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ABSTRACT
We discuss the formation of a common envelope system following dynamically unstable mass transfer

in a close binary and the subsequent dynamical evolution and Ðnal fate of the envelope. We base our
discussion on new three-dimensional hydrodynamic calculations that we have performed for a close
binary system containing a red giant with a main-sequence star companion. The initial4 M

_
0.7 M

_parameters are chosen to model the formation of a system resembling V471 Tau, a typical progenitor of
a cataclysmic variable binary. The calculations are performed using the smoothed particle hydrody-
namics (SPH) method with up to 5] 104 particles. As initial condition we use an exact hydrostatic equi-
librium conÐguration at the onset of dynamically unstable mass transfer. The nonlinear development of
the instability is followed using SPH until a quasi-static common envelope conÐguration is formed. In
our highest resolution calculation, we Ðnd evidence for a corotating region of gas around the central
binary. This is in agreement with the theoretical model proposed by Meyer & Meyer-Hofmeister for the
evolution of common envelope systems, in which this central corotating region is coupled to the
envelope through viscous angular momentum transport only. We also Ðnd evidence that the envelope is
convectively unstable, in which case the viscous dissipation time could be as short as D100 dynamical
times, leading to rapid ejection of the envelope. For V471 Tau our results, and the observed parameters
of the system, are entirely consistent with rapid envelope ejection on a timescale D1 yr and an efficiency
parameter aCE^ 1.
Subject headings : hydrodynamics È instabilities È stars : binaries : close È stars : evolution È

stars : interiors

1. INTRODUCTION AND MOTIVATION

Common envelope (CE) evolution is thought to be the
consequence of a dynamical mass transfer event in a close
binary system. A dynamical mass transfer instability can
occur when mass is being transferred from the more massive
to the less massive component and the mass donor has a
deep convective envelope, as in the case of a giant or asymp-
totic giant branch (AGB) star losing mass to a less massive
companion. When these conditions are realized, the mass-
losing star is usually unable to contract as rapidly as its
Roche lobe, and thus it starts transferring mass on a
dynamical timescale. Typically under such conditions, the
secondary is unable to accrete all the pro†ered mass, and it
is driven out of thermal equilibrium. The system is then
expected to quickly reach a conÐguration in which the core
of the evolved star and the companion are orbiting each
other inside a common envelope of gas which is not corotat-
ing with the binary (see recent reviews by Webbink 1988 ;

& LivioIben 1993 ; Livio 1996).
The main e†ect of the CE phase is expected to be a sub-

stantial reduction in the separation of the binary, possibly
accompanied by the ejection of the entire envelope. The
concept of CE evolution, as described above, was intro-
duced by to explain the formation ofPaczyn� ski (1976)
cataclysmic variables and by in the contextOstriker (1975)
of massive X-ray binaries. It is now thought that all binary
systems containing at least one compact component and
with orbital periods shorter than a few days (this includes
most cataclysmic variables, binary pulsars, and X-ray

1 Alfred P. Sloan Foundation Fellow.

binaries) must have gone through a common envelope
phase (except perhaps in dense cluster environments, where
close stellar encounters can operate). It is not surprising,
therefore, that this topic has received considerable attention
in recent years and has been the subject of many theoretical
studies Kool & Soker(de 1987, 1990 ; Livio 1988 ; Terman,
Taam, & Hernquist and references therein).1994, 1995
Most of these theoretical studies have focused on the Ðnal
stages of the CE evolution in an attempt to determine the
orbital parameters of the emerging binary & Boden-(Taam
heimer Bodenheimer, & Rozyczka1991 ; Taam, 1994 ;

Bodenheimer, & Taam However, the treat-Yorke, 1995).
ment of the formation and early dynamical evolution of CE
systems has been extremely crude until now. For example, a
Ðctitious drag force was applied to trigger the initial spiral-
in in the calculation of et al. and the second-Terman (1994),
ary was placed directly inside the envelope of the primary in

et al.Terman (1995).
There are several reasons why it is important to study

this early phase of CE evolution. (1) This is the only phase
in the life of a CE system that can be modeled in a realistic
way. Indeed, current three-dimensional hydrodynamic
codes can only follow reliably the dynamical phase of the
evolution. The later stages depend crucially on angular
momentum and energy transport processes that are difficult
to model and take place on dissipation timescales, which
can be many orders of magnitude longer than the dynami-
cal time. (2) It is clear that an accurate calculation of the
early dynamical phase is required in order to establish the
initial conditions of separate calculations for the dissipative
phase. Attempts to predict the Ðnal outcome of a CE phase
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based on the efficiency parameter for energy deposition aCE& Soker give results that depend critically on(Livio 1988)
the assumptions made about these initial conÐgurations.
Indeed, because of the uncertainty in the initial conÐgu-
ration (and the ambiguity in estimating its binding energy),
various deÐnitions of e.g., in & Tutukov andaCE, Iben (1984)

