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ABSTRACT

Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of
order e; ~ 1075-1073. In globular clusters, however, higher eccentricities e, > e; can be induced by dynamical
interactions with passing stars. Here we show that the cross section for this process is much larger than pre-
viously estimated. This is because, even for initially circular binaries, the induced eccentricity e, for an
encounter with pericenter separation r, beyond a few times the binary semimajor axis a declines only as a
power law, e, oc (r,/a)”>?, and not as an exponential. We find that all currently known LMBPs in clusters
were probably affected by interactions, with their current eccentricities typically greater than at birth by an

order of magnitude or more.

Subject headings: binaries: close — celestial mechanics, stellar dynamics — globular clusters: general —

pulsars: general

1. INTRODUCTION

Low-mass binary millisecond pulsars (LMBPs) are thought
to be formed when an old neutron star in a binary system
accretes material from a red giant companion. This leads to the
production of a spun-up (recycled) pulsar with a low-mass
white dwarf companion in a wide, circular orbit. This forma-
tion process is well understood theoretically (Verbunt 1993;
Phinney & Kulkarni 1994). The predicted relations between
white dwarf mass and orbital period (Rappaport et al. 1995)
and between orbital eccentricity and period (Phinney 1992) are
in remarkable agreement with observations. The orbits tend to
be very efficiently circularized by tidal torques and viscous
dissipation in the red giant envelope during the mass transfer
phase. Residual eccentricities e; ~ 10751073 for LMBPs at
birth are explained as arising from small fluctuations of the
external gravitational field of the red giant caused by the con-
vective motions in its envelope (Phinney 1992). In globular
clusters, the wide orbits of LMBPs can be perturbed signifi-
cantly by passing stars. Thus final eccentricities e, > e; can be
observed today, and the measured values contain important
information about the dynamical history of the binaries and
their environment. In dense clusters, binaries can even be com-
pletely disrupted through interactions, so we expect to find
LMBPs with eccentricities in the entire range 1076 < e S L

Using numerical scattering experiments, Rappaport, Putney,
& Verbunt (1989) computed cross sections for inducing eccen-
tricity in circular binaries. More recently, Phinney (1992) dis-
cussed the problem on the basis of approximate analytic
expressions for the induced eccentricity derived from pertur-
bation theory. These two studies agree in predicting that the
induced eccentricity decreases exponentially with increasing
pericenter distance r,. In contrast, Hut & Paczyhski (1984),
also on the basis of numerical work, found that the induced
eccentricity decreased as a power law, with e, oc r, 3, and spe-
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culated that this was coming from a nonvanishing higher order
perturbation effect.

The purpose of this Letter is to shed new light on this ques-
tion, by presenting and discussing our own analytic results for
the induced eccentricity (§ 2). On the basis of detailed compari-
sons with numerical integrations, we believe these analytic
results to be correct over the entire range of interest for
LMBPs, 107° S e, < 1. The previously published expressions
in which e, decreases exponentially with r, can grossly under-
estimate the effect when e, < 0.01. Indeed, we find that over
the intermediate range where ¢; <e S 1072, the induced
eccentricity generally varies as a power law e oc r, >/, making
the cross section much larger than would be estimated on the
basis of previous work. The implications of our results for
LMBPs in globular clusters are discussed in § 3.

2. ECCENTRICITY PERTURBATIONS

For binaries with e; # 0 it is easy to show that secular per-
turbation theory (e.g., Danby 1988) gives, in lowest order,

Ae=e; — ¢ .
ms

15n a\3? . g
— -é_\/i m (r_p> e/1 —e? sin (2Q) sin? i (1)
(cf. Heggie 1975, eq. [5.66]). Here m; and m, are the masses of
the binary components, m; is the mass of the passing star,
M, =my +my, M 53 = M, + ms, ais the semimajor axis of
the binary, Q is the longitude of the node (measured in the
orbital plane of the binary from its pericenter), and i is the
inclination (i =0 is coplanar prograde; i == is coplanar
retrograde). Throughout this Letter we assume for simplicity
that m; is initially on a parabolic orbit with respect to the
center of mass of the binary. A first immediate consequence of
equation (1) is that, except for extreme mass ratios, one always
has |Ae|/e; < 1, as long as r, is at least a few times a. Thus,
within the range of applicability of equation (1) (which includes
the r, — oo limit; see below), encounters with passing stars
produce a negligible change in eccentricity. Second, we see
immediately that this lowest order expression goes to zero for
e; =0. We must therefore ask whether higher order terms
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could not become dominant over some intermediate range of
values for r,. Indeed, a secular perturbation calculation at the
next order, for ¢; = 0, gives

