0 to i. In

– 27 –

MPI Exscan the data is reduced over processors 0 to i-1. MPI Scan/Exscan is used in

“Sorting and data redistribution”. See Section 3.5 for details.

We also use a number of optimizations for the MPI communication calls. Some examples

include using MPI derived datatypes for data packing and sending, and combining multiple

parallel reduction calls for the diagnostic quantities by packing all the data into a single

buffer and performing the reduction together using a single call which is more efficient.

However, the overlapping of communication calls with computation we did not explore so

far, but intend to do so in the future.

4. Results

All our test calculations were carried out on Hopper, a Cray XE6 supercomputer at

NERSC1 that has a peak performance of 1.28 Petaflops, 153,216 processor-cores for running

scientific applications, 212 TB of memory, and 2 Petabytes of online disk storage.

4.1. Accuracy and Reproducibility

In the parallel version, since we use jump functions, the way random numbers are

assigned to stars is different from the serial version. This would bring in a problem of

inconsistency in the results between serial and parallel runs, leaving us with no simple way

to verify the correctness of the results of our parallel version. We tackle this problem by

changing the serial version such that it uses the same mapping of random numbers to stars

as followed in the parallel version.

We ran test simulations for 50 time-steps with the parallel version and serial versions

1http://www.nersc.gov/

http://www.nersc.gov/

– 28 –

with N = 105, 106, and 107 stars, and compared positions and masses of every star in the

cluster. We found them to be matching accurately down to the last significant digit (all

variables are in double precision). We also compared a few diagnostic quantities, and they

were matching too except for the last four significant digits. This slight loss in accuracy is

due to the MPI Reduce calls, which perform cumulative operations (sum, max, min etc.)

on data distributed among the processors. This introduces different round-off errors since

one does not have control over the order in which the data aggregation is done.

4.2. Comparison to Theoretical Predictions

In order to verify that our code reproduces well-known theoretical results, we calculate

the evolution of single-mass Plummer spheres (Binney & Tremaine 2008) until core collapse

(without any binaries or stellar evolution). Using 105, 106, and 107 stars, this is the first

time that self-consistent N -body simulations covering three orders of magnitude in N have

been carried out. We used 128, 256 and 1024 processors for these runs, respectively, which

deliver peak performance for the three cases (see Section 4.3).

One remarkable property realized early on is that the cluster evolution proceeds in a

self-similar fashion, that is, the cluster density profiles differ only in scale and normalization

at any given time (e.g., Cohn 1980; Binney & Tremaine 2008). This can be clearly seen in

Figure 4, where we plot the density profile of the cluster with N = 105 at various times

during its evolution to core collapse. For each profile we observe a well-defined core and

a power law density profile, ρ ∝ r−γ, with γ ≈ 2.5, in good agreement with the literature

value of γ = 2.23 (Cohn 1980; Heggie & Stevenson 1988; Takahashi 1995) shown by the

dashed line.

Figure 3 shows the core radius, rc(t)/rh(t), as well as the core density evolution, ρc(t),

– 29 –

0.001

0.01

0.1

1

r c/r
h

0 5 10 15 20
t[t

rh
]

1

10

100

1000

10000

ρ c [
M

c r
vi

r-3
]

Fig. 3.— Evolution of an isolated Plummer model showing the ratio of core ra-

dius to half-mass radius (top) and the core density (bottom). Time is in initial half-

mass relaxation times. The various lines represent different particle numbers, N =

105 (dashed), 106 (dots), 107 (solid) .

– 30 –

for the models with N = 105, 106 and 107 stars. One can immediately see that all three

clusters reach core collapse at similar times, with t = tcc ≃ 17.4trh,16.7trh and 16.6 trh,

respectively, where trh is the initial half-mass relaxation time. Thus, the core collapse times

are not only in very good agreement with previously published results that all lie between

15 and 18 trh (see, e.g., Freitag & Benz 2001, for an overview), but also confirm that our

code can reproduce the scaling of tcc with trh within ≈ 10% over three orders of magnitude

in N . The scaling behavior becomes even better, with deviations < 1% , if only the runs

with N ≥ 106 are considered. The larger deviation in tcc between the N = 105 run and the

other two are probably because of the larger stochastic variations in low N runs.