Kool can give results that di†er by as much as ade (1990),
factor D10 Tutukov, & Livio (3) In some(Yungelson, 1993).
cases it is possible that the complete ejection of the envelope
could occur on a timescale not much longer than the
dynamical time (say D100 dynamical times). In such a case,
a purely dynamical calculation can in fact provide a com-
plete description of the CE phase.

In this paper, we present the results of new hydrodynamic
calculations in three dimensions for the unstable mass
transfer in a close binary and the early dynamical evolution
of a CE system. The calculations are done for a binary
containing a red giant with a less massive main-sequence
star companion, representing a typical progenitor of a
precataclysmic-variable system. The initial conditions for
these calculations are carefully constructed equilibrium
conÐgurations for the close binary at the onset of dynami-
cally unstable mass transfer. In ° 2 we review our numerical
method, smoothed particle hydrodynamics (SPH) and
describe how to construct equilibrium conÐgurations for
close binaries in three dimensions. In ° 3 we present the
results of our dynamical calculations and discuss their
dependence on the numerical resolution. Some speculations
about the Ðnal fate of the CE system and a summary of the
main results follow in ° 4.

2. NUMERICAL METHOD

2.1. T he Smoothed Particle Hydrodynamics Code
The smoothed particle hydrodynamics (SPH) method has

been used for the calculations presented here. SPH is a
Lagrangian method used to treat astrophysical problems
involving self-gravitating Ñuids moving freely in three
dimensions (see for a recent review). OurMonaghan 1992
SPH code was developed originally by speciÐ-Rasio (1991)
cally for the study of close stellar interactions &(Rasio
Shapiro The implementation of the SPH1991, 1992).
scheme is similar to that adopted by & KatzHernquist

but the gravitational Ðeld is calculated using a fast(1989),
grid-based fast Fourier transform (FFT) solver. The neigh-
bor searching is performed using a multigrid hierarchical
version of the linked-list method usually adopted in P3M
particle codes & Eastwood Other details(Hockney 1988).
about the implementation, as well as a number of test-bed
calculations using our SPH code for binary systems are
presented in the above references.

The highest resolution calculation presented here was
done using N \ 5 ] 104 SPH particles, and each particle
interacting with a nearly constant number of neighbors

The gravitational potential is calculated by FFTN
N

^ 60.
on a 2563 grid. With these resources, a complete calculation,
starting from the onset of mass transfer and ending with the
formation of a quasi-static CE conÐguration, takes about
250 CPU hours on an IBM SP-2 supercomputer.

We use a constant number density of SPH particles with
varying particle masses to construct the initial conditions.
This is done in order to maintain good spatial resolution
and mass resolution near the stellar surface, which is partic-
ularly important for problems involving tidal interactions

and mass transfer in close binaries. We use a simple ideal
gas equation of state with P\ Ao5@3, where P is the pres-
sure, o is the density, and AP exp s is a function of the local
speciÐc entropy s. Our implementation of SPH uses A as a
fundamental variable and integrates an evolution equation
for entropy rather than energy & Shapiro(Rasio 1992).
Shocks are the only source of entropy production in these
calculations, and we use the standard SPH artiÐcial vis-
cosity to treat them.

2.2. Conventions and Choice of Units
We consider a binary system containing a red giant

primary and a main-sequence secondary. The primary has a
mass The red giant is modeled as a compactM1\ 4 M

_
.

core plus an extended envelope with a mass ratio
i.e., andMcore/Menv\ 15, Mcore ^ 0.7 M

_
Menv^ 3.3 M

_
.

The mass of the secondary is BothM2\ Mcore ^ 0.7 M
_

.
the secondary and the red giant core are modeled as point
masses interacting with the gas through gravity only. Close
to the point masses, the gravitational Ðeld is smoothed over
a length comparable to the local SPH smoothing length.h

cSpeciÐcally, we treat the core and the secondary as uniform-
density spheres of radius when computing their gravita-h

ctional interaction with an SPH particle. Typically we have
where is the radius of the red gianth

c
/R1D 10~2, R1envelope. The gravitational interaction between the two

point masses themselves is not smoothed. Initially the
envelope of the red giant is assumed to have constant spe-
ciÐc entropy, i.e., we let A\ constant for all SPH particles
at t \ 0.