15n/2 my|m; —m,| (a\*?
“="e MpME \,) 70

5 2
2, w) = [cos2 w(l -2 sin? i)

. 2 2 o 15 . 2 . 2 1/2
+ sin®  cos? i 1——4—sm i . V)]

Here o is the longitude of the pericenter of the third body,
measured from the node. Note that equation (2) vanishes in the
equal-mass case (m, = m,). A detailed derivation of equation
(2) will be given in Heggie & Rasio (1995, hereafter HR).

Equations (1) and (2) were obtained from secular pertur-
bation theory, i.e., by averaging over the orbital motion of the
binary. This is a valid assumptidn for sufficiently large r,, when
the encounter is quasi-adiabatic. At smaller r, however, the
duration of the encounter can be comparable to the orbital
period of the binary, and departures from adiabaticity can be
important. Small deviations from adiabaticity can be calcu-
lated analytically using the method developed by Heggie (1975,
§ 5.4) for estimating the changes in the semimajor axis of the
binary (which vanish to all orders in secular perturbation
theory). Using this method we obtain (HR), for e; = 0,

ey = 3\/_ m;giz ( 2 >3/4
1 1/2 3/2
o ) .
. _ i LATRESFPY )
#(i, , §) = cos> < 2){0034 ( 2) + 5 sin* < 2)
‘3‘ - G) cos? <é> cos [2¢ — 2«;)]}1/2 .

+ — sin

Here ¢ is the orbital phase of the binary at pericenter. Note
that this expression is maximum for a coplanar prograde orbit
(i = 0) and vanishes for a coplanar retrograde orbit (i = =).

Our theoretical expressions (1)—(3) are in excellent quantitat-
ive agreement with the results of numerical integrations.
Extensive comparisons will be presented in HR. Here, in
Figure 1, we only illustrate this agreement for a typical LMBP
case for i=Q=w=0. The exponential expression (3)
becomes important for e, 2 0.01, but the power law, equation
(2), dominates for e; < e; < 0.01. The dependence on phase is
quite strong in the exponential regime but becomes completely
negligible in the power-law region.

3. IMPLICATIONS FOR BINARY PULSARS

An immediate implication of our results, evident in Figure 1,
is that cross sections for induced eccentricity can be over an
order of magnitude larger than would be estimated on the
basis of the exponential result alone (eq. [3]). This is for para-
bolic orbits or, equivalently, hard binaries (for which the cross
section ¢ oc r,). In general, for slightly hyperbolic orbits, the
induced eccentricity at fixed r, increases with relative velocity,
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F16. 1.—Final orbital eccentricity e, following an interaction with a star on
a coplanar prograde parabolic orbit with pericentric distance r, (given in units
of the binary semimajor axis a). The masses of the two binary components are
m, = 1.4 M, and m, = 0.2 M y; the mass of the passing star is m; =1 M.
Solid lines show the analytic results (egs. [1]-[3]); dots show the results of
numerical integrations. Round dots are for a system with initial eccentricity
e; = 107 %, squares for e; = 10~ %, and triangles for e, = 10~ *. The “error bars”
show the full extent of the dependence on the orbital phase. The dashed line
shows the exponential decay predicted by eq. (3) alone.

and the relative increase in the cross section is even larger (see
HR).

We can easily estimate the timescale ¢, for inducing an
eccentricity e, >e. For e; <e <001, we set the angle-
averaged equation (2) equal to e. In the parabolic limit, and
averaging over a Maxwellian distribution of relative velocities,
this gives

tre =4 x 10 M0ty o Py 23X yr (e, <e<5001). (4)

Here n, is the number density of stars (assumed for simplicity
to be all of mass mj) in units of 10* pc~3, v,, is the one-
dimensional velocity dispersion in units of 10 km s~ !, P, is the
orbital period in days, and we have used the same typical
values of the masses as in Figure 1 (the dependence on masses
in general is very weak). Deviations from the parabolic limit
remain small for P, < 103 For e < 0.01 a similar procedure
using equation (3) gives

tre =2 x 100y, o P73 —In(e/4)] 23 yr (e 2 0.01).
®)

