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Abstract

Coalescing binary neutron stars are important sources of gravitational waves that should become
detectable with the laser interferometers now being built as part of LIGO, VIRGO and GEO.
Post-Newtonian (PN) approximation methods have been used to calculate waveform templates
in the low-frequency, slow-inspiral phase of the binary evolution. These theoretical templates
can be used to extract parameters such as the neutron star (NS) masses and spins. In the slow-
inspiral phase the two stars are still well separated and can be treated essentially as point masses.
Near the end of the coalescence, however, hydrodynamic effects and the interior structure of the
stars play an increasingly important role. Hydrodynamics becomes dominant when the two stars
finally merge together into a single object. The shape of the corresponding burst of gravitational
waves provides a direct probe into the interior structure of a NS and the nuclear equation of state
(EOS). The interpretation of the gravitational waveform data will require detailed theoretical
models of the complicated 3D hydrodynamic processes involved. This review summarizes recent
work on the hydrodynamic aspects of NS binary coalescence. Newtonian and, more recently,
relativistic calculations have been performed. The methods include both approximate quasi-
analytic techniques and large-scale numerical hydrodynamics calculations on supercomputers.
Also included here is a brief discussion of coalescing white dwarf (WD) binaries, which are
important sources of very low-frequency gravitational waves, potentially detectable by LISA.

1 Introduction

The coalescence and merging of two stars into a single object is the almost inevitable end-
point of compact binary evolution. Dissipation mechanisms such as friction in common
envelopes and the emission of gravitational radiation are always present and cause the
binary orbit to decay. The terminal stage of this orbital decay is generally hydrodynamic
in nature, with the final merging of the two stars taking place on a time scale compa-
rable to the orbital period. In addition to the angular momentum loss to gravitational
radiation, global hydrodynamic instabilities can drive the binary system to rapid coales-
cence once the tidal interaction between the two stars becomes sufficiently strong (Rasio
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and Shapiro 1992-1997, Lai et al. 1993a.b, 1994a,b,c, Lai and Shapiro 1995, New and
Tohline 1997). The existence of these global instabilities for binary systems containing a
compressible fluid was demonstrated for the first time in Rasio and Shapiro (1992) using
numerical hydrodynamic calculations. In addition, the classical analytic work for binaries
containing an incompressible Auid (Chandrasekhar 1969) was extended Lo compressible
fluids in the work of Lai et al. This new analytic study confirmed the existence of dynam-
ical and secular instabilities for sufficiently close binary systems containing polytropes.
Although the simplified analytic studies have given us much physical insight into difficult
questions of global Auid instabilities, fully numerical calculations remain essential for es-
tablishing the stability limits of close binaries accurately and for following the nonlinear
evolution of unstable systems all the way to complete coalescence. Given the absence
of any underlying symmetry in the problem, these calculations must be done in 3D and
therefore require supercomputers. A number of different groups have now performed such
calculations, using a variety of numerical methods and focusing on different aspects of the
problem. Nakamura and collaborators [see Nakamura (1994) and references therein were
the first to perform 3D hydrodynamic calculations of binary NS coalescence, using a tradi-
tional Eulerian finite-difference code. Rasio and Shapiro have been using the Lagrangian
method SPH (Smoothed Particle Hydrodynamics) and have focused on determining the
stability properties of initial binary models in strict hydrostatic equilibrium and calculat-
ing the emission of gravitational waves from the coalescence of unstable binaries. Many
of the results of Rasio and Shapiro have now been independently confirmed in the work
of New and Tohline (1997), who used completely different numerical methods but also
focused on stability questions. Zhuge et al. (1894) have also used SPH and studied the
dependence of the gravitational waveforms on the initial NS spins. Davies et al. (1994)
and Ruffert et al. (1996, 1997) have incorporated a treatment of the nuclear physics
in their hydrodynamic calculations (done using SPH and PPM codes, respectively) but
discussed their results primarily in the context of gamma-ray burst models.