Throughout this paper, numerical results are given in
units where G is the gravitational con-G\Menv\A\ 1,
stant, is the total mass of gas in the system (initiallyMenvinside the red giant envelope), and A is the (constant)
entropy variable at t \ 0. In these units, the binary separa-
tion at t \ 0 (onset of mass transfer) is and ther

i
^ 2.9,

radius of the red giant is The units of time, veloc-R1^ 1.8.
ity, and density are then

t0^ 2 days ]
A r

i
100 R

_

B3@2A Menv
3.3 M

_

B~1@2
, (1)

v0^ 140 km s~1]
A r

i
100 R

_

B~1@2A Menv
3.3 M

_

B1@2
, (2)

o0^ 5 ] 10~4 g cm~3 ]
A r

i
100 R

_

B~3A Menv
3.3 M

_

B
. (3)

2.3. Constructing the Initial Condition
In addition to its normal use for dynamical calculations,

SPH can also be used to construct highly accurate hydro-
static equilibrium conÐgurations in three dimensions (Rasio
& Shapiro We consider only synchronized1994, 1995).
binary conÐgurations in this paper. This is a reasonable
assumption for a system with moderate mass ratio, and we
have checked that the synchronized conÐguration we con-
struct at t \ 0 is indeed tidally stable (although marginally).
Binary systems with more extreme mass ratios can never
reach a stable synchronized conÐguration and in such a
case an initial condition containing a nonspinning primary
may be more realistic (see, e.g., and referencesRasio 1996
therein).

For a synchronized system, the entire mass of Ñuid is in
uniform rotation and equilibrium solutions can be con-
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FIG. 1.ÈParticle plots showing the evolution of the system from the onset of unstable mass transfer to the formation of the common envelope. Projections
of all SPH particles onto the orbital (x, y) plane of the binary are shown at various times. The origin is at the center of mass of the system. Units are deÐned in
° 2.2. The core of the red giant is marked by a large round dot, the companion by a triangle. Both are treated as point masses in the calculation, but their
gravitational interaction with the gas is softened over a distance roughly comparable to the size of the symbols in these plots. The orbital rotation is
counterclockwise. At t \ 0 the system is in a synchronized hydrostatic equilibrium conÐguration with just a few SPH particles outside the critical Roche lobe
of the primary. By t ^ 20 the mass transfer Ñow is well established, and the orbit is decaying unstably. From t ^ 30 to t ^ 50 the companion quickly spirals in
through the envelope and the common envelope system is formed. The calculation ends when the separation between the two point masses becomes
comparable to the local SPH smoothing length (also comparable to the gravitational smoothing length).

structed by simply adding a linear friction term to[¿/trelaxthe Euler equations of motion in the corotating frame. This
forces the Ñuid to relax to a minimum-energy state. We use

in our units, which makes the damping oftrelax\ 1

unwanted oscillations nearly critical and optimizes the
computation time to converge toward an equilibrium. Ini-
tially, a spherical envelope of constant speciÐc entropy and
density is used for the red giant, and the two stars are placed
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FIG. 1ÈContinued

at a large separation While the relaxation takesr ^ 4R1.place, the particle entropies are maintained constant and
their positions are continuously adjusted (by a simple
uniform translation along the binary axis) so that the
separation between the two centers of mass remains con-
stant. Simultaneously, the angular velocity ) deÐning the
corotating frame is continuously updated so that the net
centrifugal and gravitational accelerations of the two
centers of mass cancel exactly. With large enough numbers
of SPH particles (N D 104È105), very accurate equilibrium

solutions can be constructed using this relaxation tech-
nique, with the virial theorem satisÐed to an accuracy of
about one part in 103, and excellent agreement found with
analytic solutions. In addition, stable equilibrium conÐgu-
rations can be maintained accurately during dynamical
integrations lasting up to D100 dynamical times &(Rasio
Shapiro 1994, 1995).

