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ABSTRACT
We present a general method for determining the masses and orbital parameters of binary millisecond

pulsars with long orbital periods yr), using timing data in the form of pulse frequency deriv-(Porb? 1
atives. Our method can be used even when the available timing data cover only a small fraction of an
orbit, but it requires high-precision measurements of up to Ðve successive derivatives of the pulse fre-
quency. With Ðve derivatives a complete determination of the mass and orbital parameters is in principle
possible (up to the usual inclination factor sin i). With less than Ðve derivatives, only partial information
can be obtained, but signiÐcant constraints can sometimes be placed on, e.g., the mass of the companion.
We apply our method to analyze the properties of the second companion in the PSR B1620[26 triple
system. We use the latest timing data for this system, including a recent detection of the fourth time
derivative of the pulse frequency, to constrain the mass and orbital parameters of the second companion.
We Ðnd that all possible solutions have a mass in the range 2.4 ] 10~4 sinm2 M

_
¹ m2 i2¹ 1.2 ] 10~2

i.e., almost certainly excluding a second companion of stellar mass and suggesting instead that theM
_

,
system contains a planet or brown dwarf. To further constrain this system, we have used preliminary
measurements of the secular perturbations of the inner binary. Using Monte Carlo realizations of the
triple conÐguration in three dimensions, we Ðnd the most probable value of to be 0.01 ^ 0.005m2 M

_
,

corresponding to a distance of 38 ^ 6 AU from the center of mass of the inner binary (the errors indi-
cate 80% conÐdence intervals). We also apply our method to analyze the planetary system around PSR
B1257]12, where a distant, giant planet may be present in addition to the three well-established Earth-
mass planets. We Ðnd that the simplest interpretation of the frequency derivatives implies the presence of
a fourth planet with a mass of D100 in a circular orbit of radius D40 AU.M

^
Subject headings : celestial mechanics, stellar dynamics È planetary systems È pulsars : general È

pulsars : individual (PSR B1620[26, PSR B1257]12)

1. INTRODUCTION

The traditional method for obtaining masses and orbital
parameters of binary pulsars consists of Ðtting Keplerian or
post-Newtonian models to timing data covering at least one
complete orbit. For wide-orbit binary pulsars, with orbital
periods longer than a few years to decades, Ðtting a com-
plete orbit may not be possible. For such systems, we
present a method for obtaining the masses and orbital
parameters by using measured values of the successive time
derivatives of the pulse frequency f (3), etc.). Given the( f 5, f �,
high precision of millisecond pulsar timing, it is sometimes
possible to measure these frequency derivatives up to high
order with only a few years of observations. We show below
that with Ðve derivatives a complete solution may be
obtained, with the orbital parameters and companion mass
fully determined up to the usual unknown inclination factor
sin i. This solution is constructed under the assumption that
all frequency derivatives are dynamically induced rather
than being intrinsic to the pulsar spin-down. This is a
crucial assumption and may not always be justiÐed. Its
validity, and the e†ects of relaxing it, must be examined for
each particular application. If only three or four derivatives
have been measured, signiÐcant constraints can still be
placed on the parameters of the system. With just three
dynamically induced derivatives and the assumption of a
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circular orbit (often justiÐed, e.g., for a planet), a complete
solution can again be obtained. Our method is not a substi-
tute for the standard Ðtting procedure to data covering a
complete orbit. Instead, it provides a way of obtaining the
orbital parameters of wide-orbit binaries, which cannot be
observed over a complete orbit because of their very long
orbital periods. The method can only be successfully
applied to binaries containing fast millisecond pulsars with
low timing noise, in which one can reasonably expect the
dynamically induced pulse frequency derivatives to domi-
nate over intrinsic changes.

Applications of our method to two systems, PSR
B1620[26 and PSR B1257]12, are presented in this
paper. Both these systems are thought to contain planetary-
mass companions to the millisecond pulsar (Wolszczan

et al. Their properties are of1994 ; Arzoumanian 1996).
great interest for our understanding of planetary formation
outside the solar system. This is particularly true in light of
the many recent detections of extrasolar planets around
nearby stars, which show a great diversity of properties

& Queloz & Marcy &(Mayor 1995 ; Butler 1996 ; Marcy
Butler PSR B1620[26, in the globular cluster M4, is1996).
in a hierarchical triple conÐguration. Previously available
timing data allowed a second companionÏs mass anywhere
in the range D10~3 to D1 M

_
(Michel 1994 ; Sigurdsson

i.e., including the possibility of a Jupiter-type planet.1995),
PSR B1257]12 has three conÐrmed low-mass planets, and
there is recent evidence for a fourth, more massive one
(Wolszczan 1996).

Our paper is organized as follows : In we describe our° 2,
general method for obtaining the companion mass and the
orbital parameters by using measured pulse frequency
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derivatives. In we apply our method to PSR B1620[26.° 3,
We also incorporate into our analysis preliminary measure-
ments of secular perturbations of the inner binary by per-
forming Monte Carlo simulations with the undetermined
parameters in the system to obtain the most probable mass
for the second companion. In we apply our method to° 4,
check whether the observed frequency derivatives of PSR
1257]12 are consistent with the possible existence of a
fourth object in the planetary system.

2. INVERTING FREQUENCY-DERIVATIVE DATA

In the standard method for determining the parameters
of binary pulsars, the data (consisting of radio pulse arrival
times) are Ðtted to the predictions of a Keplerian or post-
Newtonian model of the binary orbit. To obtain a reliable
Ðt, one usually needs timing data covering at least a few
complete orbital periods. However, even if the data do not
cover a full period, it is still possible to determine, at least
approximately, the companionÏs mass and the orbital
parameters of the system if sufficiently accurate timing data
are available. The method we develop here uses time deriv-
atives of the pulse frequency (basically the coefficients in a
Taylor expansion of the pulse frequency around a particu-
lar epoch). Pulse frequency derivatives are a convenient way
in which radio astronomers can present the results of their
observations when a clear periodicity cannot be recognized
in the timing data.

