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ABSTRACT

We present a general method for determining the masses and orbital parameters of binary millisecond
pulsars with long orbital periods (P, > 1 yr), using timing data in the form of pulse frequency deriv-
atives. Our method can be used even when the available timing data cover only a small fraction of an
orbit, but it requires high-precision measurements of up to five successive derivatives of the pulse fre-
quency. With five derivatives a complete determination of the mass and orbital parameters is in principle
possible (up to the usual inclination factor sin i). With less than five derivatives, only partial information
can be obtained, but significant constraints can sometimes be placed on, e.g., the mass of the companion.
We apply our method to analyze the properties of the second companion in the PSR B1620—26 triple
system. We use the latest timing data for this system, including a recent detection of the fourth time
derivative of the pulse frequency, to constrain the mass and orbital parameters of the second companion.
We find that all possible solutions have a mass m, in the range 2.4 x 10™* My <m, sini, <12 x 1072
M, ie., almost certainly excluding a second companion of stellar mass and suggesting instead that the
system contains a planet or brown dwarf. To further constrain this system, we have used preliminary
measurements of the secular perturbations of the inner binary. Using Monte Carlo realizations of the
triple configuration in three dimensions, we find the most probable value of m, to be 0.01 + 0.005 M,
corresponding to a distance of 38 + 6 AU from the center of mass of the inner binary (the errors indi-
cate 80% confidence intervals). We also apply our method to analyze the planetary system around PSR
B1257+ 12, where a distant, giant planet may be present in addition to the three well-established Earth-
mass planets. We find that the simplest interpretation of the frequency derivatives implies the presence of

a fourth planet with a mass of ~100 Mg in a circular orbit of radius ~40 AU.

Subject headings: celestial mechanics, stellar dynamics — planetary systems — pulsars: general —
pulsars: individual (PSR B1620—26, PSR B1257+12)

1. INTRODUCTION

The traditional method for obtaining masses and orbital
parameters of binary pulsars consists of fitting Keplerian or
post-Newtonian models to timing data covering at least one
complete orbit. For wide-orbit binary pulsars, with orbital
periods longer than a few years to decades, fitting a com-
plete orbit may not be possible. For such systems, we
present a method for obtaining the masses and orbital
parameters by using measured values of the successive time
derivatives of the pulse frequency (f, f, f©, etc.). Given the
high precision of millisecond pulsar timing, it is sometimes
possible to measure these frequency derivatives up to high
order with only a few years of observations. We show below
that with five derivatives a complete solution may be
obtained, with the orbital parameters and companion mass
fully determined up to the usual unknown inclination factor
sin i. This solution is constructed under the assumption that
all frequency derivatives are dynamically induced rather
than being intrinsic to the pulsar spin-down. This is a
crucial assumption and may not always be justified. Its
validity, and the effects of relaxing it, must be examined for
each particular application. If only three or four derivatives
have been measured, significant constraints can still be
placed on the parameters of the system. With just three
dynamically induced derivatives and the assumption of a
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circular orbit (often justified, e.g., for a planet), a complete
solution can again be obtained. Our method is not a substi-
tute for the standard fitting procedure to data covering a
complete orbit. Instead, it provides a way of obtaining the
orbital parameters of wide-orbit binaries, which cannot be
observed over a complete orbit because of their very long
orbital periods. The method can only be successfully
applied to binaries containing fast millisecond pulsars with
low timing noise, in which one can reasonably expect the
dynamically induced pulse frequency derivatives to domi-
nate over intrinsic changes.

Applications of our method to two systems, PSR
B1620—26 and PSR B1257+12, are presented in this
paper. Both these systems are thought to contain planetary-
mass companions to the millisecond pulsar (Wolszczan
1994; Arzoumanian et al. 1996). Their properties are of
great interest for our understanding of planetary formation
outside the solar system. This is particularly true in light of
the many recent detections of extrasolar planets around
nearby stars, which show a great diversity of properties
(Mayor & Queloz 1995; Butler & Marcy 1996; Marcy &
Butler 1996). PSR B1620—26, in the globular cluster M4, is
in a hierarchical triple configuration. Previously available
timing data allowed a second companion’s mass anywhere
in the range ~1073 to ~1 M (Michel 1994; Sigurdsson
1995), i.e., including the possibility of a Jupiter-type planet.
PSR B1257 + 12 has three confirmed low-mass planets, and
there is recent evidence for a fourth, more massive one
(Wolszczan 1996).

Our paper is organized as follows: In § 2, we describe our
general method for obtaining the companion mass and the
orbital parameters by using measured pulse frequency
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derivatives. In § 3, we apply our method to PSR B1620— 26.
We also incorporate into our analysis preliminary measure-
ments of secular perturbations of the inner binary by per-
forming Monte Carlo simulations with the undetermined
parameters in the system to obtain the most probable mass
for the second companion. In § 4, we apply our method to
check whether the observed frequency derivatives of PSR
1257+12 are consistent with the possible existence of a
fourth object in the planetary system.

2. INVERTING FREQUENCY-DERIVATIVE DATA

In the standard method for determining the parameters
of binary pulsars, the data (consisting of radio pulse arrival
times) are fitted to the predictions of a Keplerian or post-
Newtonian model of the binary orbit. To obtain a reliable
fit, one usually needs timing data covering at least a few
complete orbital periods. However, even if the data do not
cover a full period, it is still possible to determine, at least
approximately, the companion’s mass and the orbital
parameters of the system if sufficiently accurate timing data
are available. The method we develop here uses time deriv-
atives of the pulse frequency (basically the coefficients in a
Taylor expansion of the pulse frequency around a particu-
lar epoch). Pulse frequency derivatives are a convenient way
in which radio astronomers can present the results of their
observations when a clear periodicity cannot be recognized
in the timing data.

2.1. General Formulation

Assuming that the pulsar’s mass (m; ~ 1.4 M ) is known,
there are five parameters that can in principle be deter-
mined using our method: the mass of the companion m, (up
to the unknown inclination angle i,), the semimajor axis a,,
the eccentricity e,, the longitude of pericenter w, (measured
from the ascending node), and the longitude 4, of the com-
panion at the reference epoch (measured from pericenter).
The inclination angle i, is the angle between the normal to
the orbital plane and the line of sight; this angle cannot be
determined directly from the timing data. Here and
throughout this paper, a subscript “1” refers to the pulsar,
a subscript “2” refers to the companion, and all orbital
elements correspond to the motion around the center of
mass of the system (e.g., the distance between the pulsar and
its companionisr; + r,).