In order to construct an initial condition corresponding
to the onset of mass transfer, the separation r between the
centers of mass during the relaxation calculation is
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decreased very slowly (on a timescale much longer than
so that an entire equilibrium sequence is constructedtrelax)in a single integration. In practice, we let r(t) \ r(0) [ t/tscan,where r(0) corresponds to well-separated components and

in our units. Using this procedure, we can deter-tscan \ 100
mine precisely the Roche limit conÐguration (equilibrium
conÐguration with minimum r) simply by observing the
moment when the Ðrst few SPH particles begin drifting
across the inner Lagrangian point onto the secondary

& Shapiro This Roche limit conÐguration,(Rasio 1995).
corresponding to the onset of mass transfer, is then used as
an initial condition for a dynamical integration.

A particle plot corresponding to the initial Roche limit
conÐguration is shown in (t \ 0). The large tidalFigure 1
distortion of the envelope near the axis is evident, and there
are just a few particles that have crossed the inner Lagrang-
ian point.

3. RESULTS

3.1. Initial Spiral-in
Soon after the beginning of mass transfer, a thick torus of

material forms around the secondary (t ^ 10È20). As the
initial stream leaving the primary is compressed rapidly in a
convergent Ñow and later self-intersects at a highly super-
sonic speed, the gas is strongly shocked and the torus
expands rapidly and thickens, leading to a radial outÑow
around the secondary in addition to the beginning of an
accretion Ñow (cf. Matsuda, & Hachisu TheSawada, 1986).
mass transfer rate increases rapidly, on a timescale compa-
rable to the orbital period. Two factors contribute to
making the mass transfer dynamically unstable here (for
general discussions of unstable mass transfer, see Hjellming
& Webbink & Paczyn� ski1987 ; Hjellming 1989 ; Hut 1984).
First, as the red giant primary loses mass, the isentropic
envelope responds adiabatically by expanding. Second,
since the mass transfer is from the more massive to the less
massive component, and since angular momentum is lost
from the orbit, the orbital separation tends to decrease. The
two e†ects combine to make Roche lobe overÑow accelerate
catastrophically on a dynamical timescale. By t ^ 30, the
companion is entering the dense outer layers of the red
giant envelope and will then plunge in almost radially.

In this dynamical calculation, the spiral-in phase is very
brief, taking just about one orbital period. This is because
we start the calculation when a dynamically signiÐcant
amount of mass is already being transferred. In reality, of
course, this phase is expected to be much longer, as the
Roche lobe eats slowly into the outer atmosphere of the
primary (e.g., Webbink 1984).

shows the evolution of the separation betweenFigure 2
the two point masses during the entire calculation. The
orbital decay is very slow at Ðrst, but accelerates catastro-
phically around t ^ 30. As soon as it enters the denser
region of gas inside the red giant envelope, the companion
sinks relatively quickly into the deep interior of the
envelope, with the separation decreasing to about half a
stellar radius by t ^ 32. This phase of the evolution is char-
acterized by a much stronger dynamical interaction
between the companion and the entire mass of gas in the
system.

3.2. Strong Dynamical Interaction
The motion of the companion inside the envelope is

largely supersonic, especially in the outer layers where large

FIG. 2.ÈTime evolution of the separation between the two point
masses in the calculation. In the insert we show the details of the evolution
near the end of the calculation, on a linear scale. The separation is given
here in units of the initial binary separation while time is in the unitsr

i
,

deÐned in ° 2.2.

Mach numbers are reached. As a result, during the initial
phase of the radial plunge, strong dissipation occurs in a
simple bow-shock structure behind the companion. This is
illustrated in which shows regions of high and lowFigure 3,
entropy in the gas. Here we use A[ 2 to separate the
““ high-entropy ÏÏ particles. Recall that all particles have
A\ 1 at t \ 0. In our units, a change of order unity in A
over a distance of order unity corresponds to a buoyancy
force comparable to gravity [i.e., dA/dr D 1 gives a Brunt-
Va� isa� la� frequency comparable to the local dynamical fre-
quency (Go)~1@2]. By t ^ 35, however, the red giant core
itself has been displaced away from its original position at
the center of the envelope, and the two point masses are
now truly orbiting one another inside a common gravita-
tional potential well. The dissipation process becomes much
more complex at this point (Figs. and with several3c 3d),
interacting spiral shock fronts propagating out. These spiral
shocks provide the basic coupling mechanism between the
gas and the binary at the beginning of this strongly dynami-
cal phase of the evolution, while viscous dissipation
becomes dominant near the end (see below).