2.1. General Formulation
Assuming that the pulsarÏs mass is known,(m1^ 1.4 M

_
)

there are Ðve parameters that can in principle be deter-
mined using our method : the mass of the companion (upm2to the unknown inclination angle the semimajor axisi2), a2,the eccentricity the longitude of pericenter (measurede2, u2from the ascending node), and the longitude of the com-j2panion at the reference epoch (measured from pericenter).
The inclination angle is the angle between the normal toi2the orbital plane and the line of sight ; this angle cannot be
determined directly from the timing data. Here and
throughout this paper, a subscript ““ 1 ÏÏ refers to the pulsar,
a subscript ““ 2 ÏÏ refers to the companion, and all orbital
elements correspond to the motion around the center of
mass of the system (e.g., the distance between the pulsar and
its companion is r1] r2).If frequency derivatives up to the Ðfth order are measured,
all Ðve parameters can in principle be(m2, a2, e2, u2, j2)determined. For small values of the usual com-m2/m1,bination sin can be obtained (see the discussion form2 i2PSR B1620[26 in For larger companion masses, the° 3).
dependence of the solutions on is more complicated, andi2one needs to adopt a particular value of sin (in practice,i2sin for a random orientation) in order to solve explic-i2[ 1
itly for m2.Our method assumes that the measured frequency deriv-
atives are purely those induced by the motion of the pulsar
(acceleration, jerk, and higher derivatives) around the
binaryÏs center of mass. This requires correcting the mea-
surements for other possible kinematic e†ects (see, e.g.,

Thorsett, & Kulkarni More importantly, oneCamilo, 1994).
must assume that any intrinsic contribution from the pulsar
spin-down can be neglected, or determined to some extent
from the known properties of other millisecond pulsars and
subtracted from the measured values. In particular, the
observed Ðrst frequency derivative is in general determinedf 5

by a combination of acceleration and intrinsic spin-down of
the pulsar,

f 5obs\ f 5int] f 5acc . (1)

It is not possible to measure the two components separately
in general. For some systems, however, it is reasonable to
assume that if is large. For example, theo f 5int o> o f 5acc o o f 5obs oobserved may be positive, a clear sign that it is deter-f 5obsmined predominantly by acceleration (as in the M15 pulsars
PSR 2127]11A, D; et al. The expectedWolszczan 1989).
value of may also be estimated from the pulse frequency ff 5intand from the assumption that the timing age of aq4 12 f/f 5
millisecond pulsar should satisfy yr. Indeed, mostqZ 109
millisecond pulsars with reliably measured timing ages
appear to satisfy this property (see, e.g., & Kulk-Phinney
arni Note that the true ages of some millisecond1994).
pulsars may be considerably smaller (cf. et al.Lorimer

but this does not a†ect our argument. Similarly, the1995),
expected value of can be estimated from the predictedf �intlevel of timing noise for the pulsar, which, although very
small for millisecond pulsars, may also a†ect the interpreta-
tion of (see, e.g., et al. Taylor,f �obs Arzoumanian 1994 ; Kaspi,
& Ryba Intrinsic higher derivatives ( f (3), etc.) are1994).
normally not measurable for millisecond pulsars, and there-
fore we can always assume safely that any measured values
are dynamically induced.

After subtraction of known kinematic and intrinsic con-
tributions, we can write the time derivatives of the pulse
frequency at a particular reference epoch as

f 5\ [f
a Æ nü

c
, f �\ [f

a5 Æ nü
c

] f 5 2
f

, etc. , (2)

where c is the speed of light, a is the acceleration of the
pulsar, and is a unit vector in the direction of the line ofnü
sight, and where an overdot indicates a time derivative. The
second term in the expression for is smaller than the Ðrstf �
by a factor Dv/c, where v is the orbital velocity of the
neutron star, i.e., For f (3), we havef 5 2/f > o f � o . o f 5 f �/f o>
o f (3) o, etc., so that all similar terms can be neglected in
taking higher and higher derivatives. Therefore we can write
the Ðrst Ðve frequency derivatives simply as

f 5\ [f
a Æ nü

c
,

f �\ [f
a5 Æ nü

c
,

<

f (5)\ [f
a(4) Æ nü

c
. (3)

Equation (3) forms a system of Ðve nonlinear algebraic
equations with Ðve unknowns and which(m2, a2, e2, j2, u2),must be solved numerically. It is straightforward but
tedious to write down explicitly the right-hand sides of these
equations in terms of the Ðve unknowns, and we will omit
their explicit forms in the general case. Some of the steps
involved, however, are described below in ° 2.2.

2.2. Solution with Four Derivatives
When four derivatives through f (4)) are known, one( f 5

can obtain a one-parameter family of solutions. In practice,
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the problem can be reduced to solving a system of three
nonlinear equations as follows : If is the mass of them1pulsar and is the mass of the companion, the acceler-m2ation of the pulsar in its motion around the center of mass
of the binary is of magnitude where is the dis-a \ k/r12, r1tance from the pulsar to the center of mass and where

k \ G
m23

(m1] m2)2
. (4)

For an elliptic Keplerian orbit of semimajor axis anda1eccentricity the distance is given bye1\ e2, r1
1
r1

\ 1
h

(1 ] e2 cos j1) 4
A
h

, (5)

where for the pulse frequencyh \ a1(1 [ e22). Equation (3)
derivatives can then be written

f 5\ [f
a
c

sin (j1]u1) sin i2\ [fKA2 sin (j1]u1) ,

(6)

f �\ [fKBj5 1 , (7)

f (3)\ [fKCj5 12 , (8)

f (4)\ [fKDj5 13 , (9)

where we have deÐned

A\ 1 ] e2 cos j1 ,

B\ 2AA@ sin (j1] u1) ] A2 cos (j1] u1) ,

C\ B@ ] 2BA@
A

, D\ C@ ] 4CA@
A

,

K \ k sin i2
h2c , (10)

with a prime indicating a derivative with respect to j1.Using we can rewrite equations asequation (6), (7)È(9)

f �\ Bj5 1 f 5
A2 sin (j1] u1)

, (11)

f (3)\ Cj5 12 f 5
A2 sin (j1] u1)

, (12)

f (4)\ Dj5 13 f 5
A2 sin (j1] u1)

. (13)

This is a nonlinear system of three equations with four un-
and AssumingknownsÈe2, j1\ j2, u1\ u2] 180¡, j5 1.a value for one of them, we can solve for the remaining

parameters.
We have chosen to use the eccentricity as our freee2parameter. For an assumed value of we solve equationse2,for and using the Newton-Raphson(11)È(13) j1, j5 1, u1method (see, e.g., et al. This method requires anPress 1992).

initial guess for the unknown parameters, which is then
successively improved until convergence to an actual solu-
tion is obtained. One must be careful to experiment with
many di†erent initial guesses since nonlinear systems like
this often have multiple branches of solutions. In addition,
symmetries must also be taken into account. Here physi-
cally equivalent solutions are obtained if the direction of

motion is reversed, and the signs of and are alsou1 j1reversed. This gives a di†erent but equivalent orientation of
the system. Once and are known, conservation ofj1, j

5
1, u1angular momentum, together with yieldsequation (6),

k
h3 \ j5 12

A4 , (14)

k
h2 \ [ f 5c

fA2 sin (j1] u1) sin i2
. (15)

Using equations (14) and (15), we can calculate k and h :

h \ [ f 5cA2
f sin i2 sin j1j

5
12

, (16)

k \ [
A f 5c

f sin i2 sin j1

B3AA2
j5 14
B

. (17)

It is now straightforward to obtain (from k, assumingm2that the pulsar mass is known) and the semimajor axism1When we can directlya2\ (m1/m2)h/(1 [ e22). m2> m1,obtain sin as follows : For small we have k Bm2 i2 m2,Therefore andGm23/m12. m2B (km12/G)1@3 equation (17)
yields

m2 sin i2B
f 5c

f sin j1

Am12 A2
Gj5 14

B1@3
. (18)

For larger values of one needs to assume a value form2/m1,sin and solve numerically fori2 equation (4) m2.