For compact binaries, relativistic effects combine nonlinearly with Newtonian tidal ef-
fects so that close binary configurations can become dynamically unstable earlier during
the spiral-in phase (i.e., at larger binary separation and lower orbital frequency) than
predicted by Newtonian hydrodynamics alone. The combined effects of relativity and
hydrodynamics on the stability of close compact binaries have only very recently begun
to be studied. Preliminary results have been obtained using hoth analytic approxima-
tions |basically, PN generalizations of Lai et al.; see Lai (1996), Taniguchi and Nakamura
(1996), Lai and Wiseman (1997), Lombardi et al. (1997)] as well as numerical hydro-
dynamics calculations in 3D incorporating simplified treatments of relativistic effects
(Wilson and Mathews 1995, Shibata 1996, Baumgarte et al. 1997, Mathews and Wilson
1997). A NASA Grand Challenge project is under way (E. Seidel in this volume) that
will ultimately attempt a fully relativistic calculation of the final coalescence, combining
the techniques of numerical relativity and numerical hydrodynamics in 3D.

This review will concentrate on the coalescence of compact binaries, containing either
two NS (§2) or two WD (§3). Although relativity plays a less important role during
the final merging of two WD, the very low-frequency gravitational waves emitted during
the inspiral could be easily detected by space-based laser interferometers such as those
planned for the LISA project (see the article by K. Danzmann in this volume). Many of
the results obtained for WD binaries are also relevant to low-mass main-sequence stars
in contact binaries and the important related problem of blue straggler formation in star
clusters (Rasio and Shapiro 1995, Rasio 1995, Lombardi et al. 1996).
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2 Coalescing Neutron Star Binaries

2.1  Astrophysical Motivation

Coalescing compact binaries are the most promising known sources of gravitational radi-
ation that could be detected by the new generation of laser interferometers: the Caltech-
MIT LIGO (Abramovici et al. 1992, Cutler et al. 1993) and the European projects VIRGO
(Bradaschia et al. 1990) and GEO (Danzmann, this volume). In addition to providing a
major new confirmation of Einstein’s theory of general relativity, including the first direct
proof of the existence of black holes (Flanagan and Hughes 1997, Lipunov et al. 1997),
the detection of gravitational waves from coalescing binaries at cosmological distances
could provide accurate measurements of the Hubble constant and mean density of the
Universe (Schutz 1986, Chernoff and Finn 1993, Markovié¢ 1993). For recent reviews on
the detection and sources of gravitational radiation, see Thorne (1995, 1996).

Expected rates of binary coalescence in the Universe, as well as expected event rates in
forthcoming laser interferometers, have now been calculated by many groups. Although
there is some disparity between various published results, the estimated rates are gener-
ally encouraging. Statistical arguments based on the observed local population of binary
radio pulsars with probable NS companions lead to an estimate of the rate of NS hinary
coalescence in the Universe of order 107 yr~' Mpc ? (Narayan et al. 1991, Phinney
1991). Using this estimate, Finn and Chernoff (1993) predict that an advanced LIGO
detector could observe as many as 70 events per year. These numbers are based on a
Galactic merger tate R ~ 10 % yr~! derived from radio pulsar surveys. More recently,
however, van den Heuvel and Lorimer (1996) revised this number to B ~ 0.8 x 10 % yr !,
using the latest galactic pulsar population model of Curran and Lorimer (1995). This
value is consistent with the upper limit of 107° yr~! for the Galactic binary NS birth
rate derived by Bailes (1996) on the basis of very general statistical considerations about
pulsars. In addition, theoretical models of the binary star population in our Galaxy also
suggest that the NS binary coalescence rate may be as high as = 10" ¢ yr~! Mpc ? [Tu-
tukov and Yungelson (1993), see also the more recent studies by Portegies Zwart and
Spreeuw (1996) and Lipunov et al. (1997)].

