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ABSTRACT
We derive octupole-level secular perturbation equations for hierarchical triple systems, using classical

Hamiltonian perturbation techniques. Our equations describe the secular evolution of the orbital eccen-
tricities and inclinations over timescales that are long compared to the orbital periods. By extending
previous work done to leading (quadrupole) order to octupole level (i.e., including terms of order a3,
where is the ratio of semimajor axes), we obtain expressions that are applicable to a mucha 4 a1/a2\ 1
wider range of parameters. In particular, our results can be applied to high-inclination as well as copla-
nar systems, and our expressions are valid for almost all mass ratios for which the system is in a stable
hierarchical conÐguration. In contrast, the standard quadrupole-level theory of Kozai gives a vanishing
result in the limit of zero relative inclination. The classical planetary perturbation theory, while valid to
all orders in a, applies only to orbits of low-mass objects orbiting a common central mass, with low
eccentricities and low relative inclinations. For triple systems containing a close inner binary, we also
discuss the possible interaction between the classical Newtonian perturbations and the general relativistic
precession of the inner orbit. In some cases we show that this interaction can lead to resonances and a
signiÐcant increase in the maximum amplitude of eccentricity perturbations. We establish the validity of
our analytic expressions by providing detailed comparisons with the results of direct numerical integra-
tions of the three-body problem obtained for a large number of representative cases. In addition, we
show that our expressions reduce correctly to previously published analytic results obtained in various
limiting regimes. We also discuss applications of the theory in the context of several observed triple
systems of current interest, including the millisecond pulsar PSR B1620[26 in M4, the giant planet in
16 Cygni, and the protostellar binary TMR-1.
Subject headings : binaries : general È celestial mechanics, stellar dynamics È planetary systems È

stars : individual (TMR-1, 16 Cygni) È pulsars : individual (PSR B1620[26)

1. INTRODUCTION

About one-third of all binary star systems are thought to
be members of larger multiple systems. Most of these are
hierarchical triples, in which the (inner) binary is orbited by
a third body in a much wider orbit (see Tokovinin 1997a,
1997b for recent results and compilations). Secular pertur-
bations in triples result from the gravitational interaction
between the inner binary and the outer object, possibly
coupled to other processes such as stellar evolution, tidal
e†ects, or, for compact objects, general relativistic e†ects. In
strongly hierarchical triples, the two orbits never approach
each other closely, and an analytic, perturbative approach
can be used to calculate the evolution of the system. One
particularly important perturbation is that of the orbital
eccentricities. As the two orbits torque each other and
exchange angular momentum, their eccentricities will
undergo periodic oscillations over secular timescales (i.e.,
very long compared to the orbital periods). For non-
coplanar systems, corresponding oscillations occur in the
orbital inclinations. In contrast, according to canonical per-
turbation theory, there is no secular change in the semi-
major axes, since the energy exchange between the two
orbits averages out to zero over long timescales (see, e.g.,
Heggie 1975).

For a triple system that begins its life near the stability
limit, the result of an eccentricity increase can be catastro-
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phic, leading to a collision between the two inner stars, if
they started as a close pair, or, more typically, to the disinte-
gration of the triple. This disintegration proceeds through a
phase of chaotic evolution whose outcome is the ejection of
one of the three stars (typically the least massive body) on
an unbound trajectory, while the other two are left in a
more tightly bound binary. A striking example of this
process was revealed by the recent Hubble Space Telescope
(HST ) NICMOS observations of the TMR-1 system in the
Taurus star-forming region (Terebey et al. 1998). The HST
images reveal a faint companion, most likely a giant planet
or brown dwarf, that appears to have been ejected from its
parent protostellar binary system. More indirect obser-
vational evidence is provided in the form of binary systems
with anomalously high space velocities. In particular, the
disintegration of short-lived triples formed in dense star-
forming regions may lead to binary OB runaway stars with
very large peculiar velocities, such as HD 3950 (Gies &
Bolton 1986).