Another consequence of the self-similarity of the cluster evolution to core collapse is

that −γ≈ log(ρc(t))/ log(rc(t)) (Binney & Tremaine 2008), which means that the decrease

in rc leads to an increase in ρc at a rate that is related to the shape of the density profile.

Indeed, from Figure 3 one can see that the shape of ρc(t) mirrors the shape of rc(t) as

expected. Furthermore, by fitting ρc(t) and rc(t) with an exponential function up to 12 trh,

we find that ρc ∼ r−2.4
c , which is close to the power-law slope of −2.5 we find for ρ(r) for

r > rc.

Apart from the self-similar behavior, we also find that there is very little mass loss (less

than 1%), and hence very little energy is carried away by escaping stars, in agreement with

theoretical expectations (e.g., Lightman & Shapiro 1978). Finally, we find that our code

conserves total energy to better than 1% throughout the entire simulation.

4.3. Performance Analysis

We tested out our parallel code for 3 clusters configurations with N= 105, 106, and

107, all of them having an initial Plummer density profile. We used 1 to 1024 processors

– 31 –

0.01 1
r[r

vir
]

1e-05

1

ρ

4

4:

3

2
1

1:

3:

2:

Time

1.40

1.48

1.56

1.62

slope -2.23

Fig. 4.— Evolution of the density profile at various times during core collapse for the

N = 105 run. The dashed line shows the slope of the expected power-law density profile

(Heggie & Stevenson 1988; Cohn 1980).

– 32 –

1 2 4 8 16 32 64 128 256 512 1024
10

0

10
1

10
2

10
3

10
4

10
5

no. of processors

tim
e

(s
ec

)

N = 105

N = 106

N = 107

Fig. 5.— Scaling of the wall clock time taken with the number of processors for a parallel

simulation of up to 50 time-steps. The various lines represent different particle numbers (see

legend).

– 33 –

and measured the total time taken, and time taken by various parts of the code for up

to 50 time-steps. For the sample size s for the sample sort, we chose 128, 256 and 1024

respectively for the three N values.

The timing results are shown in Figure 5 and a corresponding plot of the speedups in

Figure 6. These results do not include the time taken for initialization including reading

of the initial conditions. We can see that the speedup is nearly linear up to 64 processors

for all three runs, after which there is a gradual decrease followed by saturation. For the

105, and 106 case, we also notice a dip after the saturation which is also expected for the

107 case for a larger number of processors than we consider here. We also see that the

number of processors for which the speedup peaks is different for each run, which gradually

increases with N . The peak is seen at 256 processors for the 105 run, somewhere between

256 and 512 for the 106 run, and 1024 for the 107 run. The maximum speedups observed

are around 60×, 100×, and 220× for the three cases respectively.

Figure 7 shows the scaling the time taken by various modules of our code for the 1

million run. One can observe that the dynamics, stellar evolution, and orbit calculation

modules achieve perfectly linear scaling. The ones that do not scale as well are the

sorting and ”Diagnostics and Program Termination”. part which involve the computation

and communication of diagnostic book-keeping quantities. These quantities need to be

cumulatively reduced and are difficult to parallelize efficiently. As the number of processors

increase, the linear scaling of the former three parts of the code reduces their time to very

small values, in turn letting the parts that do not scale dominate the runtime. This is the

reason for the trend observed in the total execution time and speedup plots. We can also

particularly see that the time taken by sorting starts to increase after reaching a minimum,

and this explains a similar observation in those plots too.

Figure 8 shows the experimental timing results of our sorting phase for the three N

– 34 –

1 2 4 8 16 32 64 128 256 512 1024
1

2

4

8

16

32

64

128

256

512

1024

no. of processors

tim
e

(s
ec

)

N = 105

N = 106

N = 107

Ideal Speedup

Fig. 6.— Speedup of our parallel code as a function of the number of processors. The various

lines represent different particle numbers (see legend). The diagonal dashed line gives the

ideal speedup.