2.3. Solution with T hree Derivatives
When only three derivatives are known, one can assume

values for two parameters and solve for the remaining three
parameters in the same way as above. Alternatively, in the
special case of a circular orbit the system can be(e2\ 0),
solved completely (to within sin by using only threei2)derivatives. In that case, we have

f 5\ [f k sin i2
a12 c

sin j1 , (19)

f �\ [f k sin i2
a12 c

(cos j1)j
5
1 , (20)

f (3)\ f k sin i2
a12 c

(sin j1)j
5
12 . (21)

Note that here is the longitude of the pulsar measuredj1from the ascending node (not from pericenter, as before).
Using to eliminate weequation (19) [f k sin i2/a12 c,

obtain

f �\ f 5
sin j1

(cos j1)j
5
1 , (22)

f (3)\ [f 5 j5 12 . (23)

This yields

j5 12 \ [f (3)/ f 5 , (24)

j1\ arctan
C f 5

f �
A[f (3)

f 5
B1@2D

. (25)
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Using and conservation of angular momen-equation (19)
tum, we have

k
a12

\ [f 5c
f sin i2 sin j1

, (26)

k
a13

\ j5 12 . (27)

Dividing equation (26) by equation (27) and then using
equations and we obtain(24), (25), (27),

a1\ f 5 2c
f f (3) sin i2 sin j1

, (28)

k \ [
A f 5c

f sin i2 sin j1

B3A f 5
f (3)
B2

, (29)

where is given by For we havej1 equation (25). m2 >m1,Then, for given values of the frequency deriv-k BGm23/m12.atives and the pulsar mass the companion mass canm1, m2be calculated explicitly by using We Ðndequation (29).

m2 sin i2B [
Am12

G
B1@3A f 5c

f sin j1

BA f 5
f (3)
B2@3

, (30)

where is given by Finally, we can calculatej1 equation (25).
where is given bya2\ (m1/m2)a1, a1 equation (28).

2.4. Solution with Two Derivatives
When only two derivatives are available, one can obtain

a one-parameter family of solutions, assuming again that
We can use f (3) (or, equivalently, usinge2B 0. j5 1, eq. [24])

as the free parameter and then use the equations of to° 2.3
construct a one-parameter family of solutions explicitly.

3. APPLICATION TO THE PSR B1620[26 TRIPLE SYSTEM

The millisecond pulsar PSR B1620[26, in the globular
cluster M4, has a low-mass binary companion (probably a
white dwarf of mass for a pulsar massm

c
B 0.3 M

_
m

p
\

1.35 in a 191 day low-eccentricity orbit et al.M
_

) (Lyne
& Lyne The unusually large second1988 ; McKenna 1988).

and third frequency derivatives indicate the presence of a
second companion around the inner binary, forming a hier-
archical triple conÐguration Foster,(Backer 1993 ; Backer,
& Sallmen Arzoumanian, & Taylor1993 ; Thorsett, 1993).
Such hierarchical triple systems are expected to be produc-
ed quite easily in dense globular clusters through dynamical
interactions between binaries. In a typical interaction, one
star would be ejected, leaving the other three in a stable
triple system McMillan, & Hut(Rasio, 1995 ; Sigurdsson

Previous calculations (performed using frequency1995).
derivatives up to the third order) have shown that the mass
of the second companion could be anywhere from D10~3
to D1 Recently, aM

_
(Michel 1994 ; Sigurdsson 1995).

measurement was made of the fourth derivative of the pulse
frequency, along with preliminary measurements of secular
changes of the inner binary parameters due to the pertur-
bation of the second companion et al.(Arzoumanian 1996).
These include a precession of the inner binary orbital plane
(measured as a change in the projected semimajor axis of
the binary) and possible changes in the eccentricity and
longitude of periastron.

3.1. Modeling the Frequency Derivatives
In this section, we apply the method described in to° 2.2

analyze the properties of the second companion in the PSR
B1620[26 triple system. Since the orbital period of the
second companion is much longer than that of the inner
binary (for all solutions obtained below), we treat the inner
binary as a single object. Keeping the same notation as
before, we let be the mass of the inner binarym1\ m

p
] m

cpulsar, with the mass of the neutron star and the massm
p

m
cof the (inner) companion, and we denote by the mass ofm2the second companion (to be determined). As in the° 2,

orbital parameters and refer to the orbit of(j2, u2, e2, a2, i2)the (second) companion with respect to the center of mass of
the system (here the entire triple). However, a subscript ““ 1 ÏÏ
for the orbital elements refers to the orbit of the inner
binary. The results presented in this section are all for m1\
1.7 (assuming and cf.M

_
m

p
\ 1.4 M

_
m

c
\ 0.3 M

_
;

et al. However, we have checked that theyThorsett 1993).
are not very sensitive to small changes in the value of Inm1.particular, the companion mass varies only asm2 Dm12@3(see eq. [4]).

We use the latest available values of the pulse frequency
derivatives & Thorsett for the epoch(Arzoumanian 1997)
MJD 48,725.0 :

f \ 90.2873320054(1) s~1 ,

f 5\ [5.4702(7)] 10~15 s~2 ,

f �\ 1.929(8)] 10~23 s~3 , (31)

f (3)\ 8(1)] 10~33 s~4 ,

f (4)\ [2.1(6)] 10~40 s~5 .

These values take into account a (very precise) Keplerian
model of the inner orbit. The corrections to due to properf 5
motion are negligible for this pulsar. The frequency deriv-
atives should therefore reÑect the residual motion of the
pulsar caused by the presence (unmodeled) of a second com-
panion. However, as discussed in the observed Ðrst° 2.1,
derivative can be a combination of the intrinsic spin-f 5obsdown of the pulsar and the acceleration due to the second
companion. Since is negative and is always negative,f 5obs f 5intcan in principle be either positive or negative. If it isf 5accnegative, then its magnitude must be If it is positive,¹o f 5obs o.its magnitude can in principle be larger. However, it cannot
be much larger than since this would imply a veryo f 5obs olarge intrinsic spin-down rate and a short characteristic age

which is not expected for a millisecond pulsarq\[12 f/f 5,
(cf. et al. and In practice, we Ðnd thatThorsett 1993 ° 2.1).
varying in the entire range [1.0 to ]1.0 does notf 5acc/f