It is during this phase of strong dynamical interaction
between the two point masses and the gas that a large redis-
tribution of energy and angular momentum takes place in
the system. Figures and show the transfer of energy and4 5
angular momentum from the orbital motion to the gas
during the dynamical evolution. Note that the ““ orbital ÏÏ
energy and angular momentum shown here are those
associated with the motion of the two point masses (i.e., the
core of the red giant and the secondary). This is an appro-
priate deÐnition at late times, when the common envelope
has already formed, but not at early times when(t [ 20),
most of the gas is still bound to the red giant core. This
ambiguity in separating ““ orbital ÏÏ from ““ envelope ÏÏ quan-
tities also a†ects the deÐnition of the efficiency parameter

(cf. ° 4.1). The exact values of the orbital energy andaCE
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FIG. 3.ÈParticle plots showing regions of high and low entropy in the gas near the equatorial plane ( o z o\ 0.1). All Ñuid particles have A\ P/o5@3\ 1 at
t \ 0. The left and right plots show particles with A[ 2 (high entropy) and A\ 2 (low entropy), respectively. In (a) and (b) we show the simple bow-shock
structure behind the companion in the early phase of the radial plunge (here for t \ 32 ; see the corresponding plot in In (c) and (d) a more complexFig. 1).
structure is seen (t \ 50), following the displacement of the red giant core and the interactions between various spiral shock fronts.

angular momentum at t \ 0 are Eorb\[GM1M2/(2r
i
) ^

[0.044 and Jorb \M1M2[Gr
i
/(M1] M2)]1@2 ^ 0.37.

We see in that the energy transfer rate appearsFigure 4
approximately constant during the entire phase of strong
dynamical interaction Instead, the orbital angular(t Z 30).
momentum is lost mostly during the initial spiral-in(Fig. 5)
and the Ðrst radial plunge but then becomes approximately
constant for By the end of the calculation, essentiallyt Z 35.
all of the angular momentum in the system has been trans-
ferred to the gas. Initially, most of the binding energy in the
system is in the red giant envelope. By the end of the calcu-
lation, most (but not all) of the binding energy is in the
binary system. Linear momentum is also exchanged
between the gas and point masses and, since the gas ejection
is not isotropic, the binary receives a small recoil velocity

At the end of our calculation we Ðnd in ourvrec. vrec ^ 0.054

units, which corresponds to km s~1 for a typicalvrec ^ 8
system.

3.3. T he Common Envelope ConÐguration
An important question concerns the motion of the gas in

the immediate vicinity of the binary system after the forma-
tion of the common envelope. In our highest resolution
calculation, we Ðnd that a corotating region of gas forms at
the center of the common envelope. The corotating gas is
concentrated near the orbital plane. This is illustrated in

which shows the distribution of SPH particles inFigure 6,
the (), plane at t \ 40. Here where is thercyl) )\ v

t
/rcyl, v

tcomponent of the particle velocity in the azimuthal direc-
tion and is the distance to the rotation axis (vertical axisrcylpassing through the center of mass of the binary). Both the
equatorial radius and the vertical thickness of the corotat-
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FIG. 4.ÈTime evolution of various energies in the system. The orbital
energy is that associated with the two point masses only (note that this is
not equal to the orbital energy of the binary system at t \ 0 since the
primary also contains all the gas at that time). The gas energy is the sum of
the kinetic, thermal, and self-gravitational energies associated with all SPH
particles, plus the potential energy of the (softened) gravitational inter-
action between the SPH particles and the two point masses. The total
(conserved) energy is then the sum of the gas and orbital energies.

ing region are roughly comparable to the binary separation.
This corotating region continues to exist and remains well
resolved until the end of our highest resolution calculation
(but see ° 3.4 below).

At the end of our calculation (t ^ 62), most of the mass in
the common envelope has relaxed to a quasi-static equi-
librium. The value of the virial ratio for the bound gas is

FIG. 5.ÈTime evolution of the angular momentum in the system. The
orbital angular momentum is that associated with the motion of the two
point masses only, while the gas angular momentum corresponds to the
motion of all SPH particles.