– 35 –

1 2 4 8 16 32 64 128 256 512 1024
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

no. of processors

tim
e

(s
ec

)

Dynamics
Stellar Evolution
Orbit Calculation
Sorting
Other

Fig. 7.— Time taken by the various parts of the code for a parallel run with 1 million stars.

The various lines represent the different modules of the algorithm (see legend).

– 36 –

1 2 4 8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

No.of processors

S
or

tin
g

tim
e

−
 e

xp
er

im
en

ta
l.

vs
. t

he
or

et
ic

al

N = 105 (theoretical)

N = 105 (experimental)

N = 106 (theoretical)

N = 106 (experimental)

N = 107 (theoretical)

N = 107 (experimental)

Fig. 8.— Time taken by the sorting routine of the parallel code plotted against the theoretical

time complexity of sample sort based on Equation 9 for various values of N.

– 37 –

values plotted against the theoretical values calculated using Equation 9. While calculating

the theoretical values, we used an appropriate proportionality constant for the all-to-all

communication phase. Since the entire star data is communicated during this phase and not

just the keys, and a data size of a single star is 45 times greater than that of a single key in

our code, we multiply the Θ(N/p) term of Equation 9 with a proportionality constant of 45.

We used a sample size of s = 128, 256 and 1024 for N = 105, 106 and 107, respectively. We

see that for all three cases, the expected time linearly decreases reaching a minimum after

which it shoots back upward. This implies that for every data size, there is a threshold for

the number of processors that would achieve optimal performance beyond which it will only

worsen. This is primarily due to the fact that as the number of processors increase, smaller

amounts of data are distributed across many processors, which makes the communication

overhead becomes much more noticeable and dominant. From Figure 8, we also see that

our implementation very closely follows the trend predicted by the theoretical complexity

formula. In addition, the number of processors at which maximum performance is attained

match fairly closely too. We noted earlier that the total execution time followed a similar

trend, but the places at which the minimum execution time was observed are not the same,

but shifted to the right. This is due to the influence of the linearly-scaling parts of the

code which push these points to the right until the substantially large time taken by the

sorting and the “other” computations dominate the runtime. The “other” computations

include potential calculation and a number of collective communication calls to aggregate

book-keeping quantities across processors. The time taken for potential calculation remains

unchanged due to parallelization since every processor computes the entire potential array,

which takes constant time irrespective of the number of processors used. However, there

might be potential to improve the scaling by interleaving the collective communication calls

with computation.

– 38 –

5. Conclusions

We presented a new parallel code, CMC, for simulating collisional N -body systems

with up to N ∼ 107. In order to maintain a platform independent implementation, we

adopt the Message Passing Interface (MPI) library for communication. The parallelization

scheme uses a domain decomposition that guarantees a near-equal distribution of data

among processors to provide a good balance of workload among processors, and at the same

time minimizes the communication requirements by various modules of the code. Our code

is based on the Hnon Monte Carlo method , with algorithmic modifications including a

parallel random number generation scheme, and a parallel sorting algorithm. We present

the first ever self-consistent N -body simulations of star clusters with N spanning three

orders of magnitude, from 105 to 107. The core collapse times obtained in our simulations

are in good agreement with previous studies, confirming the correctness of our code. We

also test our implementation for the previously considered N values on 1 to 1024 processors.

The code scales linearly up to 64 processors for all cases considered, after which it saturates,

which we find to be characteristic of the parallel sorting algorithm. The overall performance

of the code is impressive, delivering maximum speedups of up to 220× for N = 107.