The stability of triple systems has been the subject of
many theoretical studies. Most recently, Eggleton & Kisel-
eva (1995, and references therein) performed numerical
experiments and provided an empirical stability criterion in
terms of a critical ratio of the periastron distance of theYminouter orbit to the apastron distance of the inner orbit. For
systems containing three nearly equal masses, one Ðnds

depending on initial phases, eccentricities andYmin^ 3È6
inclinations. Holman & Wiegert (1999) study the stability of
planets in binary systems, both for planets orbiting close to
one of the two stars and for planets orbiting outside the
binary. All these stability analyses are based on numerical
integrations of the three-body problem that are limited to
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104È106 periods of the outer orbit. In some cases, however,
the secular evolution timescale of the triple can be much
longer than this, and therefore systems that remain stable
for the duration of the numerical integration may in fact
turn out to be unstable over secular timescales. Analytic
results such as those derived here can therefore help deter-
mining more accurate stability criteria, e.g., by integrating
the secular evolution equations and verifying that the sta-
bility ratio remains greater than over the entire cycle ofYminsecular perturbations.

Hierarchical triple star systems can play an important
role in the dynamical evolution of dense star clusters con-
taining primordial binaries. The cores of globular clusters,
for example, are thought to contain a small but dynamically
signiÐcant population of triple systems formed through
dynamical interactions between primordial binaries
(McMillan, Hut, & Makino 1991). Both stable and unstable
triples can form easily through exchange and resonant
interactions between binaries. In direct N-body integrations
of the cluster dynamics, marginally stable or unstable triples
can represent a signiÐcant computational bottleneck since
they require very long integrations of the orbital dynamics
in order to resolve the outcomes of the interactions (see, e.g.,
Mikkola 1997).

Direct observational evidence for the dynamical pro-
duction of triple systems in globular clusters is provided by
the millisecond pulsar system PSR B1620[26 (Rasio,
McMillan, & Hut 1995 ; Ford et al. 2000a). This radio
pulsar is a member of a hierarchical triple system located in
the core of the globular cluster M4. The inner binary of the
triple contains a ^1.4 neutron star with a ^0.3M

_
M

_white-dwarf companion in a 191 day orbit (Lyne et al. 1988 ;
McKenna & Lyne 1988). The triple nature of the system
was Ðrst proposed by Backer (1993) in order to explain the
unusually high residual second and third pulse frequency
derivatives left over after subtracting a standard Keplerian
model for the pulsar binary. The pulsar has now been timed
for 11 yr since its discovery (see Thorsett et al. 1999 for the
most recent update). Not only have these observations con-
Ðrmed the triple nature of the system, but they have also
provided tight constraints on the mass and orbital param-
eters of the second companion. Theoretical modeling of the
latest timing data (now including Ðve pulse frequency
derivatives) and preliminary measurements of the orbital
perturbations of the inner binary have further constrained
the mass of the second companion and strongly suggest that
it is a giant planet or a brown dwarf of mass D0.01 at aM

_distance of D50 AU from the pulsar binary (Joshi & Rasio
1997 ; Ford et al. 2000a).

Our treatment of the secular perturbations in this paper
is based on classical celestial mechanics techniques and
assumes that all three bodies are nonevolving point masses.
Whenever the stellar evolution time of one of the com-
ponents becomes comparable to any of the orbital pertur-
bation timescales computed here, the evolution of the triple
can be a†ected signiÐcantly through mass losses or mass
transfer. For a recent discussion of stellar evolution in
triples, see Iben & Tutukov (1999), who study the pro-
duction of Type Ia supernovae from the mergers of heavy
white dwarfs inside hierarchical triples. Mikkola & Tani-
kawa (1998) have studied the episodic mass transfer trig-
gered by large eccentricity oscillations of the inner binary in
the secular evolution of the triple system CH Cygni.
Eggleton & Verbunt (1986) have discussed the possible rele-

vance of triple star evolution for the formation of low-mass
X-ray binaries.

Our work focuses on triple systems containing well-
separated components and in which the orbital per-
turbation timescales are short compared to any tidal
dissipation time. For triple systems containing close inner
binaries, tidal dissipation in the inner components provides
a sink of energy and angular momentum that can substan-
tially change the character of the secular perturbations. For
a recent discussion of tidal dissipation in triple systems con-
taining close inner binaries, see Kiseleva, Eggleton, &
Mikkola (1998). Bailyn & Grindlay (1987) have discussed
the combined e†ects of tidal interaction and mass transfer
for compact X-ray binaries in hierarchical triples. Mazeh &
Shaham (1979) were the Ðrst to point out that the com-
bination of tidal dissipation and secular eccentricity pertur-
bations in a triple could sometimes lead to a substantial
orbital shrinking of the inner binary.