Most recent calculations of the gravitational radiation waveforms from coalescing binaries
have focused on the signal emitted during the last few thousand orbits, as the frequency
sweeps upward from about 10 Hz to 1000 Hz. The waveforms in this regime can be cal-
culated fairly accurately by performing high-order PN expansions of the equations of
motion for two point masses (Lincoln and Will 1990, Junker and Schéfer 1992, Kidder
et al. 1992, Wiseman 1993, Will 1994, Blanchet et al. 1996). High accuracy is essential
here because the observed signals will be matched against theoretical templates. Since
the templates must cover = 10° orbits, a phase error as small as ~ 1073 can prevent
detection (Cutler et al. 1993, Cutler and Flanagan 1994, Finn and Chernoff 1993).
Near the end of the inspiral, when the binary separation becomes comparable to the
stellar radii, hydrodynamic effects become important and the character of the waveforms
will change. Special purpose narrow-band detectors that can sweep up frequency in real
time will be used to try to catch the corresponding final few cycles of gravitational waves
(Meers 1988, Strain and Meers 1991, Danzmann, this volume). In this terminal phase of
the coalescence, the waveforms contain information not just about the effects of general
relativity, but also about the internal structure of the stars and the nuclear EQOS at high
density. Extracting this information from observed waveforms, however, requires detailed
theoretical knowledge about all relevant hydrodynamic processes.
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Many models of gamma-ray bursts at cosmological distances are also based on coalescing
NS-NS systems (Paczyiski 1986, Eichler et al. 1989, Narayan et al. 1992, Mészsros,
this volume). The isotropic angular distribution of the bursts detected by the BATSE
experiment on the Compton GRO satellite (Meegan et al. 1992) strongly suggests a
cosmological origin, and the rate of gamma-tay bursts detected by BATSE, of order
one per day, is in rough agreement with theoretical predictions for the rate of NS binary
coalescence in the Universe (cf. above). However, the complete hydrodynamic and nuclear
evolution during final merging, especially in the outermost, low-density regions of the
merger, must be understood in details before realistic models can be constructed for
the gamma-ray emission. Numerical calculations of binary coalescence including some
treatment of the nuclear physics have been performed by Davies et al. (1994) and Ruffert
et al. (1996, 1997). The most recent results from these calculations indicate that, even
under the most favorable conditions, the energy provided by v# annihilation is too small
by at least an order of magnitude, and more probably two or three orders of magnitude,
to power typical gamma-ray bursts at cosmological distances (Janka and Ruffert 1996).

2.2 Hydrodynamic Instabilities

Hydrostatic equilibrium configurations for binary systems with sufficiently close com-
ponents can become dynamically unstable (Chandrasekhar 1975, Tassoul 1975). The
physical nature of this instability is common to all binary interaction potentials that
are sufficiently steeper than 1/r [see, e.g., Goldstein (1980), §3.6]. It is analogous to
the familiar instability of circular orbits sufficiently close to a black hole (BH) (Shapiro
and Teukolsky 1983, §12.4). Here, however, it is the tidal interaction that is responsible
for the steepening of the effective interaction potential between the two stars and for
the destabilization of the circular orbit (Lai et al. 1994a). The tidal interaction exists
of course already in Newtonian gravity and the instability is therefore present even in
the absence of relativistic effects. For sufficiently compact binaries, however, the com-
bined effects of relativity and hydrodynamics lead to an even stronger tendency toward
dynamical instability (see below).