If frequency derivatives up to the fifth order are measured,
all five parameters (m,, a,, ¢,, ®,, 4,) can in principle be
determined. For small values of m,/m;, the usual com-
bination m, sin i, can be obtained (see the discussion for
PSR B1620—26 in § 3). For larger companion masses, the
dependence of the solutions on i, is more complicated, and
one needs to adopt a particular value of sin i, (in practice,
sin i, < 1 for a random orientation) in order to solve explic-
itly for m,.

Our method assumes that the measured frequency deriv-
atives are purely those induced by the motion of the pulsar
(acceleration, jerk, and higher derivatives) around the
binary’s center of mass. This requires correcting the mea-
surements for other possible kinematic effects (see, e.g.,
Camilo, Thorsett, & Kulkarni 1994). More importantly, one
must assume that any intrinsic contribution from the pulsar
spin-down can be neglected, or determined to some extent
from the known properties of other millisecond pulsars and
subtracted from the measured values. In particular, the
observed first frequency derivative f'is in general determined

by a combination of acceleration and intrinsic spin-down of
the pulsar,

fhbs :ﬁnt +.f.hcc . (1)

It is not possible to measure the two components separately
in general. For some systems, however, it is reasonable to
assume that |f, | < [fucc | if [ fops| is large. For example, the
observed f.,, may be positive, a clear sign that it is deter-
mined predominantly by acceleration (as in the M 15 pulsars
PSR 2127+ 11A, D; Wolszczan et al. 1989). The expected
value of f;,, may also be estimated from the pulse frequency f
and from the assumption that the timing age = = 1 f/f of a
millisecond pulsar should satisfy © = 10° yr. Indeed, most
millisecond pulsars with reliably measured timing ages
appear to satisfy this property (see, e.g., Phinney & Kulk-
arni 1994). Note that the true ages of some millisecond
pulsars may be considerably smaller (cf. Lorimer et al.
1995), but this does not affect our argument. Similarly, the
expected value of f;,, can be estimated from the predicted
level of timing noise for the pulsar, which, although very
small for millisecond pulsars, may also affect the interpreta-
tion of f,, (see, e.g., Arzoumanian et al. 1994; Kaspi, Taylor,
& Ryba 1994). Intrinsic higher derivatives (f©), etc.) are
normally not measurable for millisecond pulsars, and there-
fore we can always assume safely that any measured values
are dynamically induced.

After subtraction of known kinematic and intrinsic con-
tributions, we can write the time derivatives of the pulse
frequency at a particular reference epoch as

(2
f——f—+— etc. , 2
-
where c is the speed of light, a is the acceleration of the
pulsar, and 7 is a unit vector in the direction of the line of
sight, and where an overdot indicates a time derivative. The
second term in the expression for f is smaller than the first
by a factor ~v/c, where v is the orbital velocity of the
neutron star, ie., f2/f<|f|. For f® we have |fflf] <
£, etc., so that all similar terms can be neglected in
taking higher and higher derivatives. Therefore we can write

the first five frequency derivatives simply as

=t

a°n
f=—fT,
. a-n
f=-f -
o a9
f@=—f c ©)]

Equation (3) forms a system of five nonlinear algebraic
equations with five unknowns (m,, a,, e,, 1,, and w,), which
must be solved numerically. It is straightforward but
tedious to write down explicitly the right-hand sides of these
equations in terms of the five unknowns, and we will omit
their explicit forms in the general case. Some of the steps
involved, however, are described below in § 2.2.

2.2. Solution with Four Derivatives

When four derivatives (f through f®) are known, one
can obtain a one-parameter family of solutions. In practice,
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the problem can be reduced to solving a system of three
nonlinear equations as follows: If m, is the mass of the
pulsar and m, is the mass of the companion, the acceler-
ation of the pulsar in its motion around the center of mass
of the binary is of magnitude a = k/r?, where r, is the dis-
tance from the pulsar to the center of mass and where

m3
k=G ———.
(m, +m2)2

Q)

For an elliptic Keplerian orbit of semimajor axis a, and
eccentricity e, = e,, the distance r, is given by

1 1 A

Z=5(1+e2 cosll)zﬁ,
where h = a,(1 — e2). Equation (3) for the pulse frequency
derivatives can then be written

&)

f= —fg sin (4; + ;) sin i, = —fKA? sin (1; + @,),

(6)
f=—fKBi,, ()
f®=—fKCit, @®)
f®=—fKDii, ©
where we have defined
A=1+e,cos i,
B =244 sin (A; + w,) + A% cos (4; + @,),
2BA’ 4CA’
C=PB D=C
+ 1’ + 1’
k sin i,
K= , 10
hzc ( )

with a prime indicating a derivative with respect to ;.
Using equation (6), we can rewrite equations (7)~9) as

Bi, f

I~y oy (th

3 Cii f
fo= A?sin (4 + wy)’ (12)
LN (13

A?sin (4 + ;)

This is a nonlinear system of three equations with four un-
knowns—e,, 4, = 1,, w; = w, + 180°, and A,. Assuming
a value for one of them, we can solve for the remaining
parameters.

We have chosen to use the eccentricity e, as our free
parameter. For an assumed value of e,, we solve equations
(11)«13) for A, 4,, and w; using the Newton-Raphson
method (see, e.g., Press et al. 1992). This method requires an
initial guess for the unknown parameters, which is then
successively improved until convergence to an actual solu-
tion is obtained. One must be careful to experiment with
many different initial guesses since nonlinear systems like
this often have multiple branches of solutions. In addition,
symmetries must also be taken into account. Here physi-
cally equivalent solutions are obtained if the direction of
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motion is reversed, and the signs of w; and A, are also
reversed. This gives a different but equivalent orientation of
the system. Once 4,, 4,, and @, are known, conservation of
angular momentum, together with equation (6), yields

% T fA%sin ulfi ) sin iy (15)

Using equations (14) and (15), we can calculate k and h:
B _m’ 16
() (B) o

It is now straightforward to obtain m, (from k, assuming
that the pulsar mass m, is known) and the semimajor axis
a, = (my/my)h/(1 — e2). When m, < m,, we can directly
obtain m, sin i, as follows: For small m,, we have k ~
Gm3/m3. Therefore m, ~ (km?/G)'®* and equation (17)

yields
) 2 42\1/3
fe <m1 A > . (18)

m, sin i, &~ —= .
2 >~ fsin A; \ Gi}

For larger values of m,/m;, one needs to assume a value for
sin i, and solve equation (4) numerically for m,.