5
obsa†ect our solutions signiÐcantly (see below). The expected

value of due to timing noise can be estimated using, e.g.,f �
Figure 1 of et al. which gives theArzoumanian (1994),
timing noise parameter as a function*84 log ( o f � o 1024/6f )
of period derivative. This yields an upper limit on the contri-
bution to due to intrinsic timing noise of 3 ] 10~24 s~3,f �
which is an order of magnitude smaller than Theo f �obs o.same conclusion is reached if we consider, for comparison,
PSR B1855]09, which has a comparable spin rate ( f\ 186
s~1) but a frequency second derivative o f �obs o¹ 2 ] 10~27
s~3 (3 p), i.e., at least 4 orders of magnitude smaller than f �obsin PSR B1620[26 et al.(Kaspi 1994).

illustrates our ““ standard solution,ÏÏ obtainedFigure 1
under the assumption that and using the currentf 5acc \ f 5obsbest-Ðt value for the fourth derivative, f

m
(4)\ [2.1

] 10~40 s~5. Following the method of we use as° 2.2, e2
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FIG. 1.ÈAllowed values of the semimajor axis mass eccentricitya2, m2,longitude at epoch and longitude of pericenter for the seconde2, j2, u2companion of PSR B1620[26, using the latest available values for all
pulse frequency derivatives. This is our ““ standard solution,ÏÏ using the
present best-Ðt value s~5 and assuming that all mea-f

m
(4)\ [2.1] 10~40

sured frequency derivatives are dynamically induced. Acceptable solutions
all have 2.4] 10~4 sinM

_
¹ m2 i2¹ 1.2] 10~2 M

_
.

the free parameter. We see that there are no solutions for
Hence a nearly circular orbit is ruled out. Fore2[ 0.1.

there are two solutions for each value of the0.1[ e2[ 0.3,
eccentricity and hence two possible values of m2.In the Ðrst branch of solutions, approaches zero as them2eccentricity approaches the value However, fore2B 0.33.
very small the second companion gets close enough tom2,the inner binary to make the triple conÐguration dynami-
cally unstable. The stability of the triple system can be
checked by using an approximate criterion of the form

(for stability), whereY ºYmin Y \ [(1 [ e2)(a1] a2)]/is the ratio of the outer pericenter[(a
p
] a

c
)(1 ] e1)]separation (from the center of mass of the inner binary to

the second companion) to the apastron separation of the
inner binary. Here we have used the results of &Eggleton
Kiseleva who give(1995),

YminB 1 ] 3.7
qout1@3 ] 2.2

1 ] qout1@3 ] 1.4
qin1@3

qout1@3[ 1
qout1@3] 1

. (32)

Here and are the inner and outerqin\m
p
/m

c
qout \m1/m2mass ratios. Using the values m

p
B 1.4 M

_
, m

c
B 0.3 M

_
,

and we obtain Thus we requirem2D 10~5 M
_

, YminB 2.
Y º 2 for a dynamically stable solution. This gives us a
lower limit on the second companionÏs mass of m2Z 3
] 10~5 In addition, we can rule out solu-M

_
B 10 M

^
.

tions with orbital periods yr since this would haveP2[ 14
been detected already in the timing residuals (S. E. Thorsett
1996, private communication). This gives us a somewhat
stricter lower limit of m2Z 2.4] 10~4 M

_
B 80 M

^
.

For the second branch of solutions, increases mono-m2tonically from D10~3 to 1.2] 10~2 (i.e., from JupiterM
_to brown dwarf masses) as increases from D0.1 to 1. Ase2approaches 1.0, the mass remains bound. So evene2 m2though the solutions with are a priori unlikely, theye2] 1

provide a strict upper limit, Since allm2¹ 1.2] 10~2 M
_

.
our solutions have our method in fact yields them2> m1,product sin (cf. which we show inm2 i2 ° 2.2), Figure 1.

The e†ect of varying in the range 0È1.0 is shownf 5acc/f
5
obsin We see that smaller values of yieldFigure 2. f 5acc/f

5
obsslightly solutions with smaller mass, but the overall mass

range is not signiÐcantly a†ected. In particular, we see
that stellar-mass solutions for are not allowed even ifm2the observed value of is assumed to be mostly intrinsic.f 5
Negative values of yield similar results.f 5acc / f 5obsWe see that our standard solution excludes the stellar
mass range for the second companion, and(m2Z 0.1 M

_
)

this is rather surprising. A stellar mass would provide a
natural explanation for the anomalously high eccentricity of
the inner binary in terms of secular pertur-(e1B 0.03)
bations In addition, a stellar mass would also(Rasio 1994).
be consistent with a preliminary identiÐcation of an optical
counterpart for the system et al. We have seen(Bailyn 1994).
already that assuming a di†erent value for does notf 5accchange our conclusions. Alternatively, we can try to vary
the value of f (4) within its fairly large error bar. However,
we Ðnd that varying f (4) within its formal 1 p error bar still
does not produce signiÐcant changes in In order tom2.
obtain stellar-mass solutions, we Ðnd that we must vary f (4)
within a larger 4 p error bar around the best-Ðt value f

m
(4)

given above. Note that this allows for a change of sign in the

FIG. 2.ÈOrbital period, mass, and eccentricity of the second compan-
ion of PSR B1620[26 for di†erent values of the acceleration-induced Ðrst
frequency derivative. The curves are for (solid line),f 5acc \ f 5obs f 5acc \ 0.1f 5obs(long-dashed line), and (short-dashed line). We assume that thef 5acc \ 0.01f 5obsinclination angle We see that the mass range does not changei2\ 90¡.
signiÐcantly when varying and that stellar masses are always excluded.f 5acc
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FIG. 3.ÈSimilar to but the dependence of the solutions on f (4) isFig. 2,
illustrated for an expanded 4 p error bar around the best-Ðt value f

m
(4)\

[2.1] 10~40 s~5. The solutions are shown for (solid line),f (4)\ f
m
(4)

p) (long-dashed line), p) (short-dashed line),f (4) \ f
m
(4) [ (1 f (4)\ f

m
(4)] (1

(dot-dashed line), and (dotted line), wheref (4) \ 0.1f
m
(4) f (4)\ 0.01f

m
(4)

p \ 0.6] 10~40 s~5. Stellar-mass solutions are obtained when [0.1[

f (4)/f
m
(4) [ 0.1.

actual value of f (4). The results are illustrated in Figure 3.
Here we assume that sin We Ðnd that stellar-massi2\ 1.
solutions (with are possible only ifm2Z 0.1 M

_
)

i.e., f (4) must be more than 3 p[0.1[ f (4)/ f
m
(4)[ 0.1 ;

away from its present best-Ðt value (assuming that
sin i2B 1).

3.2. Secular Perturbations of the Inner Binary
We can further constrain the system by considering

secular perturbations in the orbital elements of the inner
binary. Preliminary measurements have been made of the
perturbations in and et al.u1, e1, x1 (Arzoumanian 1996 ;

& Thorsett We use these measure-Arzoumanian 1997).
ments to further constrain the system by requiring that all
our solutions be consistent with these secular perturbations.

