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ABSTRACT
We have developed a new numerical method for determining the dynamical evolution of a collisionless
system in full general relativity. Using this new method we demonstrate the existence of stable relativistic
star clusters with arbitrarily large central redshifts. Such clusters may result from the secular evolution of an
initially Newtonian, isotropic cluster toward a relativistic state.
Subject headings: clusters: dynamics — galaxies: redshifts — gravitation — quasars — relativity

I. INTRODUCTION

It is now possible to solve Einstein’s equations for the
nonlinear dynamical evolution of collisionless systems in
general relativity, at least in spherical symmetry (Shapiro and
Teukolsky 19854, b, 1986, hereafter collectively ST; and Rasio,
Shapiro and Teukolsky 1988, hereafter RST). In this Letter, we
apply these new techniques to address several long-standing
questions concerning the stability of relativistic star clusters. In
particular, we discuss the existence of stable relativistic clusters
with arbitrarily large central redshifts.

This subject became active in the period that followed Hoyle
and Fowler’s (1967) proposal that quasars might be lying at the
centers of massive relativistic star clusters and derive their
large redshifts from the strong gravitational fields of those clus-
ters. The main theoretical question was whether stable rela-
tivistic structures with central redshifts as large as ~2 could
exist. At the time, the stability of relativistic clusters against
radial perturbations could only be assessed by approximate
semianalytical calculations. The linearized perturbation equa-
tions for an equilibrium cluster were recast in the form of a
variational principle (Ipser and Thorne 1968; Ipser 196%a).
Using suitable trial functions, one can locate the point along
an equilibrium sequence where the radial oscillation frequency
w? becomes negative. This gives a sufficient condition for insta-
bility. In all the equilibrium sequences that were studied at that
time, the clusters became unstable when their central redshifts
satisfied Z, = 0.5 (Ipser 19694, b; Fackerell 1970). It has gener-
ally been believed since then that all relativistic star clusters
with central redshifts Z, = 0.5 should be dynamically unstable.

This belief persists in spite of speculations that some self-
similar clusters with infinite central densities and redshifts,
constructed by Bisnovatyi-Kogan and Zel’dovich (1969), might
be stable (see Bisnovatyi-Kogan and Thorne 1970). The
unrealistic nature of these clusters made them appear of little
interest. Moreover, all techniques for testing stability that were
applied to them yielded inconclusive results. Only certain cor-
responding fluid structures were proved to be stable.

By analogy with equilibrium sequences of fluid stars, one
can also examine the fractional binding energy (i.e., the binding
energy per unit rest mass) of clusters as a diagnostic for stabil-
ity. It it well known (see, e.g., Shapiro and Teukolsky 1983) that

! Department of Physics, Cornell University.
2 Department of Astronomy, Cornell University.

L63

the onset of instability along equilibrium sequences of rela-
tivistic fluid configurations is indicated by a maximum of the
fractional binding energy along the sequence. An important
question is whether the same should be true for equilibrium
sequences of collisionless systems, such as star clusters. In most
cases the first maximum of the fractional binding energy coin-
cides, to within numerical accuracy, with the point where w?
becomes negative. In no cases does w? become negative before
the first maximum, This has led to the conjecture that the onset
of instability for relativistic star clusters also coincides with a
maximum of the fractional binding energy. Interest in this
subject has weakened, however, after the cosmological origin
of quasar redshifts gained general acceptance, and the conjec-
tures were left without final proofs.

An important recent result is Ipser’s (1980) proof that the
above mentioned conjecture indeed gives at least a sufficient
condition for stability. Specifically, Ipser proved that all clus-
ters along an appropriately constructed one-parameter equi-
librium sequence are stable at least up to the first maximum of
the fractional binding energy. Recently, powerful new numeri-
cal techniques have been developed, leading to the fully rela-
tivistic particle simulations of ST, and the relativistic
phase-space calculations of RST. These calculations com-
pletely confirm that the conjecture is indeed true: in all cases a
dynamical instability, leading to the collapse of the cluster to a
black hole, is observed as soon as the first maximum of the
fractional binding energy along the sequence has been passed.

We now raise the following question: if one could construct
an equilibrium sequence where the fractional binding energy
increases monotonically with redshift, would all clusters
remain stable even when Z, > 0.5? Below we answer yes to this
question by providing a concrete example. The clusters we
study do have a fractional binding energy increasing mono-
tonically with central redshift and do not collapse when
dynamically evolved. Moreover, these clusters have perfectly
reasonable physical properties and may even be of astro-
physical relevance: they could represent the relativistic final
states of initially Newtonian clusters undergoing the gravo-
thermal catastrophe.