The stability properties depend sensitively on the NS EOS. Close binaries containing NS
with stiff EOS (adiabatic exponent I' = 2) are particularly susceptible to the dynamical
instability. This is because tidal effects are stronger for stars containing a less compressible
fluid. As the dynamical stability limit is approached, the secular orbital decay driven by
gravitational wave emission can be dramatically accelerated (Lai et al. 1993b, 1994a). The
two stars then plunge rapidly toward each other, and merge together into a single object
in just a few rotation periods. This dynamical instability was first identified in Rasio
and Shapiro (1992), where the evolution of Newtonian binary equilibrium configurations
was calculated for two identical polytropes with T' = 2. Tt was found that when r < 3R
(r is the binary separation and R the radius of an unperturbed NS), the orbit becomes
unstable to radial perturbations and the two stars undergo rapid coalescence. For r 2 3R,
the system could be evolved dynamically for many orbital periods without showing any
sign of orbital evolution (in the absence of dissipation). Many of the results derived in
Rasio and Shapiro and Lai et al. concerning the stability properties of NS binaries have
been confirmed recently in completely independent work by New and Tohline (1997),
using very different numerical methods (a combination of a 3-D self-consistent field code
for constructing equilibrium configurations and a finite-difference code for following the
dynamical evolution of the hinaries).
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The dynamical evolution of an unstable, initially synchronized (i.e., rigidly rotating)
binary can be described typically as follows (Rasio and Shapiro 1992, 1994). During the
initial, linear stage of the instability, the two stars approach each other and come into
contact after about one orbital revolution. In the corotating frame of the binary, the
relative velocity remains very subsomnic, so that the evolution is adiabatic at this siage.
This is in sharp contrast to the case of a head-on collision hetween two stars oun a free-
fall, radial orbit, where shocks are very important for the dynamics (Rasio and Shapiro
1992). Here the stars are constantly being held back by a (slowly receding) centrifugal
barrier, and the merging, although dynamical, is much more gentle. After typically two
orbital revolutions the innermost cores of the two stars have merged and the system
resembles a single, very elongated ellipsoid. At this point a secondary instability occurs:
mass shedding sets in rather abruptly. Material is ejected through the outer Lagrangian
points of the effective potential and spirals out rapidly. In the final stage, the spiral arms
widen and merge together. The relative radial velocities of neighboring arms as they
merge are supersonic, leading to some shock-heating and dissipation. As a result, a hot,
nearly axisymmetric rotating halo forms around the central dense core. No measurable
amount of mass escapes from the system. The halo contains about 20% of the total mass
and has a pseudo-barotropic structure (Tassoul 1978, §4.3), with the angular velocity
decreasing as a power-law ) o w ™" where v = 2 and w is the distance to the rotation
axis (Rasio and Shapiro 1992). The core is rotating uniformly near breakup speed and
contains about 80% of the mass still in a cold, degenerate state.

The emission of gravitational radiation during dynamical coalescence can be calculated
perturbatively using the quadrupole approximation (Rasio and Shapiro 1992). Both the
frequency and amplitude of the emission peak somewhere during the final dynamical coa-
lescence, typically just belore the onset of mass shedding. Immediately after the peak, the
amplitude drops abruptly as the system evolves towards a more axially symmelric state.
For an initially synchronized binary coutaining two identical polytropes, the properties
of the waves near the end of the coalescence depend very sensitively on the stiffness of
the EOS. When I' < Dy, with Iy &~ 2.3, the final merged configuration is perfectly
axisymmetric! and the amplitude of the waves drops to zero in just a few periods (Rasio
and Shapiro 1992). In contrast, when I' > I'.p, the dense central core of the final config-
uration remains friazial (its structure is basically that of a compressible Jacobi ellipsoid;
cf. Lal et al. 1993a) and therefore it continues to radiate gravitational waves. The am-
plitude of the waves firslt drops quickly to a nonzero value and then decays more slowly
as gravitational waves contimie to carry angular momentum away from the central core
(Rasio and Shapiro 1994). Because realistic NS models give effective I' values precisely
in the range 2 3 (Lai et al. 1894a), i.e., close to ['wpyy & 2.3, a simple determination of the
absence or presence of persisting gravitational radiation after the coalescence (i.e., after
the peak in the emission) could place a strong constraint on the stiffness of the EOS.

