
Volume Title

ASP Conference Series, Vol. **Volume Number**

Author

c�**Copyright Year** Astronomical Society of the Pacific

GPU-Accelerated Monte Carlo Simulations of Dense Stellar

Systems

Bharath Pattabiraman1,2, Stefan Umbreit1,3, Wei-keng Liao1,2, Frederic
Rasio1,3, Vassiliki Kalogera1,3, and Alok Choudhary1,2

1
Center for Interdisciplinary Exploration and Research in Astrophysics,

Northwestern University, Evanston, USA

2
Dept. of Electrical Engineering and Computer Science, Northwestern

University, Evanston, USA

3
Dept. of Physics and Astronomy, Northwestern University, Evanston, USA

Abstract. Computing the interactions between the stars within dense stellar clusters
is a problem of fundamental importance in theoretical astrophysics. However, simulat-
ing realistic sized clusters of about 106 stars is computationally intensive and often takes
a long time to complete. This paper presents the acceleration of a Monte Carlo algo-
rithm for simulating stellar cluster evolution using programmable Graphics Processing
Units (GPUs). This acceleration allows to explore physical regimes which were out of
reach of current simulations.

1. Introduction

The evolution of dense star clusters is a challenging multi-physics, multi-scale prob-
lem, involving a wide range of spatial and temporal scales over which various physical
processes operate and their tight coupling. One of the methods to model them is di-
rect N-body, but its computational cost has a time-complexity of O(N3) (Heggie & Hut
2003) which results in poor scalability. Thus, the commonly-seen problem sizes of the
direct N-body simulations are in the order of 105 stars, almost an order of magnitude
lower than for most globular clusters observed in our galaxy.

Recently, the Cluster Monte Carlo (CMC) algorithm Joshi et al. (2000), a much
faster approach, demonstrated that it can simulate the evolution of globular clusters
containing up to a few million stars. Yet, a typical simulation of about a million stars
up to average cluster ages of 10 billion years takes typically 3 - 4 weeks on a modern
desktop computer, which means simulations of clusters of 107 stars will take a pro-
hibitive amount of time corresponding to 30 times longer. To accelerate simulations
of such large data sizes, High Performance Computing (HPC) techniques can play a
key role. With General Purpose Graphics Processing Units (GPGPUs) becoming in-
creasingly powerful, inexpensive, and relatively easy to program, it has become a very
attractive hardware acceleration platform. In this paper, we present a GPU accelerated
implementation of the CMC algorithm.

1

2 Pattabiraman, Umbreit, and Rasio

2. Overview of CMC

The CMC code calculates the overall evolution of the cluster over many time-steps by
keeping track of the physical properties of individual stars.

����������
�	
�����

�������	�������
�������	�������	���

����������	
������
��	�	
�
��������

��������
������	��

�������
�������	��

�!	��� �"�������	���
�#����� �

����	�	����

$������	���
������	�	����

����%�!���
�#	��	���#��
�����

������ ����	���
�	������

�����
�
��
�	������&��	��

'�	�(����

Figure 1. The CMC algorithm flowchart.

Figure 1 shows the flowchart of the CMC algorithm. It consists of the following
kernels. (1) Time-step calculation - The smallest time-step of all processes is chosen
to be the global time-step for the iteration. (2) Relaxation and strong interactions -
where we do one of two-body relaxation, binary interactions or stellar collisions based
on the physical system type. (3) Stellar Evolution - simulates the evolution of stars
using the BSE and SSE codes (Hurley et al. 2002). (4) New orbits computation -
samples new positions and orbits for all stars. (5) Sort stars by radial distance - sorts
the stars based on their radial distances.

2.1. Performance Profiling

To identify any potential performance bottlenecks, we ran a simulation of 106 stars on
a 2.6 GHz AMD c� PhenomTM Quad-Core Processor with 8 GB of RAM and profiled
the kernels. Table 1 shows the percentage of time taken by each kernel per time-step.

Kernel % of time taken

Relaxation and Strong Interaction 9%
Stellar Evolution 23%

New orbits calculation 53%
Sorting by radial distance 7%

Others 8%

Table 1. Execution time break-up for various kernels of the CMC algorithm.