Since the period of the second companion is muchP2larger than the period of the inner binary, we can calculate
the secular perturbations by assuming that the second com-
panion has a Ðxed position in space with respect to the
inner binary. Let and be the Ðxed spherical polarr12, h2, /2coordinates of the second companion, with the origin at the
center of mass of the inner binary, measured from peri-/2center in the orbital plane, and such that sin forh2 h2\ 1
the coplanar case. Then the averaged perturbation rates are
given by

u5 1\ 3ng
P1

[sin2 h2 (5 cos2 /2[ 1) [ 1] , (33)

e5 1 \[15n
2P1

ge1 sin2 h2 sin 2/2 , (34)

i51\ 3n
2P1

g sin 2h2 cos (u1] /2) (35)

where s is the period of the(Rasio 1994), P1\ 16,540,653
inner binary, is the semi-g \ (m2/m1)[(ap ] a

c
)/r12]3, a

cmajor axis of the inner binary companion, and is thea
psemimajor axis of the pulsar (with respect to the center of

mass of the inner binary). The projected semimajor axis of
the pulsar is and thereforex

p
\ (1/c)a

p
sin i1,

x5
p
\ 1

c
a
p

cos i1 i51 . (36)

Note that there is no secular perturbation of the semimajor
axis (a5

p
\ 0).

The present measured values of the perturbations are

u5 1\ ([2.0^ 2.1)] 10~4 deg yr~1 , (37)

e5 1\ (5 ^ 3)] 10~15 s~1 , (38)

x5
p
\ ([6.5^ 0.8)] 10~13 (39)

& Thorsett Only is clearly detected,(Arzoumanian 1997). x5
pwhile the two others are at best marginal detections. Note

that proper motion can also lead to a change in the project-
ed semimajor axis of the pulsar. However, if the observedx

pwas due to proper motion, et al. Ðndx5
p

Arzoumanian (1996)
that the inner binary companion of the pulsar would then
have a mass with for a 1.35m

c
[ 1.0 M

_
, i1 \ 10¡ M

_pulsar, which seems very unlikely. Hence we assume here
that the observed is caused by the secular precession ofx5

pthe inner orbit induced by the presence of the second com-
panion.

To incorporate these measurements into our theoretical
model, we have performed Monte Carlo simulations with
the unknown variables in the system, namely, i1, i2, e2, h2,and The angles and can be determined by using/2. h2 /2 i1,and an additional undetermined angle a, whichi2, u2, j2,
(along with and describes the relative orientation ofi1 i2)the planes of the orbit of the inner binary and the orbit of
the second companion. For a detailed description of the
geometry, see the We assume a uniform prob-Appendix.
ability distribution for cos cos and a. Although therei1, i2,is no reason to expect the triple system to be in thermal
equilibrium with the cluster (since the lifetime of the triple
system in the core of M4 is only D107 yr ; see discussion in

we assume a thermal distribution for i.e., a linear° 3.3), e2,probability distribution Prob (see, e.g.,(e2) \ 2e2 Heggie
for lack of a better alternative. Our procedure for1975),

constructing random realizations of the system is as
follows : We start by assuming a value of and solving thee2nonlinear system numerically for and asm2, a2, j2, u2described in Using this solution, we calculate g \° 3.1.

Then, for each trial, we generate(m2/m1)[(ap
] a

c
)/r12]3.random values for and a and calculate and asi1, i2, h2 /2described in the We choose the number of trialsAppendix.

for each assumed value of so as to obtain a linear dis-e2tribution for over all the trials. We then calculate thee2secular perturbation rates using equations and we(33)È(36),
check for consistency with the observed values of the per-
turbations. We use a simple rejection algorithm, accepting



954 JOSHI & RASIO Vol. 479

or rejecting a trial conÐguration based on a three-
dimensional Gaussian probability distribution that is the
product of Gaussian distributions for and cen-u5 1, e5 1, x5

ptered around their mean values and with standard devi-
ations equal to the error bars given above.

In Figures and we show histograms of the number of4 5,
successful trials for di†erent values of and the corre-m2sponding distance of the second companion from ther12inner binary, for both (standard solutions) andf (4)\ f

m
(4)

(required to obtain stellar-mass solutions).f (4)\ 0.01f
m
(4)

For our standard solutions, we Ðnd that the mass distribu-
tion for the second companion peaks at m2\ 0.01 ^ 0.005

corresponding to a distance of AU. NoteM
_

, r12 \ 38 ^ 6
that this is the distance of the second companion from the
binary (not the semimajor axis of the second companion).

Here the errors represent 80% conÐdence intervals. The
semimajor axis and period are not well constraineda2 P2and vary over 3 orders of magnitude. The period variesP2from about 102 to 104 yr with the distribution centered
around 400 yr, and varies from about 10 to 1000 AUa2with the distribution centered around 70 AU. In the second
case, the distribution peaks at corre-m2\ 1.0^ 0.5 M

_
,

sponding to a distance of AU. The periodr12\ 150 ^ 35
varies from about 103 to 105 yr with the distributionP2centered around 3000 yr, and varies from about 102 toa2104 AU with the distribution centered around 200 AU. We

obtain peaks in the stellar mass range for only whenm2In all cases, we Ðnd that the orienta-[0.1[ f (4)/f
m
(4) [ 0.1.

tion of the second companion with respect to the inner
binary (angles and is poorly constrained by theh2 /2)

FIG. 4.ÈHistogram of the number of successful trials (N) for di†erent
values of and the corresponding distance of the second companionm2 r12from the inner binary for the case in our Monte Carlo simula-f (4) \ f

m
(4)

tions. We Ðnd that the most probable value for the second companionÏs
mass is corresponding to a distance ofm2\ 0.01^ 0.005 M

_
, r12\ 38

^ 6 AU (80% conÐdence intervals).

FIG. 5.ÈSame as but for the case We see that theFig. 4, f (4) \ 0.01f
m
(4).

most probable value for the second companionÏs mass is now m2\ 1.0
^ 0.5 corresponding to a distance of AU.M

_
, r12\ 150 ^ 35

current data, as is the inclination of the second compan-i2ion. The inclination of the binary is better constrained, to
D55¡ ^ 15¡ (cf. The eccentricity of the second com-Fig. 6).
panion, is also poorly constrained.e2,

3.3. Model Predictions
We can obtain a predicted value of the Ðfth pulse fre-

quency derivative f (5) at the current epoch for each of our
solutions by di†erentiating for a speciÐed valueequation (9)
of In we show the most probable values for f (5)e2. Figure 7,
from the Monte Carlo simulations of For° 3.2. f (4)\ f

m
(4)

(standard solution), we Ðnd that the most probable value
is f (5)\ (0.15^ 0.05)] 10~48 s~6 whereas, for f (4)\

(which yields stellar-mass solutions), f (5)\0.01f
m
(4)

([6.0^ 0.4)] 10~51 s~6. Thus even a crude measurement
of f (5) should completely settle the question of the second
companionÏs mass.