2.3. Solution with Three Derivatives

When only three derivatives are known, one can assume
values for two parameters and solve for the remaining three
parameters in the same way as above. Alternatively, in the
special case of a circular orbit (e, = 0), the system can be
solved completely (to within sin i,) by using only three
derivatives. In that case, we have

. —fksini, .
f= % sin A, , (19)
1
fm TTEIE o5 )4, 0)
1
ksini, . .
f® =% (sin A,)43 . (21)

Note that here 4, is the longitude of the pulsar measured
from the ascending node (not from pericenter, as before).

Using equation (19) to eliminate —fk sin i,/atc, we
obtain

f= — (cos A;)Ay , (22)
f®=—fiz. (23)

This yields
i3 =—f%, 24

A, = arctan |:§ <%(3)>1/2:| . (25)
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Using equation (19) and conservation of angular momen-
tum, we have

k —fe

2~ Feni,sind;’ (26)
k .
b 2. 27)

Dividing equation (26) by equation (27) and then using
equations (24), (25), and (27), we obtain
fe

ff® sin i, sin 4,

~ Je A%
k= _<fsin i, sin ll) (W) ’ 29)

where A, is given by equation (25). For m, < m,, we have
k ~ Gm3/m2. Then, for given values of the frequency deriv-
atives and the pulsar mass m,, the companion mass m, can
be calculated explicitly by using equation (29). We find

2\ 1/3 y A\ 2/3
mniv= (G (e )B)+ ®

where A, is given by equation (25). Finally, we can calculate
a, = (my/m,)a,, where a, is given by equation (28).

(28)

a1:

2.4. Solution with Two Derivatives

When only two derivatives are available, one can obtain
a one-parameter family of solutions, assuming again that
e, ~ 0. We can use f® (or, equivalently, 1,, using eq. [24])
as the free parameter and then use the equations of § 2.3 to
construct a one-parameter family of solutions explicitly.

3. APPLICATION TO THE PSR B1620—26 TRIPLE SYSTEM

The millisecond pulsar PSR B1620—26, in the globular
cluster M4, has a low-mass binary companion (probably a
white dwarf of mass m. ~ 0.3 M, for a pulsar mass m, =
1.35 M) in a 191 day low-eccentricity orbit (Lyne et al.
1988; McKenna & Lyne 1988). The unusually large second
and third frequency derivatives indicate the presence of a
second companion around the inner binary, forming a hier-
archical triple configuration (Backer 1993; Backer, Foster,
& Sallmen 1993; Thorsett, Arzoumanian, & Taylor 1993).
Such hierarchical triple systems are expected to be produc-
ed quite easily in dense globular clusters through dynamical
interactions between binaries. In a typical interaction, one
star would be ejected, leaving the other three in a stable
triple system (Rasio, McMillan, & Hut 1995; Sigurdsson
1995). Previous calculations (performed using frequency
derivatives up to the third order) have shown that the mass
of the second companion could be anywhere from ~10~3
to ~1 My (Michel 1994; Sigurdsson 1995). Recently, a
measurement was made of the fourth derivative of the pulse
frequency, along with preliminary measurements of secular
changes of the inner binary parameters due to the pertur-
bation of the second companion (Arzoumanian et al. 1996).
These include a precession of the inner binary orbital plane
(measured as a change in the projected semimajor axis of
the binary) and possible changes in the eccentricity and
longitude of periastron.

3.1. Modeling the Frequency Derivatives
In this section, we apply the method described in § 2.2 to
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analyze the properties of the second companion in the PSR
B1620—26 triple system. Since the orbital period of the
second companion is much longer than that of the inner
binary (for all solutions obtained below), we treat the inner
binary as a single object. Keeping the same notation as
before, we let m; = m, + m, be the mass of the inner binary
pulsar, with m, the mass of the neutron star and m, the mass
of the (inner) companion, and we denote by m, the mass of
the second companion (to be determined). As in § 2, the
orbital parameters (4,, @,, e,, a,, and i,) refer to the orbit of
the (second) companion with respect to the center of mass of
the system (here the entire triple). However, a subscript “1”
for the orbital elements refers to the orbit of the inner
binary. The results presented in this section are all for m; =
1.7 M (assuming m,= 14 My and m,=0.3 Mg; cf.
Thorsett et al. 1993). However, we have checked that they
are not very sensitive to small changes in the value of m,. In
particular, the companion mass m, varies only as ~m?/3
(see eq. [4]).

We use the latest available values of the pulse frequency
derivatives (Arzoumanian & Thorsett 1997) for the epoch
MIJD 48,725.0:

f=90.2873320054(1) s~ 1,

f= —54702(7) x 10713572,

f=1929@8) x 10723573, (31)
f®=81) x 10733574
f®=—21(6) x 10740 575

These values take into account a (very precise) Keplerian
model of the inner orbit. The corrections to f due to proper
motion are negligible for this pulsar. The frequency deriv-
atives should therefore reflect the residual motion of the
pulsar caused by the presence (unmodeled) of a second com-
panion. However, as discussed in § 2.1, the observed first
derivative f,,; can be a combination of the intrinsic spin-
down of the pulsar and the acceleration due to the second
companlon Since £, is negative and f,,, is always negatlve
f.ec can in principle be either positive or negative. If it is
negative, then its magnitude must be <|f,,,|. If it is positive,
its magnitude can in principle be larger. However, it cannot
be much larger than |f, | since this would imply a very
large intrinsic spin-down rate and a short characteristic age
7 = —1f/f, which is not expected for a millisecond pulsar
(cf. Thoreett et al. 1993 and § 2.1). In practice, we find that
varying f,../foss in the entire range — 1.0 to + 1.0 does not
affect our solutions s1gn1ﬁcant1y (see below). The expected
value of f due to timing noise can be estimated using, e.g.,
Figure 1 of Arzoumanian et al. (1994), which gives the
timing noise parameter A = log (| f| 10%#/6f) as a function
of period derivative. This y1e1ds an upper limit on the contri-
bution to f due to intrinsic timing noise of 3 x 10724 s~3,
which is an order of magnitude smaller than |f,.|. The
same conclusion is reached if we consider, for comparison,
PSR B1855+ 09, which has a comparable spin rate (f = 186

1) but a frequency second derivative |f,, | <2 x 10727

~3(3 0), i, at least 4 orders of magnitude smaller thanf,
in PSR B1620 26 (Kaspi et al. 1994).