Equations (4) and (5) can be used to estimate the age of a
system with measured eccentricity. Equivalcntly, we can
express the mean induced eccentricity in a system of age
ty x 10° yras

1\ Py 7\
e ~ max {<m> 4exp[ <ﬁ> P; ]}, 6)

where we have defined = tyn,/v,,. Since the cluster param-
eters n and v are usually known quite accurately, any uncer-
tainty in # comes primarily from the age of the system. The
steep dependence of e on # suggests that eccentricity may be an
excellent dynamical age estimator for LMBPs in clusters. This
is important because the timing age of a cluster pulsar is
usually unreliable, the measured pulse period derivative being
contaminated by the acceleration of the pulsar in the mean
gravitational potential of the cluster (Phinney 1992).
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F1G. 2—Orbital period (in days) and eccentricity of the nine currently
known LMBPs in globular clusters. The round dots show the positions of the
three systems with measured values of both e and P. The vertical dotted
segments show the predicted eccentricity for a pulsar age between 10° and 10*°
yr (eq. [6]). For the M53 binary we have taken into account the current upper
limit (e < 0.01). Solid lines show the variation of e with P for fixed # = ton,/v,,
and are logarithmically spaced with two lines per decade of #. The dashed
curve shows the theoretical “birth line ” along which unperturbed systems are
expected to lie.
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In Figure 2 we show the results of applying equation (6) to
the nine LMBPs currently known in globular clusters. For all
systems we calculate the range of expected values for the eccen-
tricity corresponding to a pulsar age between 10° and 10!° yr.
All reliably measured timing ages of LMBPs (both in clusters
and in the Galaxy) fall inside this range. Unless otherwise indi-
cated below, all data are from the compilation by Phinney
(1992, Tables 1 and 2). We also show for reference the contours
of constant # in the (P, e)-plane, calculated from equation (6),
as well as the theoretically predicted “birth line,” following the
eccentricity-period relation for unperturbed systems (Phinney
1992). With very few exceptions Galactic LMBPs are observed
to lie close to this line (Phinney & Kulkarni 1994).

For six out of nine currently known LMBPs in clusters, the
orbital eccentricity has not yet been measured. For these
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systems, our results can be taken as crude order-of-magnitude
predictions. We note that all these systems lie in the region of
the plot where the use of the exponential result (eq. [3]) would
lead to completely incorrect results (underestimating the pre-
dicted e by many orders of magnitude). Note also that all
systems have a predicted eccentricity that is in principle mea-
surable: values as small as e ~ 107° are detectable by pulsar
timing (PSR J2317+ 1439 has a measured e = 1.2 x 1075;
Camilo, Nice, & Taylor 1993). In all cases in which an upper
limit on e has been quoted by the observers, it is compatible
with our predicted range. For the M53 binary, the current
upper limit e < 0.01 (Kulkarni et al. 1991) falls just inside our
predicted range and implies a maximum age of 9 x 10° yr for
the pulsar.

Three systems have a measured and rather large eccentric-
ity: PSR B1516+02B in M5 (e = 0.13; Wolszczan et al. 1989),
PSR B1620—26 in M4 (e = 0.025; Thorsett, Arzoumanian, &
Taylor 1993), and PSR B1802—07 in NGC 6539 (e = 0.21;
D’Amico et al. 1993). The last two systems are thought to have
more complicated dynamical histories than we have con-
sidered here. The M4 pulsar is actually in a triple system which
was probably formed through an exchange interaction involv-
ing the LMBP and another binary (Rasio, McMillan, & Hut
1995). The inner binary pulsar is likely to have its eccentricity
perturbed mainly by the outer member of the triple (Rasio
1994). For the NGC 6539 binary, the very large e = 0.21 is
about 2 orders of magnitude above the maximum possible
value induced by distant interactions with passing stars
(obtained from eq. [6] when t ~ 10'° yr). In addition, this
system violates the predicted relation between companion
mass and orbital period for a standard LMBP (Phinney 1992).
Thus the present companion was probably acquired through a
more violent interaction that left it in a highly eccentric orbit.
The M5B binary also has a very large eccentricity, e = 0.13,
but this value is consistent with having been induced by distant
interactions with passing stars. Using equation (5) we predict
an age t = 7 x 10° yr and a pulse period derivative Pp <2
x 10 2° for the pulsar [assuming ¢t < P,/(2P )].
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