We have also calculated the predicted evolution of the
frequency derivatives through f (4) for the next 20 years.f 5
We show the results for the typical orbit of a Jupiter- to
brown dwarfÈsized companion in(m2\ 0.01 M

_
) Figure 8

and for a stellar-mass companion in(m2\ 0.5 M
_
) Figure

In the Ðrst case, the orbit has a period9. e2\ 0.77, P2\
1562 yr, and AU. We see that changes sign ina2\ 160 f 5
about 10 years and that f (3) decreases surprisingly rapidly,
changing sign in about 1.5 years. For the stellar-mass case,
only changes sign within 10 years. The other frequencyf 5
derivatives do not change signiÐcantly over 20 years. The
orbit in this case has a period yr, ande2\ 0.49, P2\ 2034

AU. Thus a change in sign of f (3) within the nexta2\ 161
couple of years would provide additional support for the
existence of a planet or brown dwarf in this system.
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FIG. 6.ÈHistograms of the number of successful trials (N) for various
parameters in the Monte Carlo simulations with All the anglesf (4) \ f

m
(4).

are poorly constrained except the inclination of the inner binary, which is
slightly better constrained to i1D 55¡ ^ 15¡.

FIG. 7.ÈMost probable value of the Ðfth frequency derivative f (5) given
by the Monte Carlo simulations. We obtain f (5)B 0.15(5)] 10~48 s~6 for

(bottom) and f (5)B [0.0060(4)] 10~48 s~6 forf (4) \ f
m
(4) f (4) \ 0.01f

m
(4)

(top).

FIG. 8.ÈPredicted variation of the frequency derivatives over the next
20 yr for a low-mass second companion (standard(m2\ 0.01 M

_
)

solution). The units for the four derivatives are 10~15 s~2 for 10~23 s~3f 5,
for 10~33 s~4 for f (3), and 10~40 s~5 for f (4). We see that changes sign inf �, f 5
D10 yr, and f (3) changes sign in D1.5 yr.

We also Ðnd that, in all cases, the values of f (3), and f (4)f �,
at apastron are at least 2, 3, and 5 orders of magnitude
smaller, respectively, than their present observed values.
This means that the triple nature of the system would prob-
ably remain undetectable near apastron. It is therefore rea-
sonable to Ðnd the second companion relatively close to
periastron in our solutions (within D15¡ for the case illus-
trated in and D40¡ for the case considered inFig. 8 Fig. 9).

3.4. Discussion
As mentioned previously, the method for determining the

orbital parameters of a binary pulsar presented in ° 2,
although quite general in its formulation, can only be
applied successfully to systems containing fast millisecond
pulsars, in which the dynamically induced frequency deriv-
atives dominate the measurements. In addition, it requires
several successively higher order frequency derivatives to be
measured accurately. The PSR B1620[26 triple system
satisÐes all of these conditions and hence is ideally suited for
analysis using our method. PSR B1620[26 has been
observed for more than 7 years, and its hierarchical triple
structure is strongly supported by all current observations

et al. et al. &(Backer 1993 ; Thorsett 1993 ; Arzoumanian
Thorsett The error bar on f (4) is likely to shrink1997).
rapidly as more timing data become available. If the actual
value of f (4) is close to the current best-Ðt value f

m
(4)\ [2.1

] 10~40 s~5, then the second companion must have a mass
as long as the system has an inclinationm2¹ 0.1 M

_
i2º7¡, with the most probable mass (given by our Monte Carlo

simulations) being 0.01 ^ 0.005 (the error bar indicatesM
_an 80% conÐdence interval). If f (4) is within 1 p of thenf

m
(4),

the same result holds to within a factor of 2. A rather low
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FIG. 9.ÈPredicted variation of the frequency derivatives over the next
20 yr for a stellar-mass second companion (assuming f (4)\(m2\ 0.5 M

_
)

The units for the four derivatives are 10~15 s~2 for 10~23 s~30.01f
m
(4)). f 5,

for 10~33 s~4 for f (3), and 10~42 s~5 for f (4). We see that changes sign inf �, f 5
D10 yr, but the other derivatives do not change much in 20 yr.

inclination angle or (i.e., f (4)(i2¹ 10¡) o f (4)/ f
m
(4) o¹ 0.1

more than 3 p away from would be required if thef
m
(4))

second companion was a main-sequence star with m2º

0.1 M
_

.
Instead, our results clearly suggest that the second com-

panion is a D0.01 brown dwarf or giant planet. This isM
_surprising since low-mass objects are not expected to be

found in the cores of globular clusters. The reason is that
low-mass objects have higher velocities in energy equi-
partition and are preferentially ejected from globular clus-
ters as they evaporate in the tidal Ðeld of the Galaxy. Hence
we do not expect to Ðnd very low mass stars or brown
dwarfs in globular clusters, especially not near their cores.
Recent Hubble Space Telescope (HST ) observations of
globular clusters (e.g., De Marchi, & RomanielloParesce,

also support this view by Ðnding that stellar mass1995)
functions in clusters Ñatten or even drop for masses below
D0.1 In addition, if the second companion of PSRM

_
.

B1620[26 is indeed of low mass, then the unusually high
eccentricity of the inner binary pulsar cannot be explained
by secular perturbations due to the second companion,
since that would require a stellar-mass second companion

It would also preclude any possibility of an(Rasio 1994).
optical identiÐcation of the triple system. et al.Bailyn (1994)
have searched deep optical images of M4 for an optical
counterpart of the pulsar. They have identiÐed a candidate
that, if interpreted as a single object, could be a 0.45 M

_main-sequence star within of the nominal pulsar posi-0A.3
tion. However, it is possible that this object is in fact a blend
of fainter stars not associated with the pulsar, or simply a
chance superposition. Future observations of the region

with HST , as well as improved ground-based astrometry,
should help resolve the issue.

Low-mass stars and brown dwarfs could exist in dense
globular cluster cores as binary companions to more
massive stars. Dynamical interactions could then lead to an
exchange, leaving the low-mass object in orbit around a
neutron star. Indeed, had discussed theSigurdsson (1992)
possibility of Ðnding planetary companions to pulsars in
globular clusters even before the triple nature of PSR
B1620[26 was established. A possible formation scenario
for the triple system starts with an interaction between a
neutron starÈwhite dwarf binary and a main-sequence star
with a large Jupiter-type planet or brown dwarf companion
(cf. Sigurdsson As a result of this interaction,1993, 1995).
the white dwarf is ejected while the main-sequence star and
its planet or brown dwarf companion remain in orbit
around the neutron star. The main-sequence star, as it
evolves and later expands as a red giant, would then trans-
fer mass onto the neutron star, thus spinning it up and
forming the millisecond pulsar in the triple conÐguration
we see today. However, tidal dissipation during the mass
transfer phase would e†ectively circularize the orbit of the
binary, leaving a residual eccentricity e1 [ 10~4 (Phinney