One possible additional perturbation e†ect that we do
take into account in this work is the general relativistic
precession of the inner orbit if the inner binary contains
compact objects. An example is provided by the PSR
B1620[26 triple system, in which the inner binary contains
a neutron star and a white dwarf. When the precession
periods from general relativity and from Newtonian pertur-
bations in the triple become comparable, a type of resonant
e†ect that leads to increased magnitudes for the orbital per-
turbations is possible. A similar resonant e†ect has been
mentioned by (1984) for triples where the innerSo� derhjelm
binary precesses under the inÑuence of a rotationally
induced quadrupole moment in one of the stars.

Our paper is organized as follows. In ° 2 we present a
derivation of the octupole-order secular perturbation equa-
tions and we compare our results to those obtained in the
quadrupole approximation and in classical planetary per-
turbation theory. In ° 3 the analytic results are compared to
direct numerical integrations and the e†ects of varying all
relevant parameters are explored. In ° 4 we discuss the
e†ects of the general relativistic precession of the inner orbit
on the secular evolution of the triple, using the PSR
B1620[26 system as an example. In ° 5 possible applica-
tions of our results to other observed triple systems are
brieÑy discussed.

2. ANALYTIC SECULAR PERTURBATION THEORY

In this section we present a simple analytic treatment of
the long-term, secular evolution of hierarchical triple
systems using time-independent Hamiltonian perturbation
theory in which the small parameter is the ratio of semi-
major axes. We discuss essential aspects of the lowest order
(quadrupole-level) approximation, which has been widely
used to study hierarchical stellar triples. Then we extend the
approximation to the octupole level and compare our
results with results from the quadrupole and other approx-
imations to show that the octupole-level equations derived
here are valid for a far greater range of parameters.

2.1. Summary of Previous Work
Our derivation of the octupole-level secular perturbation

equations is based on classical perturbation methods of cel-
estial mechanics. Studies of the long-term behavior of the
solar system led Lagrange and Laplace to the creation of
the Ðrst classical perturbation theory. Their approach is
applicable to a small class of planetary conÐgurations with
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parameters similar to those of the solar system. The lunar
problem was successfully attacked in the end of the 19th
century by Delaunay, who was the Ðrst to apply the method
of canonical transformations to long-term perturbations.
This method possesses much greater generality and was
used to study a broad spectrum of problems. Brown (1936)
was the Ðrst to apply canonical averaging to stellar triples,
and he obtained the transformed quadrupole Hamiltonian.
Kozai (1962) made use of the quadrupole approximation
while studying the long-term motion of asteroids and noted
several important properties of this approximation.
Harrington (1968) obtained quadrupole-level expressions
similar to KozaiÏs for general hierarchical systems of three
stars. (1984) derived octupole-level equations inSo� derhjelm
the limit of low eccentricities and inclinations. In particular,
he demonstrated that the quadrupole approximation fails
in this regime because the octupole term in the Hamiltonian
becomes dominant. Finally, Marchal (1990) averaged the
octupole Hamiltonian keeping all terms up to third order in
a and some terms of order a7@2. His Hamiltonian truncated
at third order is identical to the one used in this paper.

In the process of completing this work, we became aware
of related ongoing work by other groups. In particular,
Krymolowski & Mazeh (1999) have derived octupole-order
perturbation equations following the same method used
here. They retain some additional terms, of order a7@2,
which were also partly included in the Marchal (1990)
Hamiltonian. Based on a few numerical integrations that
Krymolowski & Mazeh (1999) provide for a fairly strongly
coupled system (a \ 0.1), it appears that these higher order
terms have a negligible e†ect on the perturbations, although
they can lead to slightly shorter periods of eccentricity oscil-
lations for systems with low relative inclinations. P. Egg-
leton (2000, in preparation) has used a perturbation method
based on the variation of the Runge-Lenz vector (see Heggie
& Rasio 1996) to derive an extension of KozaiÏs theory to
octupole order. Similar work has been done by N. Geor-
gakarakos (2000, in preparation), who concentrates on
systems where the inner orbit is nearly circular.