2.3 Mass Transfer and the Dependence on the Mass Ratio

Clark and Eardley (1977) suggested that secular, stable mass transfer from one NS to
another could last for hundreds of orbital revolutions before the lighter star is tidally
disrupted. Such an episode of stable mass traunsfer would be accompanied by a secular
inerease of the orbital separation. Thus if stable mass transfer could indeed occur, a
characteristic “reversed chirp” would be observed in the gravitational wave signal at the
end of the inspiral phase (Jaranowski and Krolak 1992).
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The question was reexamined recently by Kochanek (1992) and Bildsten and Cutler
(1992), who both argued against the possibility of stable mass transfer on the basis that
very large mass transfer rates and extreme mass ratios would be required. Moreover, in
Lai et al. (1994a) it was pointed out that mass transfer has in fact little importance for
most NS binaries (except perhaps those containing a very low-mass NS). This is because
for I' 2 2, dynamical instability always arises before the Roche limit along a sequence
of binary configurations with decreasing r. Therefore, by the time mass transfer begins,
the system is already in a state of dynamical coalescence and it can no longer remain
in a nearly circular orbit. Thus stable mass transfer from one NS to another appears
impossible.

In Rasio and Shapiro (1994) a complete dynamical calculation was presented for a system
containing two polytropes with I' = 3 and a mass ratio ¢ = 0.852. For this system it is
found that the dynamical stability limit is at 7/R ~ 2.95, whereas the Roche limit is
at /R =~ 2.85. The dynamical evolution turns out to be quite different from that of a
system with ¢ = 1. The Roche limit is quickly reached while the system is still in the
linear stage of growth of the instability. Dynamical mass transfer from the less massive to
the more massive star begins within the first orbital revolution. Because of the proximity
of the two components, the fluid acquires very little velocity as it slides down from the
inner Lagrangian point to the surface of the other star. As a result, relative velocities of
fluid particles remain largely subsonic and the coalescence proceeds quasi-adiabatically,
just as in the ¢ = 1 case. In fact, the mass transfer appears to have essentially no effect
on the dynamical evolution. After about two orhital revolutions the smaller-mass star
undergoes complete tidal disruption. Most of its material is quickly spread om top of
the more massive star, while a small fraction of the mass is ejected from the outermost.
Lagrangian point and forms a single-arm spiral outflow. The more massive star, however,
remains little perturbed during the entire evolution and simply becomes the inner core
of the merged configuration.

The dependence of the peak amplitude Apa. of gravitational waves on the mass ratio q
appears to be very strong, and nontrivial. In Rasio and Shapiro (1994) an approximate
scaling hga, o 2 was derived. This is very different from the scaling obtained for a
detached binary system with a given binary separation. In particular, for two point
masses in a circular orbit with separation »r the result would be 2 o Q%ur?, where
Q% = G(M + M")/r® and p = MM'/(M + M'). At constant r, this gives h  g. This
linear scaling is obeyed (only approximately, because of finite-size effects) by the wave
amplitudes of the various systems at the onset of dynamical instability. For determining
the mazimum amplitude, however, hydrodynamics plays an essential role. In a system
with g # 1, the more massive star tends to play a far less active role in the hydrodynamics
and, as a result, there is a rapid suppression of the radiation efficiency as q departs even
slightly from unity. For the peak luminosity of gravitational radiation Rasio and Shapiro
found approximately ., o< ¢5. Again, this is a much steeper dependence than one would
expect based on a simple point-mass estimate, which gives I o q2(1 + q) at constant r.

? This is the most probable value of the mass ratio in the binary pulsar PSR 2303446 (Thorsett et al.
1993) and represents the largest observed departure from ¢ = 1 in any observed binary pulsar with
likely NS companion. For comparison, g — 1.386,/1.442 = 0.96 in PSR 1913416 (Taylor and Weisherg
1989) and g = 1.32/1.36 = 0.97 in PSR 1534+12 (Wolszczan 1991).
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2.4 Measuring the Radius of a Neutron Star with LIGO/VIRGO

The most important parameter that enters into quantitative estimates of the gravitational
wave emission during the final coalescence is the relativistic parameter M/R for a NS
(here we take G = ¢ = 1). In particular, for two identical point masses we know that the
wave amplitude obeys (ro/M)h o< (M/R), where ro is the distance to the observer, and
the total luminosity L ox (M/R)®. Thus one expects that any quantitative measurement
of the emission near maximum should lead to a direct determination of the radius R,
assuming that the mass M has already been determined from the low-frequency inspiral
waveform (Cutler and Flanagan 1994). Most current NS EOS give M/R ~ 0.1, with
R ~ 10km nearly independent of the mass in the range 0.8Mg < M = L5Mj [see, e.g.,
Baym (1991), Cook et al. (1994}, Lai et al. (1994a)}|.