FIG. 6.ÈAngular velocity proÐles in the common envelope at t \ 40.
The large dot indicates the position of the two orbiting point masses. The
lighter dots show the positions of individual SPH particles. The three plots
correspond to horizontal slices (perpendicular to the rotation axis) pro-
gressively further away from the equatorial (symmetry) plane z\ 0.
Clearly, a corotating region of gas exists close to the binary system near
z\ 0.

o 2T ] W ] 2U o / oW o^ 0.01, where T is the kinetic
energy, W is the gravitational potential energy, and U is the
internal energy (this dimensionless virial ratio would be
zero in strict hydrostatic equilibrium). The envelope is
rapidly rotating, with T / oW o^ 0.11, not far from the
secular stability limit at T / oW o^ 0.14 (e.g., Tassoul 1978).
The mass-loss fraction can be determined using the method
of & Shapiro based on the speciÐc bindingRasio (1991)
energy and enthalpy of each individual particle. Using this
method we Ðnd that about 10% of the total mass of gas has
become unbound by the end of the calculation (but see the
discussion in ° 4.1 below). The Ðnal density o, speciÐc
entropy A\ P/o5@3, and speciÐc angular momentum j \

inside the common envelope are shown in asrcyl vt Figure 7
a function of the interior mass fraction m/M. The quantities
shown have been mass-averaged over cylindrical shells cen-
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FIG. 7.ÈAverage density (o), speciÐc entropy (A\ P/o5@3), and speciÐc
angular momentum proÐles in the common envelope at the end(j\ rcyl vt)of the calculation. Here m/M is the gas mass fraction interior to a cylin-
drical surface centered on the rotation axis (m/M \ 0 at the center and
m/M \ 1 at the outer surface) and is the distance to the rotation axis.rcyl

tered on the rotation axis. The correspondence between the
interior mass fraction m/M and the radius of a cylinderrcylis also shown The outermost D10% of the mass is(Fig. 7b).

unbound. For the bound gas, the speciÐc angular momen-
tum increases with as required for dynamical stabilityrcyl(e.g., Tassoul 1978).

The speciÐc entropy of the bound gas is nearly constant
or increasing everywhere except near the center, close to the
binary, where it decreases outward. This is a clear sign that
most of the envelope is or has been dynamically unstable to
convection. The speciÐc entropy proÐle left behind by the
dynamical interaction between the shrinking binary and the
envelope has Convective (Rayleigh-Taylor)dA/drcyl \ 0.
instabilities then develop, redistributing the material so that
a nearly constant speciÐc entropy proÐle is obtained. Close
to the binary, however, the convective motions have not yet
had the time to develop, and an unstable entropy gradient is
still seen. Careful examinations (e.g., using computer
animations) of the Ñuid motions in the inner envelope do
indeed reveal the presence of convective motions. On a
dynamical timescale, and with the fairly coarse spatial
resolution of a three-dimensional calculation, these convec-
tive motions take the form of large bubbles of higher
entropy gas rising through a region of lower entropy gas
that surrounds them. A clear example of such a rising high-
entropy bubble (by far the largest observed in this
calculation) is visible to the left of the binary in the particle
plot of (and Such large inhomogeneitiesFigure 3c Fig. 3d).
in the gas near the center also produce torques on the
binary, leading to the somewhat irregular variation of the
angular momentum near the end of the calculation (Fig. 4,
t [ 50).

3.4. Dependence of the Results on the Numerical Resolution
Our SPH calculations of the CE evolution must be ter-

minated when the separation between the two inner cores
becomes comparable to the local spatial resolution in the
central region of gas. Otherwise the interaction between the
orbital motion and the gas can no longer be treated correct-
ly. The conditions at the end of our highest resolution run
are illustrated in Figure 8.

In a calculation with a smaller number of particles one
may be tempted to continue past this point. This may be
necessary for the gas to reach a quasiÈsteady state at the
end of the calculation. However, misleading results can then
be obtained. Most importantly for this problem, the motion
of the gas in the vicinity of the binary system at the end of
the calculation will be corrupted by the loss of spatial
resolution there. If we repeat the same calculation as above
with N \ 8000 particles (which decreases the spatial
resolution by a factor D2), and integrate until the same
Ðnal binary separation is reached, we no longer Ðnd that the
gas is corotating with the binary at the end. This is shown in

where we compare the Ðnal rotation proÐles forFigure 9,
the two calculations. The reason is simply that all SPH
particles within a region of size DShT close to the center
(where ShT is the average SPH smoothing length in that
region) must necessarily have comparable values of ).
Therefore, the true angular velocity proÐle near the center
of any rapidly rotating conÐguration will always be trun-
cated at some distance inside which ) will appearrcyl DShT
nearly constant. In we see that, with a lowerFigure 9,
resolution calculation, we would have concluded incorrect-
ly that the angular velocity of the binary is D10 times larger
than that of the gas near the center of the Ðnal conÐgu-
ration.
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FIG. 8.ÈParticle plot showing the region of gas close to the binary
system at the end of the calculation. The two large circles indicate the
extent of the regions where the gravitational interaction between the point
masses and the gas is smoothed. This is comparable to the average SPH
smoothing length ShT in this region, also shown.