Figure 1 illustrates our “standard solution,” obtained
under the assumption that f, .. = f,,, and using the current
best-fit value for the fourth derivative, f¥ = —2.1
x 1074% s75, Following the method of § 2.2, we use e, as
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FiG. 1.—Allowed values of the semimajor axis a,, mass m,, eccentricity
e,, longitude at epoch ,, and longitude of pericenter w, for the second
companion of PSR B1620—26, using the latest available values for all
pulse frequency derivatives. This is our “standard solution,” using the
present best-fit value f = —2.1 x 1074° s~ and assuming that all mea-
sured frequency derivatives are dynamically induced. Acceptable solutions
allhave2.4 x 107* My < m,sini, <12 x 1072 M.

o
—_

the free parameter. We see that there are no solutions for
e, 5 0.1. Hence a nearly circular orbit is ruled out. For
0.1 < e, <0.3, there are two solutions for each value of the
eccentricity and hence two possible values of m,.

In the first branch of solutions, m, approaches zero as the
eccentricity approaches the value e, ~ 0.33. However, for
very small m,, the second companion gets close enough to
the inner binary to make the triple configuration dynami-
cally unstable. The stability of the triple system can be
checked by using an approximate criterion of the form
Y > Y, (for stability), where Y = [(1 — e,)(a; + a,)]/
[(a, + a)(1 + e;)] is the ratio of the outer pericenter
separation (from the center of mass of the inner binary to
the second companion) to the apastron separation of the
inner binary. Here we have used the results of Eggleton &
Kiseleva (1995), who give

3.7 2.2 14 g3 —1
Ymin ~ 1 + + + 13 o . 32
R TR a1

Here q;, = m,/m, and q,,, = m;/m, are the inner and outer
mass ratios. Using the values m, ~ 1.4 My, m, ~ 0.3 M,
and m, ~ 107> M, we obtain Y,;, ~ 2. Thus we require
Y > 2 for a dynamically stable solution. This gives us a
lower limit on the second companion’s mass of m, = 3
x 107> Mg ~ 10 M. In addition, we can rule out solu-
tions with orbital periods P, < 14 yr since this would have
been detected already in the timing residuals (S. E. Thorsett
1996, private communication). This gives us a somewhat
stricter lower limit of m, 2 2.4 x 10™* M, ~ 80 M.
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For the second branch of solutions, m, increases mono-
tonically from ~1073 to 1.2 x 10”2 M, (i.e., from Jupiter
to brown dwarf masses) as e, increases from ~0.1 to 1. As
e, approaches 1.0, the mass m, remains bound. So even
though the solutions with e, — 1 are a priori unlikely, they
provide a strict upper limit, m, < 1.2 x 10~% M. Since all
our solutions have m, < m,, our method in fact yields the
product m, sin i, (cf. § 2.2), which we show in Figure 1.

The effect of varying f,../fous in the range 0-1.0 is shown
in Figure 2. We see that smaller values of f, . /f,,, yield
slightly solutions with smaller mass, but the overall mass
range is not significantly affected. In particular, we see
that stellar-mass solutions for m, are not allowed even if
the observed value of f is assumed to be mostly intrinsic.
Negative values of f,../f.ps yield similar results.

We see that our standard solution excludes the stellar
mass range (m, = 0.1 M) for the second companion, and
this is rather surprising. A stellar mass would provide a
natural explanation for the anomalously high eccentricity of
the inner binary (e; =~ 0.03) in terms of secular pertur-
bations (Rasio 1994). In addition, a stellar mass would also
be consistent with a preliminary identification of an optical
counterpart for the system (Bailyn et al. 1994). We have seen
already that assuming a different value for f,.. does not
change our conclusions. Alternatively, we can try to vary
the value of f® within its fairly large error bar. However,
we find that varying £ within its formal 1 ¢ error bar still
does not produce significant changes in m,. In order to
obtain stellar-mass solutions, we find that we must vary f
within a larger 4 ¢ error bar around the best-fit value £
given above. Note that this allows for a change of sign in the

10t & E
10° -
o 102k 2
5 BN -
« 10V E -
o EL TN E
1 ;_ \\ N —=
£
0.1 ¢ \ =
E \ 3
- C ] Il Il 1 Il 1l | Il Il | ] Il Il I 1 I ]
10 2 . T T T I T T T , T T T ] T T T I T T T
1072 & E
2 ]
- _/ i
w1078 £\ =
~ E 3
g u ]
\ il

10—4 1 “ 1 1 | 1 1 1 | 1 1 1 l 1 1 1
0 0.2 0.4 0.6 0.8 1

F1G. 2—Orbital period, mass, and eccentricity of the second compan-
ion of PSR B1620— 26 for different values of the acceleration-induced first
frequency derivative. The curves are for f, ., = f,,. (solid line), f,.. = 0.1f,
(long-dashed line), and f,., = 0.01f,,, (short-dashed line). We assume that the
inclination angle i, = 90°. We see that the mass range does not change
significantly when varying f, . and that stellar masses are always excluded.

acc
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10° ¢ —15
- 6y = ——" e, sin? 0, sin 2¢, , (34)
. . 2P,
104 3
E : L sin 260, cos (w; + ¢,) (35)
E 1083 = —E = 2P1 n 2 @y 2
a2 102 f_ii _i (Rasio 1994), where P, = 16,540,653 s is the period of the
3 E inner binary, n = (my/m,)[(a, + a)/r1,]1°, a. is the semi-
F . major axis of the inner binary companion, and a, is the
10t ¢ E semimajor axis of the pulsar (with respect to the center of
E ] mass of the inner binary). The projected semimajor axis of
E 3 the pulsar is x, = (1/c)a,, sin i, and therefore
102 =
2 3 1 :
10! 3 E Xp = a, COS iyl . (36)
1 g E
Ee 10-t E S Note that there is no secular perturbation of the semimajor
g 3 axis (a, = 0).
102 £ The present measured values of the perturbations are
107 F @y =(—20+21) x 10" * deg yr !, (37)
10~ E
Lo-5 T e, =05+3)x107 15571, (38)
0 . X, =(—65+0.8) x 10713 (39)

FiG. 3.—Similar to Fig. 2, but the dependence of the solutions on f is
illustrated for an expanded 4 ¢ error bar around the best-fit value f* =
—2.1 x 107#° §75, The solutions are shown for f® =@ (solid line),
f@ =f% _(1 o) (long-dashed line), f® = f + (1 o) (short-dashed line),
f® =01f® (dot-dashed line), and f® = 0.01f» (dotted line), where
g =0.6 x 1074° 573, Stellar-mass solutions are obtained when —0.1 <
fm)/fi:) <0.1.

actual value of f. The results are illustrated in Figure 3.
Here we assume that sin i, = 1. We find that stellar-mass
solutions (with m, 2 0.1 M) are possible only if
—0.1 SfY)f% <0.1; ie., f® must be more than 3 ¢
away from its present best-fit value (assuming that
sini, ~ 1).