Therefore this formation scenario leaves the much1992).
higher observed eccentricity of the inner binary(e1B 0.03)
unexplained. It has been suggested that the eccentricity of
the inner binary may have been induced during a dynamical
interaction with another cluster star. The probability of dis-
rupting the triple during such an interaction is only D0.5

Based on the results of & Heggie(Sigurdsson 1995). Rasio
however, we Ðnd that the observed eccentricity(1995),

would require an encounter with a distance of closest
approach of D2.5 AU, considerably smaller than the size of
the outer orbit and occurring on average once in D4 ] 108
yr. For comparison, the lifetime of the triple system in
the cluster is only about qD (108 yr)o4~1p5[a2/(10
AU)]~1D 2 ] 107 yr, where pc~3 is theo \ 104o4 M

_density near the center of M4, km s~1 is the veloc-p \ 5p5ity dispersion, and is the size of the outer orbita2 (Rasio
For one interaction that could have produced the1994).

eccentricity of the inner binary, we therefore expect D20
interactions that could have disrupted the triple, each with
probability D0.5, leaving the probability of survival at
D10~6. An additional problem is that the age of the milli-
second pulsar in this scenario must be comparable to the
age of the triple (D107 yr), which requires the millisecond
pulsar to be extremely young. This problem could be
avoided if the triple was instead formed during an inter-
action involving a preexisting binary millisecond pulsar and
another primordial binary (containing the present second
companion and another star that was ejected during the
interaction ; see et al. The current eccentricityRasio 1995).
of the (inner) binary pulsar could then have been induced
during the same interaction that formed the triple, although
this would require some Ðne-tuning. More signiÐcantly, one
would expect the more massive member of the other binary,
rather than the low-mass object (Jupiter or brown dwarf), to
be preferentially retained in the triple while the other was
ejected.

Naturally, if the low-mass object (Jupiter or brown
dwarf ) was attached to a much more massive star, it is
easier to understand how it was retained by the cluster and
why it is now found close to the cluster core. In particular,
in the Ðrst formation scenario discussed above, the main-
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sequence star must have been fairly massive (mD 1 toM
_
)

have evolved into a red giant after the triple was formed.
Two-body relaxation in the cluster will tend to bring this
main-sequence star (with its attached low-mass companion)
down to the cluster core since it is more massive than the
average object in the cluster. ConÐrmation of the existence
of a D0.01 object in PSR B1620[26 would thereforeM

_provide further indication that many stars, even in globular
clusters, could have very low mass companions or planets.
This is especially important in light of recent discoveries of
several D10~3 to D10~2 objects around nearby starsM

_(e.g., & Queloz & MarcyMayor 1995 ; Butler 1996 ; Marcy
& Butler 1996).

4. APPLICATION TO THE PSR B1257]12
PLANETARY SYSTEM

We now turn to the application of our method to the
planetary system around the millisecond pulsar PSR
B1257]12. This system contains three conÐrmed Earth-
mass planets in quasi-circular orbits & Frail(Wolszczan

The planets have masses of 0.015/1992 ; Wolszczan 1994).
sin 3.4/sin and 2.8/sin wherei1 M

^
, i2 M

^
, i3 M

^
, i1, i2,and are the inclinations of the orbits with respect to thei3line of sight, and are at distances of 0.19, 0.36, and 0.47 AU,

respectively, from the pulsar. In addition, the unusually
large second and third frequency derivatives of the pulsar
suggest the existence of a fourth, more distant and massive
planet in the system (Wolszczan 1996).

4.1. Analysis of the Frequency-Derivative Data
The residual pulse frequency derivatives for PSR

B1257]12 (after subtraction of a model for the inner
three planets) are s~2,f 5\[8.6 ] 10~16 f �\ ([1.25 ^
0.05)] 10~25 s~3, and f (3)\ (1.1^ 0.3)] 10~33 s~4

while the frequency f \ 160.8 s~1. The(Wolszczan 1996)
value of has been corrected for the apparent accelerationf 5
due to the pulsarÏs transverse velocity (the so-called Shlov-
skii e†ect ; see et al. The errors on f and forCamilo 1994). f 5,
the purposes of this discussion, are negligible. Note that the
measurement of f (3) is only preliminary, but we assume here
that the value quoted above (from isWolszczan 1996)
correct. Comparison with PSR B1855]09, which has a
very similar pulse frequency, f \ 186 s~1, and Ðrst fre-
quency derivative s~2 et al.f 5\[6.2 ] 10~16 (Kaspi 1994),
indicates that the observed for PSR B1257]12 could wellf 5
be entirely (or in large part) intrinsic rather than acceler-
ation induced. The timing age for the pulsar, q\ [12 f/f 5D 3
] 109 yr, is entirely consistent with that expected for a
millisecond pulsar. Therefore we will treat essentially asf 5acca free parameter in our analysis. The observed on thef �,
other hand, is 2 orders of magnitude larger than for PSR
B1855]09, which has s~2. Thus thef �¹ 2.0 ] 10~27
observed is almost certainly due to the presence off �
another planet rather than to intrinsic timing noise in the
pulsar.

With three frequency derivatives measured, we can use
the method of to model the system. Given the nearly° 2.3
circular orbits of the three inner planets, it is natural to
assume that the orbit of the fourth planet also has a low
eccentricity. In addition, it is easy to show that dynamical
interactions with passing stars in the Galaxy are not likely
to produce any signiÐcant perturbations of the system
(which could otherwise increase the eccentricity of an outer
planetÏs orbit ; see & RasioHeggie 1996).

Since the value of is uncertain, we explore a widef 5accrange, Note that, for a circular orbit,0.01\ f 5acc/f
5
obs\ 1. f 5accand f (3) must have opposite signs (cf. eqs. and[19] [21]).

Hence cannot be positive. For each value of wef 5acc f 5acc,calculate the mass and semimajor axis of the fourth planet
by using equations and We illustrate the(25), (28), (30).
results in We Ðnd that the mass of the fourthFigure 10.
planet varies signiÐcantly, from D0.08 (forM

^
f 5acc \

to D100 (for The simplest interpre-0.01f 5obs) M
^

f 5acc \ f 5obs).tation of the present best-Ðt values of the frequency deriv-
atives, assuming implies a mass of about 100/f 5acc \ f 5obs,sin (i.e., comparable to SaturnÏs mass) for the fourthi4 M

^planet, at a distance of about 38 AU (i.e., comparable to
PlutoÏs distance from the Sun), and with a period of about
170 yr in a circular, coplanar orbit (Wolszczan 1996).
However, if then the fourth planet can have af 5acc D f 5obs,wide range of masses. In particular, it can have a mass
comparable to that of Mars (at a distance of 9 AU), Uranus
(at a distance of 25 AU), or Neptune (at a distance of 26
AU), for or respectively.f 5acc \ 0.015f 5obs, 0.30f 5obs, 0.34f 5obs,