However, the details of the hydrodynamics also enter into this determination. The impor-
tance of hydrodynamic effects introduces an explicit dependence of all wave properties
on the internal structure of the stars (which we represent here by a single dimensionless
parameter I'), and on the mass ratio ¢. If relativistic effects were taken into account for
the hydrodynamics itself, an additional, nontrivial dependence on M /R would also be
present. This can be written conceptually as

ro M/ M -
(M) hmax = H(g,T,M/R) x (R) (1)
L M\°®
max = r'lr - 2
Low = saranm) x (%) (2

Combining all the results of Rasio and Shapiro, we can write, in the limit where M/R — 0
and for g not too far from unity,

H(q,T,M/R) ~2.2¢*  L(¢,T,M/R)~0.5¢°, (3)

essentially independent of I in the range I' =2 2-3 (Rasio and Shapiro 1994). This is in
the case of synchronized spins. For nonsynchronized configurations, the spin frequency
of the stars must be considered as additional parameters.

2.5 Nonsynchronized Binaries

Recent theoretical work suggests that the synchronization time in close NS binaries re-
mains always longer than the orbital decay time due to gravitational radiation (Kochanek
1992, Bildsten and Cutler 1992). In particular, Bildsten and Cutler (1992) show with sim-
ple dimensional arguments that one would need an implausibly small value of the effective
viscous time, tyse ~ R/c, in order to reach complete synchronization just before final
merging.

In the opposite limiting regime where viscosity is completely negligible, the fuid circu-
lation in the binary system is conserved during the orbital decay and the stars behave
approximately as Darwin-Riemann ellipsoids (Kochanek 1992, Lai et al. 1994a).

Of particular importance are the irrotational Darwin-Riemann configurations, obtained
when two initially nonspinning (or, in practice, slowly spinning) NS evolve in the absence
of significant viscosity. Compared to synchronized systems, these irrotational configura-
tions exhibit smaller deviations from point-mass Keplerian behavior at small r. However,
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as shown in Lai et al. (1994a) and Rasio and Shapiro (in prep.), irrotational configu-
rations for binary NS with I" = 2 can nevertheless become dynamically unstable near
contact. Thus the final coalescence of two NS in a nonsynchronized binary system must
still be driven by hydrodynamic instabilities.

The details of the hydrodynamics are very different, however (Rasio and Shapiro, in
prep.). Because the two stars appear to be counter-spinning in the corotating frame of
the binary, a vortex sheet with Av = |v;, —v | & Qr appears when the surfaces come
into contact. Such a vortex sheet is Kelvin-Helmholtz unstable on all wavelengths and the
hydrodynamics is therefore rather difficult to model accurately given the limited spatial
resolution of 3D calculations. The breaking of the vortex sheet generates a large turbu-
lent viscosity so that the final configuration may no longer be irrotational. In numerical
simulations, however, vorticity is generated mostly through spurious shear viscosity in-
troduced by the spatial discretization. An additional difficulty is that nonsynchronized
configurations evolving rapidly by gravitational radiation emission tend to develop sig-
nificant tidal lags, with the long axes of the two components becoming misaligned (Lai
et al. 1994c). This is a purely dynamical effect, present even if the viscosity is zero, but
its magnitude depends on the entire previous evolution of the system. Thus the coun-
struction of initial conditions for hydrodynamic calculations of nonsynchronized binary
coalescence must incorporate the gravitational radiation reaction self-consistently. In-
stead, previous studies of nousynchronized, equal-mass binary coalescence by Shibata et
al. (1992), Davies et al. (1994), and Zhuge et al. (1994) used very approximate initial con-
ditions consisting of two identical spheres (polytropes with I' 22 2) placed on an inspiral
trajectory calculated for two point masses.