Interesting future lines of work may include reducing the communication overhead

by overlapping communication with computation. Running simulations with even higher

N values will allow us to test how the code scales, and to identify any bottlenecks. In

addition, we can employ GPUs to accelerate these bottlenecks, and develop with a hybrid

code which can run on heterogeneous distributed architectures with GPUs. With progress

on these lines, we may be able to reach the domain of nuclear star clusters for the first

time. With their much larger masses and escape velocities, nuclear star clusters are

likely to retain many more stelllar-mass black holes than globular clusters, and, thus,

might significantly contribute to the black hole binary merger rate, as well as to the

– 39 –

gravitational wave detection rate of advanced LIGO (Laser Interferometer Gravitational

wave Observatory) (Miller & Lauburg 2009). Therefore, the study of nuclear star clusters

with a fully self-consistent dynamical code such as CMC has the potential to make strong

predictions for future gravitational wave detection missions.

This work was supported by NASA Grant NNX09A036G to F.A.R. We also acknowledge

partial support from NSF Grants PHY05-51164, CCF-0621443, OCI-0724599, CCF-0833131,

CNS-0830927, IIS- 0905205, OCI-0956311, CCF-0938000, CCF-1043085, CCF-1029166,

and OCI-1144061, and from DOE Grants DE-FC02-07ER25808, DE-FG02-08ER25848,

de-sc0001283, de-sc0005309, and de-sc0005340.

A. GPU Implementation of the Orbit Computation

An optional feature of the CMC code is the GPU acceleration of the orbit computation

that consists of finding peri- and apastron of each stellar orbit and sampling a new orbital

position (see Section 2). As we have shown, the time complexity of both parts is N logN ,

and each orbit and new position for one star can be independently determined from the

other stars. This makes the orbit computation particularly suited to be calculated on

a GPU, not only because of the inherent parallelism of the algorithm, but also for the

large number of memory accesses, which also scale as ∼ N logN , and, thus, allow to take

advantage of the fast GPU memory.

Based on the structure of the algorithm, our implementation assigns one thread on the

GPU to do the computations for one star. This ensures minimal data dependency between

the threads since the same set of operations are performed on different data, and makes

the bisection method and rejection technique implementations naturally suited for SIMD

(Single Instruction, Multiple Data) architectures, such as the GPU. In the following we

http://arxiv.org/abs/de-sc/0001283
http://arxiv.org/abs/de-sc/0005309
http://arxiv.org/abs/de-sc/0005340

– 40 –

describe the specific adaptations of the serial implementation of the algorithms to the GPU

architecture and present performance results.

A.1. Memory Access Optimization

To harness the high computation power of the GPU, it is very essential to have a good

understanding of its memory hierarchy in order to develop strategies that reduce memory

access latency. The first step towards optimizing memory accesses is to ensure that memory

transfer between the host and the GPU is kept to a minimum. Another important factor

that needs to be considered is global memory coalescing in the GPU which could cause a

great difference in performance. When a GPU kernel accesses global memory, all threads in

groups of a half-warp access a bank of memory at the same time (Nvidia 2010). Coalescing

of memory accesses happens when data requested by these groups of threads are located in

contiguous memory addresses, in which case they can be read in one (or very few number

of) access(es). Hence, whether data is coalesced or not has a significant impact on an

application’s performance as it determines the degree of memory access parallelism. In

CMC, the physical properties of each star are stored in a C structure, containing 46 double

precision variables. The N stars are stored in an array of such C structures.

Fig. 9.— Data coalescing strategy used to strip the original star data structure and pack

into contiguous arrays before transferring them to the GPU.

– 41 –

Figure 9 gives a schematic representation of the data reorganization. At the top, the

original data layout is shown, i.e., an array of structures. The kernels we parallelize only

require 5 among the 49 variables present in the star structure: radial distance, r, mass

m, energy, E, angular momentum, J , and potential at r, φ, which are shown in different

color. To achieve coalesced memory accesses, we need to pack the data before transferring

it to the GPU in a way that they would be stored in contiguous memory locations in the

GPU global memory. A number of memory accesses involve the same set of properties for

different stars being accessed together by these kernels since one thread works on the data

of one star. Hence, we extract and pack these into separate, contiguous arrays, one for each

property. This ensures that the memory accesses in the GPU will be mostly coalesced.