II. BASIC EQUATIONS AND METHOD

We study the stability properties of equilibrium clusters by
using them as initial data in our fully nonlinear dynamical
calculations. These calculations are restricted to spherical sym-
metry, but the gravitational fields can become arbitrarily
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strong and the matter velocities can approach the speed of
light. Only spherically symmetric unstable modes of oscillation
in the clusters are allowed to grow. However, this restriction is
of little practical importance here since we will be dealing with
distribution functions which are monotonically decreasing
functions of the energy only. It is known theoretically (Ipser
1975) that such distribution functions are dynamically stable to
nonradial modes of oscillations.

We adopt the notations of Misner, Thorne, and Wheeler
(1973) and set ¢ = G = 1 throughout. The metric is written in
the ADM form (Arnowitt, Deser, and Misner 1962), with iso-
tropic radial coordinate,

ds? = —(a® — A2B%)dt? + 2A%Bdrdt

+ AXdr* + r*do* + r? sin? 0do?). 6]
Here @ and f are the lapse and shift functions of ADM; see also
Smarr and York (19784, b).

Our method follows the evolution of the (smooth) distribu-
tion function of matter in phase space. The components of the
stress-energy tensor are computed directly by quadratures of
the distribution function over velocity space. Here the time
evolution of the distribution function f is determined by the
collisionless Boltzmann (Vlasov) equation in general relativity,
which in spherical symmetry can be written

of dr\ of du\ of

ot (dt) art (dt) a0 @
where f= f(r, u,,j, t),j = (uy> + u,/sin? )"/ is the conserved
“angular momentum at infinity ” per unit mass of a star, and u,
is the 4-velocity. The geodesic equation in the metric (1) can be
used to obtain explicit expressions for the coefficients dr/dt and
du,/dt appearing in equation (2).

To obtain f from equation (2), we make direct use of
Liouville’s theorem, which states that for a collisionless system,
values of f are conserved along dynamical trajectories in phase
space (i.c., geodesics). Numerically, we evaluate f at some point
(r1, 4,4, j1) in phase space and time ¢ = t,, by constructing the
geodesic that leads to this point from the initial time ¢ = 0, and
thereby determine the initial position (rg, u,q, jo) from which
the geodesic originates (note that j, = j; since j is conserved).
Then we set f(rl’ Uy, jls tl) =f(r01 Upp> jOs t= 0), where the

-right-hand side can be evaluated directly from the initial data.

This method is very accurate and robust, but requires large
amounts of computing time (for example, following the col-
lapse of an unstable, moderately uniform cluster, all the way to
the formation of an event horizon can take ~1 CPU hr on an
IBM 3090-600 supercomputer). A detailed description of the
method together with a series of test-bed calculations is given
in RST.

II. THE STABILITY OF RELATIVISTIC STAR CLUSTERS

We have considered truncated isothermal, polytropic, and
power-law equilibrium sequences. These sequences had
already been studied in the past (see Zel'dovich and Podurets
1965; Ipser 1969b; Fackerel 1970; ST), and our results com-
pletely confirmed those of previous investigations: the fraction-
al binding energy along these sequences reaches its first
maximum at a central redshift Z, ~ 0.5 and clusters beyond
this point are unstable. All unstable clusters collapsed to black
holes in a few dynamical times (see RST for details).

A very important distribution function, which was never
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considered before from the point of view of stability, is the one
that could result from the secular evolution of an initially New-
tonian cluster via the gravothermal catastrophe to the point
where its core becomes relativistic. This distribution function
may be relevant to the formation process of supermassive
black holes at the center of dense galactic nuclei (Shapiro and
Teukolsky 1985¢; Kochanek, Shapiro, and Teukolsky 1987).
Specifically, such a black hole might result from the dynamical
instability of a relativistic, extreme core-halo cluster of compact
stars that forms in a galactic nucleus via the gravothermal
catastrophe.