2.6 Relativistic Effects on the Stability of Compact Binaries

Most of the results discussed so far in this section are based on purely Newtonian calcu-
lations of NS binaries. Over the last year or so, various efforts have started to calculate
the stability limits for NS binaries including both hydrodynamic finite-size (tidal) effects
and relativistic effects. Note that, strictly speaking, equilibrium circular orbits do not
exist in general relativity because of the emission of gravitational waves. However, the
stability of quasi-circular orbits can still be studied in the framework of general relativity
by truncating the radiation-reaction terms in a PN expansion of the equations of motion
(Lincoln and Will 1990, Kidder et al. 1992, Will 1894). Alternatively, one can solve the
full Einstein equations numerically in the 3 + 1 formalism (see the article by Seidel in
this volume) on time slices with a spatial 3-metric chosen to be conformally flat (Wilson
and Mathews 1989, 1995, Wilson et al. 1996, Baumgarte et al. 1997). This effectively
minimizes the gravitational wave content of space-time. The field equations then reduce
to a set of coupled elliptic equations for the lapse and shift functions and the conformal
factor.

Several groups are now working on PN generalizations of the semi-analytic Newtonian
treatment of Lai et al. based on ellipsoids. Taniguchi and Nakamura (1996) consider INS-
BH binaries and adopt a modified version of the pseudo-Newtonian potential of Paczytiski
and Wiita (1980) to mimic general relativistic effects near the BH. Lai and Wiseman
(1997) concentrate on NS-NS binaries and the dependence of the results on the NS
EOS. They add a restricted set of PN orbital terms to the dynamical equations given in
Lai and Shapire (1995) for a binary system containing two NS modeled as Riemann-S
ellipsoids (cf. Lai et al. 1993a,b, 1994a,b,c), but neglect relativistic corrections to the fluid
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motion, self-gravity and tidal interaction. Lombardi et al. (1997) include PN corrections
affecting both the orbital motion and the interior structure of the stars and explore the
consequences not ounly for orbital stability but also for the stability of each NS against
collapse. The most important result, on which these various studies all seem to agree,
is that neither the relativistic effects nor the Newtonian tidal effects can be neglected
if one wants to obtain a quantitatively accurate determination of the stability limits.
In particular, the critical frequency corresponding to the onset of dynamical instability
can be much lower than the value obtained when only one of the two effects is included.
This critical frequency for the “last stable circular orbit” is a measurable quantity (with
LIGO/VIRGO) and can provide direct information on the NS EQS.

A surprising result coming from the numerical 3 | 1 relativistic calculations of Wilson
and Mathews (1995, Mathews and Wilson 1997) is the appearance of a binary-induced
collapse instability of the NS. This must be a purely relativistic effect, since the Newto-
nian tidal effects in fact tend to siabilize the NS against collapse (Lai 1996). In effect, the
maximum stable mass of a NS in a relativistic close binary system could be slightly lower
than that of a NS in isolation. Initially stable NS close to the maximum mass could then
collapse to BH before getting to the final phase of binary coalescence. It should be noted,
however, that the numerical results of Wilson and Mathews have yet to be confirmed
independently by other studies. Even if it is real, the effect would be of importance only
if the NS EOS is very soft, and the maximum stable mass for a NS in isolation is not
much larger than 1.4M,.

3 Coalescing White Dwarf Binaries

3.1 Astrophysical Motivation

Close WD binaries are expected to be extremely abundant in our Galaxy. Iben and
Tutukov (1984, 1986) predict that ~ 20% of all binary stars produce close pairs of WD
atl the end of their stellar evolution. The most common systems should be those containing
two low-mass helium WD. Their final coalescence can produce an object massive enough
to start helium burning. Bailyn (1993) suggests that extreme horizontal branch stars in
globular clusters may be such helium-burning stars formed by the coalescence of two
WD. Paczynski (1990) has proposed that the peculiar X-ray pulsar 1E 22594586 may
be the product of a recent WD-WD merger. Planets in orbit around a massive WD may
also form following a merger (Livio et al. 1992).