We can see that the ’new orbits calculation’ kernel is the clear performance bot-
tleneck. The following from Hénon (1971) describes the orbit sampling procedure in
more detail. We compute the gravitational potential Uk = U(rk) at radial distances rk

(k = 1, ...,N) which are the positions of the stars. To compute the gravitational potential
U(r) at any radial position r from the center, we first find the k such that rk ≤ r ≤ rk+1

GPU-Accelerated Monte Carlo Cluster Dynamics Simulations 3

and compute U(r) using Uk:

U(r) = Uk +
1/rk − 1/r

1/rk − 1/rk+1
(Uk+1 − Uk) (1)

Given a star with energy E and angular momentum J moving in a potential U(r),
its follows a rosette orbit with r oscillating between two extreme values rmin and rmax,
which are roots of:

Q(r) = 2E − 2U(r) − J
2/r2 = 0 (2)

The interval in which rmin falls is found by looking up the sorted star list based on
their radii and of the corresponding potentials Uk; that is, one determines k such that
Q(rk) < 0 < Q(rk + 1). We use the bisection method to do this root-finding which as a
time complexity of O(logN) and for all N stars, this becomes is O(NlogN). Once the k

values are found, computing rmin and rmax is simply an arithmetic operation.

F

rmin rmax

(r0, f0)

r0
r

Figure 2. The rejection technique
showing functions f (r) and F, the
rejected point and the accepted point
(r0, f0) (Hénon 1971).

The next step is to select a position
of the star in the new orbit between rmax

and rmin. The probability to choose it in
an interval dr should be equal to the frac-
tion of time spent by the star in dr, i.e.:

dt

T
=

dr/ |vr |�
rmax

rmin

dr/ |vr |
(3)

with the radial velocity vr = [Q(r)]1/2:
The computation of the half-period

T is done by the classical von Neu-
mann rejection technique (Hammersley
& Handscomb 1964). We want a prob-
ability distribution to a known function
f (r), without knowing the constant of
proportionality. We take a number F

which is everywhere larger than f (r) (re-
fer Fig 2) and select a point (r0, f0) at ran-
dom in the rectangle rmin < r0 < rmax and 0 < f0 < F, with a uniform distribution. In
other words, we compute:

r0 = rmin + (rmax − rmin)X (4)

f0 = FX
� (5)

where X and X
� are a pair of normalized random numbers. If the point is below the

curve: f0 < f (r0), we take r = r0 as the selected value, if not is rejected and repeated
with a fresh point. This process continues until a point below the curve is obtained.

The orbit sampling part takes the maximum portion of the run-time and also has a
time complexity of O(NlogN) whereas the rest of the code scales as O(N). Hence we
decided to parallelize this on the GPU.

2.2. Implementation on the GPU

The bisection method and rejection technique are naturally suited for SIMD (Single
Instruction, Multiple Data) architectures as there is minimal data dependency. However,

4 Pattabiraman, Umbreit, and Rasio

to harness the high computation power of the GPU, it is important to achieve coalesced
memory accesses. We pack the data before transferring it to the GPU in a way that
data is stored in contiguous memory locations in the GPU global memory, and this
tremendously improves the speed of memory accesses.

�

�

�

�

�

�

�

� �� �� �� �� �� �� ��

	
���������� 	
����������

���������������������

�

�

�
�
 �
�
!�
"
��

 �
��
�

��
##
�

�
�

Figure 3. Comparison of execution times of the
sequential and parallel versions for one timestep.

We also need to produce
multiple states from a sin-
gle random sequence as this
is essential to enable each
thread generate its own ran-
dom number, and at the same
time maintain statistical in-
dependence between them.
We use the technique men-
tioned in Collins (2008) to
generate multiple states from
a single seed by repeatedly
applying the jump functions
and saving intermediate re-
sults. We implemented this
task on the host (CPU), and
it performs extremely fast (in the order of microseconds). Once generated on the CPU,
these states are transferred to the GPU global memory. Each thread reads the respective
starting state from the memory and produce random numbers independently.

3. Experiments and Results

All our experiments are carried out on a 2.6 GHz AMD c� PhenomTM Quad-Core
Processor with 2 GB of RAM per core running Open SUSE Linux, and an NVIDIA
GTX280 GPU with 30 multiprocessors, 240 cores and 1 GB of RAM, using the version
3.1 of the CUDA driver compiler.

To study the scalability, we present the performance results for different data sizes.
We collect simulation results for clusters with a Plummer density profile and sizes rang-
ing from 106 to 7 × 106 stars, encompassing nearly all globular cluster sizes. Figure 3
compares the GPU and CPU run-times. We see that we obtain an average speedup of
28X and very good scalability. A quick calculation from the run-times and the data sizes
in Figure 3 shows that the GPU scalability follows the kernel’s complexity O(NlogN).

References

Collins, J. C. 2008, Army Research Laboratory, 4, 41
Hammersley, J. M., & Handscomb, D. C. 1964, Monte Carlo methods (Methuen, London)
Heggie, D., & Hut, P. 2003, The gravitational million-body problem (Cambridge University

Press)
Hénon, M. H. 1971, Astrophysics and Space Science, 14, 151
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897. arXiv:astro-ph/0201220
Joshi, K. J., Rasio, F. A., & Zwart, S. P. 2000, The Astrophysical Journal, 540, 969

