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1. INTRODUCTION

Essentially all recent theoretical work on close binary systems has been
done in the Roche approximation, where the components are modeled as non
self-gravitating gas in hydrostatic equilibrium in the effective potential of a
point-mass system (e.g., Paczyiski 1971). This model applies well to very com-
pressible objects with centrally concentrated mass profiles, such as giants and
early-type main-sequence stars. Some theoretical work has also been done in
the completely opposite limit of binaries containing a self-gravitating, incom-
pressible fluid (Chandrasekhar 1969). However, many binary systems of astro-
physical interest contain stars that are neither very centrally concentrated nor
homogeneous. In particular, low-mass white dwarf and main-sequence stars have
effective polytropic indices n ~ 1.5, and neutron stars typically have n ~ 0.5—1.

In our recent papers (Lai, Rasio & Shapiro 1993a,d), we have presented
a comprehensive analytic study of the equilibrium and stability properties of
close binary systems containing polytropic components. In addition to provid-
ing compressible generalizations for all the classical incompressible configura-
tions as discussed in Chandrasekhar (1969), our method can also be applied to
more general binary models where the stellar masses, radii, spins, entropies, and
polytropic indices are all allowed to vary over a wide range and independently
for each component. As a result, a variety of dynamical behaviors for various
types of binary systems can be identified. Most importantly, we find that for
sufficiently incompressible systems, both secular and dynamical instabilities can
develop before a Roche limit or contact is reached along a sequence of models
with decreasing binary separation. These instabilities result from Newtonian
tidal interactions between equilibrium stars.

The development of a dynamical instability can have a profound effect on
the terminal evolution of coalescing binaries (Lai, Rasio & Shapiro 1993b,c). In
particular, it causes binary neutron stars whose orbits decay via gravitational
wave emission to undergo rapid merging just prior to contact. The final coales-
cence can take place on a timescale much shorter than the energy dissipation
time scale. For the coalescence of binary neutron stars, the radial infall velocity
at contact is comparable to the free-fall velocity. As a result, the imploding
stars will experience appreciable shock heating as they come into contact. Some
high-mass X-ray binaries are expected to eventually evolve to compact binaries
containing neutron stars or white dwarfs (van den Heuvel 1991). Our results are
therefore important to determining the final evolution of such systems.

2. COMPRESSIBLE DARWIN-RIEMANN BINARY MODELS

A binary system in steady state is characterized by conserved global quan-
tities such as masses M, M’ for the two components, the fluid circulations C, C’,
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and total angular momentum J. The total energy the system E can always be
written as a functional of the fluid density and velocity fields p(x) and v(x). In
principle, an equilibrium configuration can be determined by extremizing this
energy functional with respect to all variations of p(x) and v(x) that leave the
conserved quantities unchanged. The essence of our method is to replace the
infinite number of degrees of freedom contained in p(xB and v(x) by a limited
number of parameters a;, az,..., in such a way that the total energy becomes
a function of these parameters,

E=FE(o,ay,...; M,C, J,-- ). (1)

An equilibrium configuration is then determined by extremizing the energy ac-
cording to

OE

—— = P = Y 2

T} 0, :=1,2, (2)
where the partial derivatives are taken holding M, J,--- constant.

Under the combined effects of centrifugal and tidal forces, the stars in a
binary assume nonspherical shapes, which we model as ellipsoids. Moreover, we
assume that the surfaces of constant density within each star are self-similar
ellipsoids, and the density profile p(m), where m is the mass interior to an
isodensity surface, is identical to that of a spherical polytrope of the same mass.
The independent variables {a;} which specify the structure of our binary models
are the binary separation r and the three axes of the two ellipsoids a;, @' (i =
1,2,3). The velocity field of the fluid is modeled as either uniform rotation or
uniform vorticity, with the spin axis perpendicular to the orbital plane. Thus
both synchronized and nonsynchronized systems are considered.