Coalescing WD binaries may also be progenitors for Type Ia supernovae (Iben and Tu-
tukov 1984, Webbink 1984, Paczynski 1985, Mochkovitch and Livio 1989, Yungelson et
al. 1994). To produce a supernova, the total mass of the system must be above the Chan-
drasekhar mass. Given evolutionary considerations, this requires two C-O or O-Ne-Mg
WD. Yungelson et al. (1994) show that the expected merger rate for close pairs of WD
with total mass exceeding the Chandrasekhar mass is consistent with the rate of type
Ia supernovae deduced from observations. Alternatively, a massive enough merger may
collapse to form a rapidly rotating NS (Nomoto and Iben 1985, Colgate 1990). Chen and
Leonard (1993) have discussed the possibility that most millisecond pulsars in globular
clusters may have formed in this way. In some cases planets may form in the disk of
material ejected during the coalescence and left in orbit around the central pulsar (Pod-
siadlowski et al. 1991). Indeed the first extrasolar planets have been discovered in orbit
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around a millisecond pulsar, PSR B1257+12 (Wolszczan 1994). A merger of two highly
magnetized WD might lead to the formation of a NS with extremely high magnetic field,
and this scenario has been proposed as a source of gamma-ray bursts (Usov 1992).
Coalescing WD binaries are also important sources of very low-frequency gravitational
waves that should be easily detectable by future space-based interferometers such as
LISA (Danzmann, this volume). Evans et al. (1987) estimate a WD merger rate of order
one every 5 yr in our own Galaxy. Coalescing systems closest to Earth should produce
quasi-periodic gravitational waves of amplitude kA ~ 102! in the frequency range ~ 10—
100 mHz. In addition, the total number (~ 10%) of close WD binaries in our Galaxy emit-
ting at lower frequencies ~ (.1-1 mHz (the emission lasting for ~ 10%-10% yr before final
coalescence) should provide a continuum background signal of amplitude h. ~ 1020
10~ Individual sources should be detectable by LISA above this background when their
frequency becomes = 10 mHz. The detection of the final burst of gravitational waves emit-
ted during the actual merging would provide a unique opportunity to observe in “real
time” the hydrodynamic interaction between the two WD, possibly followed immediately
by a supernova explosion, nuclear outburst, or some other type of electromagnetic signal.

3.2 Hydrodynamics of Coalescing White Dwarf Binaries

The results of Rasio and Shapiro (1995) for polytropes with I’ = 5/3 show that hydro-
dynamics also plays an important role in the coalescence of two WD, either because of
dynamical instabilities of the equilibrium configuration, or following the onset of mass
transfer. Systems with ¢ =~ 1 must evolve into deep contact before they become dy-
namically unstable and merge. Instead, equilibrium configurations for binaries with g
sufficiently far from unity never become dynamically unstable. However, when these bi-
naries reach the Roche limit, dynamically unstable mass transfer occurs and the less
massive star is completely disrupted after a small number (= 10) of orbital periods [see
also Benz et al. (1990)]. In both cases, the final merged configuration is an axisymmetric,
rapidly rotating object with a core-halo structure similar to that obtained for coalescing
NS binaries [Rasio and Shapiro (1994, 1995); see also Mochkovitch and Livio (1989)].
For two massive enough WD, the merger product may be well above the Chandrasekhar
mass Mcy. The object may therefore explode as a (type Ia) supernova, or perhaps collapse
to a NS. The rapid rotation and possibly high mass (up to 2M¢y,) of the object must be
taken into account for determining its final fate. Unfortunately, this is not done in current
theoretical calculations of accretion induced collapse (AIC), which always consider a
nonrotating WD just below the Chandrasekhar limit accreting matter slowly and quasi-
spherically (Canal et al. 1990, Nomoto and Kondo 1991, Nomoto et al. 1995). Under these
assumptions it is found that collapse to a NS is possible only for a narrow range of initial
conditions. In most cases, a supernova explosion follows the ignition of the nuclear fuel
in the degenerate core. However, the fate of a much more massive object with substantial
rotational support and large deviations from spherical symmetry (as would be formed by
dynamical coalescence) may be very different.
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