Having found that the main coupling mechanism
between the binary and the gas in the Ðnal steady state is
viscous transport of angular momentum in the di†erentially
rotating envelope, we must now also ask how accurately
this can be represented in numerical calculations. SPH cal-
culations in particular can have large spurious shear vis-
cosity because of the representation of the Ñuid by discrete
particles and because all forms of artiÐcial viscosity

FIG. 9.ÈAngular velocity proÐle in the common envelope at the end of
two calculations with di†erent spatial resolution. The square dots corre-
spond to our highest resolution calculation, with N \ 5 ] 104 particles,
whereas the triangles correspond to a calculation with N \ 8000. The
central corotating region of gas is no longer resolved.

(introduced in the method to treat shocks) also introduce
artiÐcial shear viscosity. Extensive tests of SPH using
simple experiments with shear Ñows indicate that the
angular momentum transport timescale in di†erentially
rotating envelopes may be typically D100 dynamical times

Rasio, & Shapiro This is not much longer(Lombardi, 1996).
than the time span of the present calculations, and therefore
we expect the numerical viscosity to play a signiÐcant role
in our results.

Indeed, if, for example, we repeat short segments of the
numerical integration around t \ 50 with di†erent values
for the parameters of the artiÐcial viscosity, we Ðnd that the
value of the energy transfer rate (slope of the curves near
t \ 50 in changes slightly. If we vary the artiÐcialFig. 4)
viscosity parameters over the full range of values that would
still lead to a reasonable treatment of shocks (smoothing a
simple one-dimensional shock front over a distance
^0.5ShTÈ5ShT), the energy transfer rate varies by as much
as D50%. However, a large e†ective viscosity may well be
present in the real system if, as our results suggest, the initial
entropy proÐle in the envelope as it is created is unstable to
convection. Although our three-dimensional calculations
cannot resolve the Ðne details of the convective motions, a
large eddy viscosity is expected in this regime. If processes
like convection (or perhaps magnetic Ðelds ; cf. &Rego� s
Tout determine the e†ective viscosity of the envelope1995)
in the real system, then we may not be able to calculate the
evolution in a quantitatively accurate way (a similar
problem arises in models of accretion disks). In that case, a
low-resolution but qualitatively reasonable calculation such
as the one presented here may be our only resource for
developing a theoretical understanding of CE evolution.

4. DISCUSSION

4.1. T he Final Fate of the Envelope
Although our dynamical calculations cover only the

initial phase of CE evolution, we can speculate about the
subsequent evolution of the envelope driven by viscous dis-
sipation. Complete ejection of the envelope may possibly be
achieved in a time not much longer than the time covered
by our calculations. Indeed, a naive extrapolation of the
energy transfer rate shown in would lead to theFigure 3
conclusion that the entire envelope is liberated in a time

which in our units (see means yr.t [ 100, eq. [2]) t [ 1
Similarly, if we look at the mass-loss fraction as a function
of time a simple extrapolation would predict that(Fig. 10),
all the gas becomes unbound after this time. A direct deter-
mination of the envelope ejection time is impossible here
because the calculations must be terminated well before a
large fraction of the mass has been ejected. In addition, at
the end of our calculations, there are large uncertainties in
the determination of the gas mass fraction that is likely to
become unbound eventually. This is because we cannot
predict how much of the enthalpy associated with each Ñuid
particle will be later transformed into kinetic energy of a
radial outÑow. If we include the enthalpy in the estimate of
the binding energy (as done in & Shapiro weRasio 1991),
obtain an upper limit to the mass-loss fraction. If we do not
include it we obtain a lower limit. The two estimates di†er
signiÐcantly at the end of our calculations (Fig. 10).

We emphasize here again that the apparently short
viscous time in the envelope may be a numerical artefact (cf.
° 3.4). However, if the evolution of the CE system indeed
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FIG. 10.ÈMass-loss fraction at various times during the*Mloss/Mstrong dynamical interaction phase and at the end of the calculation. The
triangles give a lower limit, based on an estimate of the binding energy of
each Ñuid particle that does not include its enthalpy. The squares give an
upper limit, assuming that all the enthalpy is eventually transformed into
kinetic energy of an outÑow.

continues on this short viscous transport time, and if we
assume that the binary orbit ceases to evolve when the total
gas energy becomes positive, then we can predict the Ðnal
binary separation simply from conservation of energy (Fig.