2.2. Octupole T heory
A hierarchical triple system consists of a close binary (m0and and a third body moving around the innerm1) (m2)binary on a much wider orbit. To describe this structure it is

convenient to use Jacobi coordinates, which are deÐned as
follows. The vector represents the position of relativer1 m1to and is the position of relative to the center ofm0, r2 m2mass of the inner binary (see Fig. 1). This coordinate system
naturally divides the motion of the triple into two separate
motions and makes it possible to write the Hamiltonian as a
sum of two terms representing the two decoupled motions
and an inÐnite series representing the coupling of the orbits.
Let the subscripts ““ 1 ÏÏ and ““ 2 ÏÏ refer to the inner and outer
orbits, respectively. The coupling term is written as a power
series in the ratio of the semimajor axes whicha 4 a1/a2,serves as the small parameter in our perturbation expan-
sion. The complete Hamiltonian of the three-body system is
given by (Harrington 1968)

F\ k2m0m1
2a1

] k2(m0] m1)m2
2a2

] k2
a2

;
j/2

=
ajM

j

Ar1
a1

BjAa2
r2

Bj`1
P
j
(cos ') , (1)

FIG. 1.ÈCoordinate system used to describe the hierarchical triple
system.

where k2 is the gravitational constant, are the LegendreP
jpolynomials, ' is the angle between and andr1 r2,

M
j
\ m0m1m2

m0j~1[ ([m1)j~1
(m0] m1)j

. (2)

We shall deal with the expansion only up to third order in a.
Let us deÐne a set of canonical variables, known as

DelaunayÏs elements, that provide a particularly convenient
dynamical description of our three-body system. The angle
variables are chosen to be

l1, l2\ mean anomalies , (3)

g1, g2\ arguments of periastron, and (4)

h1, h2\ longitudes of ascending nodes , (5)

and their conjugate momenta are

L 1\ m0m1
m0] m1

Jk2(m0] m1)a1 ,

L 2\ m2(m0] m1)
m0] m1] m2

Jk2(m0] m1 ] m2)a2 , (6)

G1\ L 1J1 [ e12 , G2\ L 2J1 [ e22 , (7)

and

H1\ G1 cos i1 , H2\ G2 cos i2 , (8)

where are the orbital eccentricities and are thee1, e2 i1, i2orbital inclinations.
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The usual canonical relations represent the equations of
motion :

dL
j

dt
\ LF

Ll
j

,
dl

j
dt

\ [LF
LL

j
, (9)

dG
j

dt
\ LF

Lg
j

,
dg

j
dt

\ [LF
LG

j
, (10)

and

dH
j

dt
\ LF

Lh
j

,
dh

j
dt

\ [LF
LH

j
, (11)

where j\ 1, 2. Note that is the z-component of theH2angular momentum contributed by the perturbing body,
the z-axis being the direction of the total angular momen-
tum, perpendicular to the invariable plane of the system (see
Fig. 2). Equations (9)È(11) appear to have 6 degrees of
freedom, but they can be reduced to 4 by the theorem of
elimination of nodes (Je†rys & Moser 1966). The Hamilto-
nian contains and only in the combinationh1 h2 h1 [ h2,and it is symmetric with respect to the orientation of the line
of nodes when the invariable plane is chosen as a reference
plane. In other words, the Hamiltonian is symmetric with
respect to rotations about the total angular momentum
vector H. Thus, and enter the Hamiltonian only asH1 H2and can be eliminated from the HamiltonianH1] H2\ H
using the relations

H1\ H2] G12 [G22
2H

, (12)

H2\ H2] G22 [G12
2H

. (13)

FIG. 2.ÈRelationships between the canonical variables and angular
momenta.