4.2. Discussion
In this system, the perturbations of the inner planets pro-

duced by the fourth planet are probably far too small to be
detected. This is in contrast to the mutual perturbations of
the inner planets themselves, which are important and have
been detected et al. Using(Rasio 1992 ; Wolszczan 1994).
equations we predict s~1 and(33)È(36), e5 D 10~17 u5 D 10~7

FIG. 10.ÈMass and semimajor axis of the possible outer planet in the
PSR B1257]12 planetary system for in the range Thef 5acc (0.01È1.0) f 5obs.present best-Ðt values of the frequency derivatives with imply thef 5acc \ f 5obspresence of a planet with mass B100/sin at a distance of B38 AU.i4 M

^
,

The marked points on the curve indicate the values of The pointsf 5acc/f
5
obs.labeled M, U, and N indicate conÐgurations with the same mass and

radius ratios (in this system) as those of Mars, Uranus, and Neptune (in the
solar system), respectively.
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deg yr~1 for the orbit of the third planet, assuming that all
orbits are coplanar and that the mass of the fourth planet is
100 The perturbations for the two innermost planetsM

^
.

are even smaller. Hence the existence of the fourth planet is
likely to be conÐrmed only through further measurements
of pulse frequency derivatives.

It has been pointed out that the masses and radii of the
three inner planets in PSR B1257]12 are in the same ratios
as the masses and radii of the corresponding Ðrst three
planets in the solar system & Goldman This(Mazeh 1995).
might perhaps be indicative of a global underlying forma-
tion mechanism for the two systems.

Although the fourth planet could have the same mass
(normalized to the mass of the third planet) as Mars,
Uranus, or Neptune (normalized to the mass of the Earth),

the ratio of radii in each case would be much larger than the
corresponding ratio for the solar system (cf. ThusFig. 10).
this system does not seem to maintain its regularity with the
solar system, since the mass and radius ratios of the fourth
planet would not simultaneously match those of any planet
in the solar system. This is true for the entire range of values
of considered above.f 5acc
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thank C. Bailyn and S. Sigurdsson for helpful comments.
F. A. R. is supported by an Alfred P. Sloan Research
Fellowship.

APPENDIX

GEOMETRY OF THE TRIPLE CONFIGURATION

The orbit of the inner binary and the orbit of the second companion in general do not lie in the same plane. The inclinations
of the two planes with respect to the line of sight are given by and To specify the plane of an orbit completely, one needsi1 i2.the inclination angle together with another azimuthal angle a (which lies between 0 and 2n). Since the reference axis for a is
arbitrary, we can take it to lie in the plane of one of the orbits, so that a is the di†erence between the azimuthal angles of the
two planes. In random Monte Carlo trials, a is then taken to be uniformly distributed between 0 and 2n.

In order to determine and using the other angles, we need to change coordinates between two reference frames. Theh2 /2Ðrst frame has its origin at the center of mass of the inner binary, with the x-axis in the plane of the orbit of the second
companion, the y-axis passing through the pericenter of the orbit, and the z-axis perpendicular to the plane of the orbit, so
that the motion of second companion is counterclockwise around the z-axis. We shall refer to the coordinates of the second
companion in this frame as Then and(x

c
@ , y

c
@ , z

c
@ ). x

c
@ \ [r12 sin j2, y

c
@ \ r12 cos j2, z

c
@ \ 0.

The second frame similarly has its origin at the center of mass of the inner binary, with the x-axis in the plane of the orbit of
the inner binary, the y-axis passing through the pericenter of the orbit, and the z-axis perpendicular to the plane of the orbit,
so that the motion of pulsar is counterclockwise around the z-axis. We wish to Ðnd the coordinates of the second(x

c
A, y

c
A, z

c
A)

companion in this frame. We can then calculate and using the formulae andh2 /2 h2\ cos~1 (z
c
A/r12) /2\ tan~1 ([x

c
A/y

c
A),

keeping in mind that for we must add 180¡ to in order to obtain the correct quadrant.y
c
A\ 0 /2In order to obtain from we rotate the Ðrst frame to the second frame, using the standard Euler angles(x

c
A, y

c
A, z

c
A) (x

c
@ , y

c
@ , z

c
@ ),

formalism (see, e.g., In this formalism, any arbitrary rotation of an object is represented as a sequence of threeGoldstein 1980).
consecutive rotationsÈÐrst about the z-axis by an angle /, then about the new x-axis by an angle h, and Ðnally again about
the new z-axis by an angle t.

In order to use this formalism, we use an intermediate frame of reference that is Ðxed in space, with its origin at the center of
mass of the inner binary, the y-axis along the line of sight, the x-axis in the plane of the orbit of the second companion, and the
z-axis such that the motion of the second companion is counterclockwise about the z-axis. The Ðrst frame described above can
be obtained from this Ðxed frame by rotating it through the Euler angles 0, and respectively. Similarly, thei2, u2 [ 90¡,
second frame can be obtained from the Ðxed frame by rotating it through the angle a about the y-axis and then rotating
it through the Euler angles 0, and respectively. The sequence of Euler angle rotations is represented as ai1, u1[ 90¡,
matrix A(/, h, t). We obtain the coordinates from by multiplying Ðrst by the inverse matrix(x

c
A, y

c
A, z

c
A) (x

c
@ , y

c
@ , z

c
@ )

A~1(0, then multiplying by the matrix for rotation about the y-axis B(a), and then multiplying by thei2, u2[ 90¡),
matrix A(0, The matrices are given byi1, u1[ 90¡).

A(/, h, t) \
1 cos t cos /[ cos h sin / sin t

[ sin t cos /[ cos h sin / cos t
sin h sin /

cos t sin /] cos h cos / sin t
[sin t sin /] cos h cos / cos t

[sin h cos /

sin t sin h
cos t sin h

cos h

2
,

B(a)\
1cos a

0
sin a

0
1
0

[sin a
0

cos a

2
,
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ERRATUM

In the paper ““ Distant Companions and Planets around Millisecond Pulsars ÏÏ by Kriten J. Joshi and Frederic A. Rasio
(ApJ, 479, 948 [1997]), the following corrections should be made :

In equations (16), (17), and (18), the factor sin in the denominator should be changed to sin and the expressionj1 (j1] u1),in equation (18) should have a negative sign. The revised equations are as follows :

h \ [
C f 5cA2

f sin i2 sin (j1] u1)j
5
12
D

, (16)

k \ [
C f 5c

f sin i2 sin (j1] u1)
D3AA2

j5 14
B

, (17)

m2 sin i2B
[f 5c

f sin (j1] u1)
Am12A2

Gj5 14
B1@3

. (18)

These corrections are only typographical in nature, and none of the results or conclusions of the paper are a†ected.
In addition, in equation (32) the sign of the third term should be changed to negative. This typographical(2.2/(1 ] q

out
1@3))

error is also in the original reference (Eggleton & Kiseleva 1995) from which the equation was taken. This does not a†ect the
ultimate lower bound for the mass since a stronger constraint is imposed by the lack of any observed periodicity in them2timing residuals.
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