3.2. Secular Perturbations of the Inner Binary

We can further constrain the system by considering
secular perturbations in the orbital elements of the inner
binary. Preliminary measurements have been made of the
perturbations in w,, e;, and x; (Arzoumanian et al. 1996;
Arzoumanian & Thorsett 1997). We use these measure-
ments to further constrain the system by requiring that all
our solutions be consistent with these secular perturbations.

Since the period P, of the second companion is much
larger than the period of the inner binary, we can calculate
the secular perturbations by assuming that the second com-
panion has a fixed position in space with respect to the
inner binary. Letr,,, 0,, and ¢, be the fixed spherical polar
coordinates of the second companion, with the origin at the
center of mass of the inner binary, ¢, measured from peri-
center in the orbital plane, and 0, such that sin 6, = 1 for
the coplanar case. Then the averaged perturbation rates are
given by

W, = 3Pﬂ [sin? 0,(5 cos? ¢, — 1) — 1], (33)
1

(Arzoumanian & Thorsett 1997). Only X, is clearly detected,
while the two others are at best marginal detections. Note
that proper motion can also lead to a change in the project-
ed semimajor axis x, of the pulsar. However, if the observed
X, was due to proper motion, Arzoumanian et al. (1996) find
that the inner binary companion of the pulsar would then
have a mass m, > 1.0 M, with i; < 10° for a 1.35 Mg
pulsar, which seems very unlikely. Hence we assume here
that the observed x, is caused by the secular precession of
the inner orbit induced by the presence of the second com-
panion.

To incorporate these measurements into our theoretical
model, we have performed Monte Carlo simulations with
the unknown variables in the system, namely, i, i,, e,, 0,,
and ¢,. The angles 6, and ¢, can be determined by usingi,,
iy, 0,5, 4,, and an additional undetermined angle o, which
(along with i, and i,) describes the relative orientation of
the planes of the orbit of the inner binary and the orbit of
the second companion. For a detailed description of the
geometry, see the Appendix. We assume a uniform prob-
ability distribution for cos i,, cos i,, and a. Although there
is no reason to expect the triple system to be in thermal
equilibrium with the cluster (since the lifetime of the triple
system in the core of M4 is only ~ 107 yr; see discussion in
§ 3.3), we assume a thermal distribution for e,, i.e., a linear
probability distribution Prob (e,) = 2e, (see, e.g., Heggie
1975), for lack of a better alternative. Our procedure for
constructing random realizations of the system is as
follows: We start by assuming a value of e, and solving the
nonlinear system numerically for m,, a,, 1,, and w, as
described in § 3.1. Using this solution, we calculate 5 =
(my/m,)[(a, + a.)/r;,]°. Then, for each trial, we generate
random values for i,, i,, and o and calculate 6, and ¢, as
described in the Appendix. We choose the number of trials
for each assumed value of e, so as to obtain a linear dis-
tribution for e, over all the trials. We then calculate the
secular perturbation rates using equations (33)-36), and we
check for consistency with the observed values of the per-
turbations. We use a simple rejection algorithm, accepting
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or rejecting a trial configuration based on a three-
dimensional Gaussian probability distribution that is the
product of Gaussian distributions for @,, é,, and x, cen-
tered around their mean values and with standard devi-
ations equal to the error bars given above.

In Figures 4 and 5, we show histograms of the number of
successful trials for different values of m, and the corre-
sponding distance r,, of the second companion from the
inner binary, for both f® = f% (standard solutions) and
f® =001f% (required to obtain stellar-mass solutions).
For our standard solutions, we find that the mass distribu-
tion for the second companion peaks at m, = 0.01 + 0.005
M, corresponding to a distance of r;, = 38 + 6 AU. Note
that this is the distance of the second companion from the
binary (not the semimajor axis of the second companion).

Here the errors represent 80% confidence intervals. The
semimajor axis a, and period P, are not well constrained
and vary over 3 orders of magnitude. The period P, varies
from about 10% to 10* yr with the distribution centered
around 400 yr, and a, varies from about 10 to 1000 AU
with the distribution centered around 70 AU. In the second
case, the distribution peaks at m, = 1.0 + 0.5 M, corre-
sponding to a distance of r;, = 150 + 35 AU. The period
P, varies from about 10° to 10° yr with the distribution
centered around 3000 yr, and a, varies from about 10 to
10* AU with the distribution centered around 200 AU. We
obtain peaks in the stellar mass range for m, only when
—0.1 SfY)f® < 0.1. In all cases, we find that the orienta-
tion of the second companion with respect to the inner
binary (angles 0, and ¢,) is poorly constrained by the
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Fi1G. 4—Histogram of the number of successful trials (N) for different
values of m, and the corresponding distance r,, of the second companion
from the inner binary for the case f* = f® in our Monte Carlo simula-
tions. We find that the most probable value for the second companion’s
mass is m, = 0.01 + 0.005 M, corresponding to a distance of r,, = 38
+ 6 AU (80% confidence intervals).
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FIG. 5—Same as Fig. 4, but for the case f* = 0.01f ). We see that the
most probable value for the second companion’s mass is now m, = 1.0
+ 0.5 M, corresponding to a distance of r,, = 150 + 35 AU.

current data, as is the inclination i, of the second compan-
ion. The inclination of the binary is better constrained, to
~55° 4+ 15° (cf. Fig. 6). The eccentricity of the second com-
panion, e,, is also poorly constrained.

3.3. Model Predictions

We can obtain a predicted value of the fifth pulse fre-
quency derivative f©® at the current epoch for each of our
solutions by differentiating equation (9) for a specified value
of e,. In Figure 7, we show the most probable values for />
from the Monte Carlo simulations of § 3.2. For f® = f&
(standard solution), we find that the most probable value
is f© =(0.154+0.05) x 10”48 s~ whereas, for f@ =
0.01/% (which yields stellar-mass solutions), [ =
(—6.0 + 0.4) x 107! s~ Thus even a crude measurement
of f© should completely settle the question of the second
companion’s mass.