This gives a Ðnal separation in our units, or4). r
f
^ 0.04

This number is in reasonable agreementr
f
/r

i
^ 1.5] 10~2.

with the parameters of V471 Tau (which our initial condi-
tion is meant to represent), where andr

f
^ 3 R

_
r
i
D 100

& Livio Over such a short time, energyR
_

(Iben 1993).
transport processes and radiative losses in the gas are com-
pletely negligible, implying that a proper deÐnition of the
parameter should give in this case. For com-aCE aCE^ 1
parison, one of the commonly used approximate deÐnitions

(M1] M2)Menv
2r

i
^ aCEMcoreM2

A 1
2r

f
[ 1

2r
i

B
(4)

& Livio their eq. [17]) gives if we(Iben 1993, aCE ^ 0.5
insert and our values of the masses.r

f
/r

i
\ 1.5] 10~2

Note, however, that was derived assuming aequation (4)
rather artiÐcial initial conÐguration where the two cores are
already inside a spherical common envelope of radius r

i
.

Therefore this expression should only be used for crude
order-of-magnitude estimates.

4.2. Summary of Main Results
The calculations presented in this paper cover the initial

dynamical phase of CE evolution, i.e., a brief episode of
unstable mass transfer followed by rapid spiral-in of the
companion into the primary and the formation of a CE
conÐguration. For the Ðrst time, this dynamical phase of CE
evolution has been followed starting from a realistic initial
condition. SpeciÐcally, we have demonstrated that hydro-
dynamic calculations can be started from an exact hydro-
static equilibrium solution, representing a close binary
system at the onset of unstable mass transfer, and can then
follow the evolution through the entire dynamical phase
until a quasi-static CE conÐguration is formed.

Our hydrodynamic calculations can treat only a rela-
tively short evolutionary timescale dynamical times,([100
i.e., yr for a typical system). Consequently, the Ðnal CE[1
conÐguration obtained in the present study could be
regarded merely as the initial condition for a potentially
slower spiral-in phase, which is regulated by viscous dissi-
pation. The total amount of mass that became unbound
during the dynamical phase is only about 10% of the
envelope mass. This is to be expected given the short dura-
tion of this phase. We have pointed out, however, that an
extrapolation of the energy transfer rate obtained in the
Ðnal stages of our calculation could imply the ejection of the
entire envelope on a very short timescale (D1 yr) and a high
efficiency of the process. The corresponding(aCE ^ 1)
reduction in the binary separation would be by a factor

which is sufficient to explain the formation of ar
i
/r

f
D 100,

system like V 471 Tau.
Perhaps our most signiÐcant new result is that, during

the dynamical phase of CE evolution, a corotating region of
gas is established near the central binary. This is done
through a combination of spiral shock waves and gravita-
tional torques that can transfer angular momentum from
the binary orbit to the gas, and are most e†ective in the
region close to the binary. The corotating region has the
shape of an oblate spheroid encasing the binary (i.e., the
corotating gas is concentrated in the orbital plane). Our
results suggest that the subsequent evolution of the system
will be determined by the viscous coupling between this
rigidly rotating inner core and the outer, di†erentially rotat-
ing envelope. The assumption that rigid rotation will be
tidally enforced in a core surrounding the inner binary was
already made in the pioneering paper by & Meyer-Meyer
Hofmeister Later, clear indications for such a con-(1979).
Ðguration were obtained with the Ðrst two-dimensional
numerical calculations of CE evolution (e.g., Sawada,
Hachisu, & Matsuda Although the results of some1984).
more recent calculations done in three dimensions (Terman
et al. appear to indicate that the angular veloc-1994, 1995)
ity of the gas near the center falls short of corotation, we
have pointed out that this may well be the result of insuffi-
cient spatial resolution in those calculations.

Accurate calculations of the dissipative phase of CE evo-
lution, including viscous transport of angular momentum
and energy transport in the envelope, will be very difficult,
given the large uncertainties in our basic understanding of
these processes in general. If, however, as our results
suggest, the envelope is convective, the e†ective viscous dis-
sipation rate may be large enough to eject the entire
envelope on a timescale as short as D100 dynamical times.
In that case, a simple extrapolation of our dynamical
results, as mentioned above, may in fact provide a reason-
ably accurate description of the entire CE evolution.
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