Numerical integrations of the Newtonian Fokker-Planck
equation for the secular evolution of an isotropic, one-
component cluster during the gravothermal catastrophe yield
a unique, self-similar form of the distribution function at late
times (Cohn 1980). This distribution function is plotted in
Figure 1 in terms of the nondimensional energy variable of

Cohn,
_ o Exn — $(0)
"=3( 7(0) ) ®

Here ©(0) is the central velocity dispersion, ¢(0) is the central
Newtonian potential, and Eyg is the nonrelativistic energy per
unit mass of a star in the cluster. At late times we have

92%(0) = 0.226 | ¢(0)| . @

Fokker-Planck evolution of star clusters in the relativistic
domain has never been studied. However, a natural relativistic
generalization to the WNewtonian distribution function
described above can be obtained by the following procedure,
originally given by Kochanek, Shapiro, and Teukolsky (1987).
First note that in the Newtonian limit, | $(0)| ~ Z,, where Z, is
the central redshift of the cluster, and Eyg ~ E/m — 1, where E
is the relativistic energy and m the rest mass of a star. Then
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F16. 1.—Gravothermal catastrophe distribution function plotted as a func-
tion of the dimensionless energy variable x. See text for discussion.
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redefine the energy variable x accordingly, as

B Efm—1+2Z,
x= 13.25( > ) ,

c

&)

and adopt the same form for the distribution function f(x) as
plotted in Figure 1. This distribution function is an equilibrium
solution to the relativistic Vlasov equation (2), and reproduces
the essential features of a highly relaxed stellar system. In par-
ticular, it exhibits a homogeneous isothermal core surrounded
by an extended halo with density p ~ r~2-2 (see Fig. 2).

The equilibrium sequence of relativistic equilibrium clusters
generated by equation (5) has a most unusual feature. When we
plot the fractional binding energy E,/M, as a function of
central redshift Z, (Fig. 3), we find that the curve has no
turning point: the fractional binding energy increases monotoni-
cally with redshift, at least up to Z, ~ 30. Moreover we know
that (1) as Z, — 0, the clusters become Newtonian and are
therefore known to be stable, since df/dE < 0 (cf. Doremus,
Feix, and Baumann 1971; Sygnet er al. 1984; Kandrup and
Sygnet 1985); and (2) the value £, of the distribution function
at the boundary of the system in phase space (E = E,,,) is
counstant along the sequence (here £, = 0). Ipser (1980) has
proven a theorem which indicates that under these circum-
stances, all clusters along the sequence should remain dynami-
cally stable, even when their central redshifts become arbitrarily
large!

We studied the stability properties of these clusters using our
fully relativistic dynamical code. Six clusters along the equi-
librium sequence, ranging in central redshifts from Z, = 0.123
to Z, = 3.75, were used as initial conditions (they are identified
by triangles in Fig. 3). All of them were evolved for more than
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FiG. 2—Rest-mass density profiles (solid lines) and velocity dispersion pro-
files (dashed lines) for the relativistic gravothermal catastrophe distribution
function; (@) is for Z, = 0.123, (b) for Z, = 3.75. Here rg is the radius in
Schwarzschild coordinates. All clusters have a nearly isothermal core, sur-
rounded by an extended halo with density p, ~ r~2-2. The triangles indicate
the * core radius,” where the density falls to one-half its central value.
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F16. 3.—Fractional binding energy E,/M, vs. central redshift Z, for the
relativistic gravothermal catastrophe distribution function. Note the absence
of turning point in the curve, indicating stability. The triangles indicate clusters
that have been studied numerically. All have been found to be stable against
radial collapse.

15 dynamical times. To within our numerical accuracy, they
showed no sign of evolution whatsoever. For example, the
density profiles of Figure 2 were maintained to better than 3%
in all cases. Since our code never failed to accurately locate the
onset of instability in test-bed runs involving unstable clusters
(cf. RST), we conclude that the clusters corresponding to equa-
tion (5) are indeed dynamically stable, at least up to a central
redshift Z, = 3.75. At even higher redshifts, the dynamical
range in the system increases rapidly and makes the computa-
tional time prohibitively large (at Z, = 3.75, the ratio of central
to mean stellar densities is & 10'%). However, it appears quite
certain that the stability will continue as Z, — 0.

IV. CONCLUSIONS

Our recent numerical calculations completely confirm the
long-standing conjecture that, as in the case of fluid stars, the
onset of instability in relativistic collisionless star clusters coin-
cides with the first maximum of the fractional binding energy
along an equilibrium sequence.

We have constructed a possible relativistic generalization to
the distribution function representing the endpoint of the New-
tonian gravothermal catastrophe. It generates an equilibrium
sequence of relativistic star clusters in which the fractional
binding energy increases monotonically with central redshift.
We have verified numerically that, when allowed to evolve
dynamically, these clusters do not collapse. Instead, they main-
tain their structure to high accuracy, regardless of how large
the central redshift is. We conclude that these clusters provide
the first examples of finite, asymptotically flat equilibrium
systems which can become arbitrarily relativistic at the center
and still remain stable against gravitational collapse.
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