Using the new canonical elements we can write the Ðrst
four terms of the Hamiltonian (1) as

Foct \F0 ]F1]F2]F3 (14)

Foct\
b0
2L 12

] b1
2L 22

] 8b2
AL 14
L 26
BAr1

a1

B2Aa2
r2

B3

] (3 cos2 '[ 1)] 2b3
AL 16
L 28
BAr1

a1

B3Aa2
r2

B4

] (5 cos3 '[ 3 cos ') , (15)

where the mass parameters are

b0\ k4 (m0 m1)3
m0] m1

, (16)

b1\ k4 (m0] m1)3m23
m0] m1] m2

, (17)

b2\ k4
16

(m0] m1)7
(m0] m1] m2)3

m27
(m0m1)3

, and (18)

b3\ k4
4

(m0] m1)9
(m0] m1 ] m2)4

m29(m0[ m1)
(m0 m1)5

. (19)

Each term in the series is labeled according to the degree of
the Legendre polynomial associated with it (the same as the
power of Following the standard nomenclaturer1/r2).associated with multipole expansions, we shall call the
Hamiltonian containing the Ðrst three terms (up to j\ 2)
““ quadrupole ÏÏ and the third-order Hamiltonian (15)
““ octupole.ÏÏ The Ðrst two terms in expression (15) describe
the unperturbed motion of the inner and outer binaries, and
the higher order terms describe the coupling. The quadru-
pole Hamiltonian contains the perturbation of order a2,
and the octupole Hamiltonian extends this to order a3.

The complete Hamiltonian (1) contains the full descrip-
tion of the system. However, we are going to restrict our
study to the long-term, secular behavior of the system, by
averaging over short-period e†ects. Even though equation
(15) is already an approximation of the full Hamiltonian, it
contains information about short-period perturbations that
needs to be eliminated. In particular the angle ' depends on
the mean anomalies. Further simpliÐcation is achieved
through a canonical transformation of variables, called the
von Zeipel transformation. Its essence is to replace the
Delaunay elements with a set of new canonical coordinates
and momenta that rid the Hamiltonian of the dependence
on and The perturbed action variables are still period-l1 l2.ic functions of the perturbed angle variables, but the former
are no longer linear functions of time. The goal is to Ðnd
such a set of action-angle variables that the perturbed Ham-
iltonian will be a function only of the action variables. In
the end we can think of the Hamiltonian as describing the
interaction between two weighted elliptical rings instead of
point masses in orbits.

It is important to note that we do not simply average the
Hamiltonian with respect to these variables, since this
would destroy the canonical structure of the equations of
motion, but instead proceed in a more cautious and intri-
cate manner. We start by requiring that the new Hamilto-
nian be equal to the old one, since changing variables does
not change the energy, and expanding both sides of the
equality as Taylor series in a. Then we go order by order to
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identify the terms in the transformed Hamiltonian, using
the result of the previous order calculation in each step. The
theory behind the Von Zeipel method is very well presented
and illustrated by Goldstein (1980, pp. 515È530) and Hagi-
hara (1972). Additionally, Harrington (1968, 1969) has
applied this method to the quadrupole Hamiltonian. We
followed exactly the same prescription but all the way to
third order. Here we present only the results of the von
Zeipel averaging procedure, omitting the laborious alge-
braic details.

Let us deÐne the following convenient quantities

h \ cos i\ H2[ G12[ G22
2G1G2

, (20)

where and H \ o H o is given by initial condi-H \ G1] G2tions and is the mutual inclination. The angle ri\ i1[ i2between the directions of periastron is given by

cos r\ [cos g1 cos g2[ h sin g1 sin g2 . (21)

The doubly averaged Hamiltonian is given by

F1 oct\ C2[(2 ] 3e12)(3h2[ 1)] 15e12(1[ h2) cos 2g1]
] C3 e1 e2[A cos r] 10h(1[ h2)
] (1[ e12) sin g1 sin g2] , (22)

where

C2\ k4
16

(m0] m1)7
(m0] m1] m2)3

m27
(m0m1)3

L 14
L 23G23

, (23)

C3\ 15
16

k4
4

(m0] m1)9
(m0] m1] m2)4

m29(m0[ m1)
(m0m1)5

L 16
L 23G25

, (24)

B\ 2 ] 5e12[ 7e12 cos 2g1 , (25)

and

A\ 4 ] 3e12[ 5
2

(1[ h2)B . (26)

Note that the Hamiltonian (22) does not contain any depen-
dence on or because these variables have been inte-l1 l2grated out as a result of the canonical transformation. The
actual di†erences between the original and the transformed
variables are small (of order a or smaller) and periodic.
Variables appearing in equation (22) are only approx-
imations of the old variables deÐned in equations (5)È(8),
and they can be thought of as the averages of the old vari-
ables. This Hamiltonian is equivalent to the Hamiltonian
given by Marchal (1990 ; see his eqs. [252]È[255]).