3. STABILITY LIMITS AND ROCHE LIMIT

When viscosity is negligible, the fluid circulations of the stars are indi-
vidually conserved. Figure 1 illustrates three different dynamical behaviors for
equilibrium binary sequences with constant circulations. Such sequences are
especially relevant for binary systems whose orbits decay due to gravitational
radiation. This is because the gravitational radiation reaction forces conserve
the fluid circulation (Miller 1974).

The three types of behaviors are (cf. Fig. 1):

(a) For sufficiently compressible systems (large n), the stars behave like
two point masses. The energy E decreases monotonically as r decreases, and
stable equilibrium solution exists all the way to contact. .

(b) For more incompressible systems (smaller n), tidal interaction plays an
important role in determining the binary equilibrium. As r decreases, E reaches
a minimum before contact. Such a turning point in the equilibrium energy curve
exactly coincides with the point of onset of dynamical instability. Beyond this
stability limit, all equilibrium solutions become unstable. The physical nature of
this instability is common to all binary interaction potentials that are sufficiently
steeper than 1/r. It is analogous to the familiar instability at » = 6M of circular
orbits for test particles around a Schwarzschild black hole. Here, however, it is
the purely Newtonian tidal effects that are responsible for the steepening of the
effgctive binary interaction potential and for the destabilization of the circular
orbit.
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(c) When the masses of the two components are different, the binary can
encounter a Roche limit before contact. The Roche limit is the point where the
binary separation has a minimum value below which no equilibrium SOll.lt‘lon
exists. Typically, both the stability limit and Roche limit occur around orbital
separation rmy, ~ 3(M'/M)1;3 R, where R is the stellar radius. But note that the
dynamical stability limit 1s always encountered prior to the Roche limit.

(a) (b) (c)

Total Energy
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Fig. 1. General classification of equilibrium binary sequences according to termi-
nal configurations and stability limit. The existence and ordering of the stability
limit (round dots) and Roche limit (triangle) is shown schematically along equi-
librium energy curves E(r). All curves terminate at the point when the two
stars contact.

In the opposite limit, when the effective viscosity is sufficiently large to
maintain synchronization of spins and orbital motion, corotating sequences are
relevant. Depending on the polytropic indices and the mass ratio, different types
of equilibrium behaviors similar to Figure 1 can also be identified. However, for
a corotating sequence, the minimum in the energy curve corresponds to the
secular stability limit, while the true dynamical instability occurs at somewhat
smaller orbital separation along the sequence.

4. ORBITAL EVOLUTION AND BINARY COALESCENCE

The importance of the dynamical instability can be easily seen. When the
energy loss timescale of the system is much longer than the dynamical timescale,
the orbital evolution is quasi-static. The rate of change of the orbital separation
is given by # = E/(dE/dr). As the binary approaches the dynamical stabil-
ity limit r,,, where dE/dr — 0, we have # — co. Clearly, the quasi-static
description is not valid near r,,.

Figure 2 shows the results of our dynamical calculation for the terminal
evolution of binary neutron stars due to gravitational radiation. The develop-
ment of a dynamical instability causes a rapid acceleration of the coalescence,
and the radial infall velocity at contact can be a significant fraction (~ 10%) of
the tangential orbital velocity.

The effects of viscosity can also be considered. Since viscous forces con-
serve the total angular momentum, a binary system evolving through viscosity
only will follow a sequence of configurations with constant J. Such viscous
evolution may be responsible for the orbital period changes detected in some
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high-mass X-ray binaries such as Cen X-3, SMC X-1, LMC X-4 (Levine et al
1993). The orbital evolution of the binary system depends on its initial angular
momentum J;. The binary either evolves toward a stable synchronized state,
or is driven to coalescence by viscous dissipation. Again, we find that for suffi-
ciently incompressible systems, the binary can encounter a dynamical inst ability
before the final merger (Lai, Rasio & Shapiro 1993d).
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Fig. 2. The infall radial velocity of a coalescing neutron star binary. Results for
binary models with different polytropic indices n are shown. The two neutron
stars are assumed to be identical, with mass M = 1.4Mg, radius R = 10 km,
and both have zero spin. Here r,, is the dynamical stability limit.
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