We have also calculated the predicted evolution of the
frequency derivatives f through f® for the next 20 years.
We show the results for the typical orbit of a Jupiter- to
brown dwarf-sized companion (m, = 0.01 M) in Figure 8
and for a stellar-mass companion (m, = 0.5 M) in Figure
9. In the first case, the orbit has e, = 0.77, a period P, =
1562 yr, and a, = 160 AU. We see that f changes sign in
about 10 years and that f©® decreases surprisingly rapidly,
changing sign in about 1.5 years. For the stellar-mass case,
only f changes sign within 10 years. The other frequency
derivatives do not change significantly over 20 years. The
orbit in this case has e, = 0.49, a period P, = 2034 yr, and
a, = 161 AU. Thus a change in sign of /® within the next
couple of years would provide additional support for the
existence of a planet or brown dwarf in this system.



0 0.2 0.4 0.6 0.8 1
@,/ 2T

F1G. 6—Histograms of the number of successful trials (N) for various
parameters in the Monte Carlo simulations with f* = ., All the angles
are poorly constrained except the inclination of the inner binary, which is
slightly better constrained to i, ~ 55° + 15°.
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Fic. 8.—Predicted variation of the frequency derivatives over the next
20 yr for a low-mass (m, =0.01 M) second companion (standard
solution). The units for the four derivatives are 10~ ° s~ for f, 10723 s 73
forf, 10733 s~ for f®, and 10™*° s~ for f ®. We see that f changes sign in
~10yr, and f® changes signin ~ 1.5 yr.

We also find that, in all cases, the values of f, f, and f®
at apastron are at least 2, 3, and 5 orders of magnitude
smaller, respectively, than their present observed values.
This means that the triple nature of the system would prob-
ably remain undetectable near apastron. It is therefore rea-
sonable to find the second companion relatively close to
periastron in our solutions (within ~ 15° for the case illus-
trated in Fig. 8 and ~40° for the case considered in Fig. 9).

3.4. Discussion

As mentioned previously, the method for determining the
orbital parameters of a binary pulsar presented in § 2,
although quite general in its formulation, can only be
applied successfully to systems containing fast millisecond
pulsars, in which the dynamically induced frequency deriv-
atives dominate the measurements. In addition, it requires
several successively higher order frequency derivatives to be
measured accurately. The PSR B1620—26 triple system
satisfies all of these conditions and hence is ideally suited for
analysis using our method. PSR B1620—26 has been
observed for more than 7 years, and its hierarchical triple
structure is strongly supported by all current observations
(Backer et al. 1993; Thorsett et al. 1993; Arzoumanian &
Thorsett 1997). The error bar on f® is likely to shrink
rapidly as more timing data become available. If the actual
value of f is close to the current best-fit value /() = —2.1
x 1074% s~ 5, then the second companion must have a mass
m, < 0.1 M as long as the system has an inclination i, >
7°, with the most probable mass (given by our Monte Carlo
simulations) being 0.01 + 0.005 M (the error bar indicates
an 80% confidence interval). If f® is within 1 ¢ of £, then
the same result holds to within a factor of 2. A rather low
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Fi1G. 9.—Predicted variation of the frequency derivatives over the next
20 yr for a stellar-mass (m, = 0.5 M ) second companion (assuming f ¥ =
0.01f®). The units for the four derivatives are 10”15 s~2 for f, 10723 s =3
forf, 10733 s~* for f®, and 10~*2 s =3 for f¥. We see that f changes sign in
~10 yr, but the other derivatives do not change much in 20 yr.

inclination angle (i, < 10°) or |f¥/fW|<0.1 (e, f@
more than 3 ¢ away from f%) would be required if the
second companion was a main-sequence star with m, >
0.1 M.

Instead, our results clearly suggest that the second com-
panion is a ~0.01 M, brown dwarf or giant planet. This is
surprising since low-mass objects are not expected to be
found in the cores of globular clusters. The reason is that
low-mass objects have higher velocities in energy equi-
partition and are preferentially ejected from globular clus-
ters as they evaporate in the tidal field of the Galaxy. Hence
we do not expect to find very low mass stars or brown
dwarfs in globular clusters, especially not near their cores.
Recent Hubble Space Telescope (HST) observations of
globular clusters (e.g., Paresce, De Marchi, & Romaniello
1995) also support this view by finding that stellar mass
functions in clusters flatten or even drop for masses below
~0.1 M. In addition, if the second companion of PSR
B1620— 26 is indeed of low mass, then the unusually high
eccentricity of the inner binary pulsar cannot be explained
by secular perturbations due to the second companion,
since that would require a stellar-mass second companion
(Rasio 1994). It would also preclude any possibility of an
optical identification of the triple system. Bailyn et al. (1994)
have searched deep optical images of M4 for an optical
counterpart of the pulsar. They have identified a candidate
that, if interpreted as a single object, could be a 0.45 M
main-sequence star within 0”3 of the nominal pulsar posi-
tion. However, it is possible that this object is in fact a blend
of fainter stars not associated with the pulsar, or simply a
chance superposition. Future observations of the region
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with HST, as well as improved ground-based astrometry,
should help resolve the issue.

Low-mass stars and brown dwarfs could exist in dense
globular cluster cores as binary companions to more
massive stars. Dynamical interactions could then lead to an
exchange, leaving the low-mass object in orbit around a
neutron star. Indeed, Sigurdsson (1992) had discussed the
possibility of finding planetary companions to pulsars in
globular clusters even before the triple nature of PSR
B1620—26 was established. A possible formation scenario
for the triple system starts with an interaction between a
neutron star—white dwarf binary and a main-sequence star
with a large Jupiter-type planet or brown dwarf companion
(cf. Sigurdsson 1993, 1995). As a result of this interaction,
the white dwarf is ejected while the main-sequence star and
its planet or brown dwarf companion remain in orbit
around the neutron star. The main-sequence star, as it
evolves and later expands as a red giant, would then trans-
fer mass onto the neutron star, thus spinning it up and
forming the millisecond pulsar in the triple configuration
we see today. However, tidal dissipation during the mass
transfer phase would effectively circularize the orbit of the
binary, leaving a residual eccentricity e, < 10~ * (Phinney
1992). Therefore this formation scenario leaves the much
higher observed eccentricity (e; ~ 0.03) of the inner binary
unexplained. It has been suggested that the eccentricity of
the inner binary may have been induced during a dynamical
interaction with another cluster star. The probability of dis-
rupting the triple during such an interaction is only ~0.5
(Sigurdsson 1995). Based on the results of Rasio & Heggie
(1995), however, we find that the observed eccentricity
would require an encounter with a distance of closest
approach of ~2.5 AU, considerably smaller than the size of
the outer orbit and occurring on average once in ~4 x 108
yr. For comparison, the lifetime of the triple system in
the cluster is only about 1~ (10® yr)p; 'os[a,/(10
AU)]" ' ~ 2 x 107 yr, where p = 10*p, M, pc™? is the
density near the center of M4, ¢ = 505 km s~ ! is the veloc-
ity dispersion, and a, is the size of the outer orbit (Rasio
1994). For one interaction that could have produced the
eccentricity of the inner binary, we therefore expect ~20
interactions that could have disrupted the triple, each with
probability ~0.5, leaving the probability of survival at
~107°. An additional problem is that the age of the milli-
second pulsar in this scenario must be comparable to the
age of the triple (~ 107 yr), which requires the millisecond
pulsar to be extremely young. This problem could be
avoided if the triple was instead formed during an inter-
action involving a preexisting binary millisecond pulsar and
another primordial binary (containing the present second
companion and another star that was ejected during the
interaction; see Rasio et al. 1995). The current eccentricity
of the (inner) binary pulsar could then have been induced
during the same interaction that formed the triple, although
this would require some fine-tuning. More significantly, one
would expect the more massive member of the other binary,
rather than the low-mass object (Jupiter or brown dwarf), to
be preferentially retained in the triple while the other was
ejected.