Also, by extracting and packing only the 5 properties required by the parallel kernels, we

minimize the data transfer between the CPU and GPU.

A.2. Random Number Generation

For the generation of random numbers we use the same combined Tausworthe generator

and parallel implementation scheme as described in Section 3.6. That is, for each thread

that samples the position of a star, there is one random stream with an initial state that has

been obtained by jumping multiple times in a seeded random sequence to ensure statistical

independence between streams. As we will see later, to achieve optimal performance, 6000

to 8000 threads, and, thus, streams, are required. This can be easily accomodated by one

random sequence, as for our jump distance of 280 and a random number generator period

of ≈ 2113, ≈ 1010 non-overlapping streams can be generated. Once generated on the host,

the initial stream states are transferred to the GPU global memory. Each thread reads the

respective starting state from the memory and produces random numbers independently.

– 42 –

A.3. Performance Results

All our simulations are carried out on a 2.6 GHz AMD PhenomTM Quad-Core Processor

with 2 GB of RAM per core and an NVIDIA GTX280 GPU, with 30 multiprocessors,

and 1 GB of RAM. The algorithms have been written in the CUDA C language, and

were compiled with the version 3.1 of the CUDA compiler. All computations are done in

double precision, using the only Double Precision Unit (DPU) in each multiprocessor on

the GTX280 GPU.

We collect the timing results for 5 simulation timesteps of a single-mass cluster with a

Plummer density profile, and sizes ranging from 106 to 7 × 106 stars, encompassing nearly

all globular cluster sizes (e.g., McLaughlin & van der Marel 2005).

Figure 10 compares the GPU and CPU run-times. Figure 11 shows the speedup of

the ‘new orbits calculation’ part and the bisection and rejection kernels individually. All

speedup values are with respect to the code performance on a single CPU. We see that the

average speedups for the rejection and bisection kernels are 22 and 31, respectively. This

is due to the difference in the number of floating point operations between the two kernels

which is a factor of 10. This makes a major difference on the CPU but not on the GPU as

it has more arithmetic logic units (ALUs). Indeed, the bisection and rejection kernels take

about equal amount of time on the GPU for all N . This also indicates that the performance

of these kernels is only limited by the memory bandwidth as they roughly require the same

amount of global memory accesses.

We also observe that the total speedup increases slightly as the data size increases.

In general, we obtain very good scalability. Analyzing the dependence of the run-time

on N in Figure 10 we find that the GPU run-times follow closely the kernel’s complexity of

O(N logN). The run-times on the CPU, on the other hand, have a steeper scaling withN ,

– 43 –

Fig. 10.— Comparison of total run-times of the sequential and parallelized kernels for various

N .

– 44 –

such that the run with N = 7× 106 takes a factor of 11 longer than with N = 106, instead

of the expected factor of 8. The reason for the somewhat worse scaling of the run-time on

the CPU is not yet clear and remains to be investigated in the future.

Note that as the memory transfer between the CPU and GPU is currently not

optimized, our speedup calculations do not include that overhead. However, as we transfer

only a subset of the entire data for each star, there is the potential space for improvement

to interleave kernel computations with data transfer and substantially reduce this overhead.

Finally, we looked at the influence of GPU specific parameters on the run-time. In

order to improve performance and utilization of the 30 multi-processors, we partitioned our

data space into a one-dimensional grid of blocks on the GPU. Due to the complexity of the

expressions involved in the calculations of orbital positions, our kernels use a significant

amount of registers (64 registers per thread). Thus, the block dimension is restricted to

256 threads per block as the GTX280 GPU has only 16384 registers per block. To analyze

the performance, we first made a parameter scan in the block and grid dimensions by

varying the block sizes from 64 to 256 and the grid sizes from 12 to 72. Figure 12 shows

the total run-time of all kernels as a function of the total number of active threads on the

GPU. As expected, the runtime decreases with increasing thread number but saturates at

around 6000 threads. The saturation is most likely due to the finite memory bandwidth, as

we noted before that the run-time of the kernels is mainly determined by the number of

memory accesses as opposed to the number of floating point operations. One can also see

that the curve shows little scatter, ≈ 0.1 s, which means that the specific size of a single

block of threads has a minor effect on performance. We furthermore find that for a given

total number of threads, the run-time is shortest when the total number of thread blocks is

a multiple of the number of multi-processors, in our case 30.