Naturally, if the low-mass object (Jupiter or brown
dwarf) was attached to a much more massive star, it is
easier to understand how it was retained by the cluster and
why it is now found close to the cluster core. In particular,
in the first formation scenario discussed above, the main-
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sequence star must have been fairly massive (m ~ 1 M) to
have evolved into a red giant after the triple was formed.
Two-body relaxation in the cluster will tend to bring this
main-sequence star (with its attached low-mass companion)
down to the cluster core since it is more massive than the
average object in the cluster. Confirmation of the existence
of a ~0.01 M object in PSR B1620—26 would therefore
provide further indication that many stars, even in globular
clusters, could have very low mass companions or planets.
This is especially important in light of recent discoveries of
several ~1072 to ~10~2 M, objects around nearby stars
(e.g., Mayor & Queloz 1995; Butler & Marcy 1996; Marcy
& Butler 1996).

4. APPLICATION TO THE PSR B1257+12
PLANETARY SYSTEM

We now turn to the application of our method to the
planetary system around the millisecond pulsar PSR
B1257+12. This system contains three confirmed Earth-
mass planets in quasi-circular orbits (Wolszczan & Frail
1992; Wolszczan 1994). The planets have masses of 0.015/
sin i; Mg, 3.4/sin i, Mg, and 2.8/sin iy M4, where iy, i,,
and i are the inclinations of the orbits with respect to the
line of sight, and are at distances of 0.19, 0.36, and 0.47 AU,
respectively, from the pulsar. In addition, the unusually
large second and third frequency derivatives of the pulsar
suggest the existence of a fourth, more distant and massive
planet in the system (Wolszczan 1996).

4.1. Analysis of the Frequency-Derivative Data

The residual pulse frequency derivatives for PSR
B1257+12 (after subtraction of a model for the inner
three planets) are f= —8.6 x 10716 s72, f=(—125+
0.05) x 10725 s73, and f® =(1.1 103) x 10733 ¢4
(Wolszczan 1996) while the frequency f= 160.8 s~'. The
value of f has been corrected for the apparent acceleration
due to the pulsar’s transverse velocity (the so-called Shlov-
skii effect; see Camilo et al. 1994). The errors on f and f, for
the purposes of this discussion, are negligible. Note that the
measurement of f® is only preliminary, but we assume here
that the value quoted above (from Wolszczan 1996) is
correct. Comparison with PSR B1855+09, which has a
very similar pulse frequency, f= 186 s~ and first fre-
quency derivative f = —6.2 x 107'° s~ (Kaspi et al. 1994),
indicates that the observed f for PSR B1257 + 12 could well
be entirely (or in large part) intrinsic rather than acceler-
ation induced. The timing age for the pulsar,7 = —1f/f ~ 3
x 10° yr, is entirely consistent with that expected for a
millisecond pulsar. Therefore we will treat f, . essentially as
a free parameter in our analysis. The observed f, on the
other hand, is 2 orders of magnitude larger than for PSR
B1855+09, which has f<2.0 x 10?7 s~2 Thus the
observed f is almost certainly due to the presence of
another planet rather than to intrinsic timing noise in the
pulsar.

With three frequency derivatives measured, we can use
the method of § 2.3 to model the system. Given the nearly
circular orbits of the three inner planets, it is natural to
assume that the orbit of the fourth planet also has a low
eccentricity. In addition, it is easy to show that dynamical
interactions with passing stars in the Galaxy are not likely
to produce any significant perturbations of the system
(which could otherwise increase the eccentricity of an outer
planet’s orbit; see Heggie & Rasio 1996).
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Since the value of f.cc is uncertain, we explore a wide
range, 0.01 < f,../f.vs < 1. Note that, for a circular orbit, £,
and f® must have opposite signs (cf. egs. [19] and [21]).
Hence f,.. cannot be positive. For each value of f, ., we
calculate the mass and semimajor axis of the fourth planet
by using equations (25), (28), and (30). We illustrate the
results in Figure 10. We find that the mass of the fourth
planet varies significantly, from ~0.08 Mg (for f,.. =
0.01f.,s) to ~100 M, (for f,.. = fobs)- The simplest interpre-
tation of the present best-fit values of the frequency deriv-
atives, assuming f,.. = f,u., implies a mass of about 100/
sin iy Mg (i.e., comparable to Saturn’s mass) for the fourth
planet, at a distance of about 38 AU (i.e., comparable to
Pluto’s distance from the Sun), and with a period of about
170 yr in a circular, coplanar orbit (Wolszczan 1996).
However, if f, . # f.,s, then the fourth planet can have a
wide range of masses. In particular, it can have a mass
comparable to that of Mars (at a distance of 9 AU), Uranus
(at a distance of 25 AU), or Neptune (at a distance of 26
AU), for f,.. = 0.015f,,, 0.30f,,,, or 0.34f,,, respectively.

4.2. Discussion

In this system, the perturbations of the inner planets pro-
duced by the fourth planet are probably far too small to be
detected. This is in contrast to the mutual perturbations of
the inner planets themselves, which are important and have
been detected (Rasio et al. 1992; Wolszczan 1994). Using
equations (33)—(36), we predicté ~ 10" s *and & ~ 10~7
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Fi1G. 10—Mass and semimajor axis of the possible outer planet in the
PSR B1257+ 12 planetary system for f, . in the range (0.01-1.0) ... The

acc obs*
present best-fit values of the frequency derivatives with f,., = f,,, imply the
presence of a planet with mass ~ 100/sin i, M4, at a distance of ~38 AU.
The marked points on the curve indicate the values of £, /f,,.. The points
labeled M, U, and N indicate configurations with the same mass and
radius ratios (in this system) as those of Mars, Uranus, and Neptune (in the

solar system), respectively.
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deg yr ! for the orbit of the third planet, assuming that all the ratio of radii in each case would be much larger than the

orbits are coplanar and that the mass of the fourth planet is corresponding ratio for the solar system (cf. Fig. 10). Thus

100 M. The perturbations for the two innermost planets this system does not seem to maintain its regularity with the

are even smaller. Hence the existence of the fourth planet is solar system, since the mass and radius ratios of the fourth

likely to be confirmed only through further measurements planet would not simultaneously match those of any planet

of pulse frequency derivatives. in the solar system. This is true for the entire range of values
It has been pointed out that the masses and radii of the of f,.. considered above.

three inner planets in PSR B1257 + 12 are in the same ratios
as the masses and radii of the corresponding first three

planets in the solar system (Mazeh & Goldman 1995). This We are very grateful to Z. Arzoumanian, S. E. Thorsett,
might perhaps be indicative of a global underlying forma- and A. Wolszczan for many useful discussions and for com-
tion mechanism for the two systems. municating results of observations in progress. We also

Although the fourth planet could have the same mass thank C. Bailyn and S. Sigurdsson for helpful comments.
(normalized to the mass of the third planet) as Mars, F. A. R. is supported by an Alfred P. Sloan Research
Uranus, or Neptune (normalized to the mass of the Earth), Fellowship.

APPENDIX
GEOMETRY OF THE TRIPLE CONFIGURATION

The orbit of the inner binary and the orbit of the second companion in general do not lie in the same plane. The inclinations
of the two planes with respect to the line of sight are given by i; and i,. To specify the plane of an orbit completely, one needs
the inclination angle together with another azimuthal angle « (which lies between 0 and 2x). Since the reference axis for « is
arbitrary, we can take it to lie in the plane of one of the orbits, so that « is the difference between the azimuthal angles of the
two planes. In random Monte Carlo trials, « is then taken to be uniformly distributed between 0 and 2=.

In order to determine 6, and ¢, using the other angles, we need to change coordinates between two reference frames. The
first frame has its origin at the center of mass of the inner binary, with the x-axis in the plane of the orbit of the second
companion, the y-axis passing through the pericenter of the orbit, and the z-axis perpendicular to the plane of the orbit, so
that the motion of second companion is counterclockwise around the z-axis. We shall refer to the coordinates of the second
companion in this frame as (x., y., z.). Then x, = —r,, sin 4,,y. =r;, cos 4,,and z, = 0.

The second frame similarly has its origin at the center of mass of the inner binary, with the x-axis in the plane of the orbit of
the inner binary, the y-axis passing through the pericenter of the orbit, and the z-axis perpendicular to the plane of the orbit,
so that the motion of pulsar is counterclockwise around the z-axis. We wish to find the coordinates (x7, y;, z.) of the second
companion in this frame. We can then calculate 6, and ¢, using the formulae 6, = cos™* (z//r,,) and ¢, = tan™* (—x/y?),
keeping in mind that for y? < 0 we must add 180° to ¢, in order to obtain the correct quadrant.

In order to obtain (x, y;, z.) from (x, ¥,, z,), we rotate the first frame to the second frame, using the standard Euler angles
formalism (see, e.g., Goldstein 1980). In this formalism, any arbitrary rotation of an object is represented as a sequence of three
consecutive rotations—first about the z-axis by an angle ¢, then about the new x-axis by an angle 6, and finally again about
the new z-axis by an angle .

In order to use this formalism, we use an intermediate frame of reference that is fixed in space, with its origin at the center of
mass of the inner binary, the y-axis along the line of sight, the x-axis in the plane of the orbit of the second companion, and the
z-axis such that the motion of the second companion is counterclockwise about the z-axis. The first frame described above can
be obtained from this fixed frame by rotating it through the Euler angles 0, i,, and w, — 90°, respectively. Similarly, the
second frame can be obtained from the fixed frame by rotating it through the angle « about the y-axis and then rotating
it through the Euler angles 0, i,, and w; — 90°, respectively. The sequence of Euler angle rotations is represented as a
matrix A(¢, 0, ). We obtain the coordinates (x;, y., z;) from (x,, y., z.,) by multiplying first by the inverse matrix
AY0, i, w, — 90°), then multiplying by the matrix for rotation about the y-axis B(x), and then multiplying by the
matrix A(0, i, w; — 90°). The matrices are given by

cos Y cos ¢ — cos 0 sin ¢ sin Y cos Y sin ¢ + cos 0 cos ¢ sin Y sin Y sin 0
A(p, 0, ) =| — sin Yy cos ¢ — cos O sin ¢ cos y —sin Y sin ¢ + cos @ cos ¢ cos Yy cos Y sin 6 |,
sin 6 sin ¢ —sin 6 cos ¢ cos 0
cosa 0 —sina

B@)=| O 1 0 s
sina O cos o
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ERRATUM

In the paper “Distant Companions and Planets around Millisecond Pulsars” by Kriten J. Joshi and Frederic A. Rasio
(ApJ, 479, 948 [1997]), the following corrections should be made:

In equations (16), (17), and (18), the factor sin 4, in the denominator should be changed to sin (4; + w,), and the expression
in equation (18) should have a negative sign. The revised equations are as follows:

B fcA?
h= |:f sin i, sin (A, + 0,)A% |’ (16)
S
k= |:f sin i, sin (A, + ;) | \ 1%/’ (17
. —fc m2 A2\13
~ : . 1
M2 S L ¥ 0 3y + o) \ GAF (18)

These corrections are only typographical in nature, and none of the results or conclusions of the paper are affected.

In addition, in equation (32) the sign of the third term (2.2/(1 + g./)) should be changed to negative. This typographical
error is also in the original reference (Eggleton & Kiseleva 1995) from which the equation was taken. This does not affect the
ultimate lower bound for the mass m, since a stronger constraint is imposed by the lack of any observed periodicity in the
timing residuals.
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