– 45 –

Fig. 11.— Total and individual speedups of the bisection and rejection kernels.

Fig. 12.— Total run-time of all kernels over the total number of threads.

– 46 –

REFERENCES

Binney, J., & Tremaine, S. 2008, Galactic Dynamics: Second Edition (Princeton University

Press)

Chatterjee, S., Fregeau, J. M., Umbreit, S., & Rasio, F. A. 2010, ApJ, 719, 915

Cohn, H. 1980, ApJ, 242, 765

Collins, J. C. 2008, Army Research Laboratory, 4, 41

Fregeau, J. M., Cheung, P., Portegies Zwart, S. F., & Rasio, F. A. 2004, MNRAS, 352, 1

Fregeau, J. M., Gürkan, M. A., Joshi, K. J., & Rasio, F. A. 2003, ApJ, 593, 772

Fregeau, J. M., & Rasio, F. A. 2007, ApJ, 658, 1047

Freitag, M., & Benz, W. 2001, A&A, 375, 711

Goswami, S., Umbreit, S., Bierbaum, M., & Rasio, F. A. 2011, ArXiv e-prints

Heggie, D., & Hut, P. 2003, The Gravitational Million-Body Problem: A Multidisciplinary

Approach to Star Cluster Dynamics, ed. Heggie, D. & Hut, P.

Heggie, D. C., & Stevenson, D. 1988, MNRAS, 230, 223

Hénon, M. H. 1971, Ap&SS, 14, 151

Hoare, C. A. R. 1961, Commun. ACM, 4, 321

Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 543

Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897

Hut, P., Makino, J., & McMillan, S. 1988, Nature, 336, 31

– 47 –

Jalali, B., Baumgardt, H., Kissler-Patig, M., et al. 2012, A&A, 538, A19

Joshi, K. J., Nave, C. P., & Rasio, F. A. 2001, ApJ, 550, 691

Joshi, K. J., Rasio, F. A., & Portegies Zwart, S. 2000, ApJ, 540, 969

L’Ecuyer, P. 1999, Math. Comput., 68, 261

Li, X., Lu, P., Schaeffer, J., et al. 1993, Parallel Computing, 19, 1079

Lightman, A. P., & Shapiro, S. L. 1978, Reviews of Modern Physics, 50, 437

McLaughlin, D. E., & van der Marel, R. P. 2005, ApJS, 161, 304

Miller, M. C., & Lauburg, V. M. 2009, ApJ, 692, 917

Nvidia. 2010, http://developer.download.nvidia.com, 1

Takahashi, K. 1995, PASJ, 47, 561

Umbreit, S., Fregeau, J. M., Chatterjee, S., & Rasio, F. A. 2012, ApJ, 750, 31

Zonoozi, A. H., Küpper, A. H. W., Baumgardt, H., et al. 2011, MNRAS, 411, 1989

This manuscript was prepared with the AAS LATEX macros v5.2.

	1 Introduction
	2 Code Overview
	2.1 Numerical Methods
	2.2 Time Complexity Analysis

	3 Parallelization
	3.1 Data Dependencies and Parallel Processing Considerations
	3.2 Domain Decomposition and Algorithm Design
	3.3 Parallel Flow
	3.4 Sorting
	3.5 Data Redistribution
	3.6 Parallel Random Number Generation
	3.7 Implementation

	4 Results
	4.1 Accuracy and Reproducibility
	4.2 Comparison to Theoretical Predictions
	4.3 Performance Analysis

	5 Conclusions
	A GPU Implementation of the Orbit Computation
	A.1 Memory Access Optimization
	A.2 Random Number Generation
	A.3 Performance Results