The absence of and from the transformed Hamilto-l1 l2nian implies that and are constants of the motion,L 1 L 2which in turns implies that, in our approximation, the
transformed semimajor axes and are constant. Thus,a1 a2the only secularly changing parameters in this model are e1,and i, which is coupled to and by relatione2, g1, g2, e1 e2(20). The equations of motion are derived from the Hamilto-
nian (22) using the canonical relations

de
i

dt
\ Le

i
LG

i

LF1 oct
Lg

i
(27)

and

dg
i

dt
\ [LF1 oct

LG
i

. (28)

After regrouping terms, the octupole-level secular pertur-
bation equations follow:

dg1
dt

\ C2] 6
G 1
G1

[4h2 ] (5 cos 2g1[ 1)(1[ e12[ h2)]

] h
G2

[2 ] e12(3[ 5 cos 2g1)]
H

[ C3 e2
G
e1
A 1
G2

] h
G1

B

] [sin g1 sin g2[A] 10(3h2[ 1)(1[ e12)]

[ 5hB cos r][ 1 [ e12
e1G1

] [sin g1 sin g2] 10h(1[ h2)(1[ 3e12)

] cos r(3A[ 10h2] 2)]
H

, (29)

de1
dt

\ C2
1 [ e12

G1
[30e1(1[ h2) sin 2g1]

] C3 e2
1 [ e12

G1
[35 cos r(1[ h2)e12 sin 2g1

[ 10h(1[ e12)(1[ h2) cos g1 sin g2
[ A(sin g1 cos g2[ h cos g1 sin g2)] , (30)

dg2
dt

\ C2] 3
A2h
G1

[2] e12(3[ 5 cos 2g1)]

] 1
G2

M4 ] 6e12] (5h2[ 3)

] [2] e12(3[ 5 cos 2g1)]N
B

] C3 e1

]
A
sin g1 sin g2

G4e22] 1
e2G2

10h(1[ h2)(1[ e12)

[ e2
A 1
G1

] h
G2

B
[A] 10(3h2[ 1)(1[ e12)]

H

] cos r
C
5Bhe2

A 1
G1

] h
G2

B
] 4e22] 1

e2G2
A
DB

, (31)

and

de2
dt

\ [ C3 e1
1 [ e22

G2
[10h(1[ h2)(1[ e12) sin g1

]cos g2]A(cos g1 sin g2[ h sin g1 cos g2)] . (32)

This system of coupled nonlinear di†erential equations
describes the octupole-level behavior of hierarchical triples
and can be easily integrated numerically to determine the
secular evolution of a hierarchical triple for any initial con-
Ðguration. We found that for calculations with small eccen-
tricities it is better to use the transformed set of variables

and These equa-e1 sin g1, e1 cos g1, e2 sin g2, e2 cos g2.tions can be integrated numerically much more rapidly than
the full equations of motion.
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2.3. Comparison with Quadrupole-L evel Results
The quadrupole results of Kozai (1962) and Harrington

(1969) have found numerous applications in recent studies
of planetary, pulsar, and stellar systems. Mazeh & Shaham
(1979) calculated the quadrupole-level, long-term periodic
behavior of triples and used their results to study high-
amplitude eccentricity modulations of systems with large
initial inclinations. Holman, Touma, & Tremaine (1997)
used the quadrupole-level theory of Kozai to analyze the
dynamical evolution of the planet in the binary star 16
Cygni. Rasio, Ford, & Kozinsky (1997) used the same
theory to study long-term eccentricity perturbations in the
PSR B1620[26 pulsar system.

The quadrupole Hamiltonian can be obtained from
expression (22) by dropping the term:C3

F
q
\ C2[(2 ] 3e12)(3h2[ 1)] 15e12(1[ h2) cos 2g1] .

(33)

Note that is independent of meaning that, in theF
q

g2,
quadrupole approximation, is a constant of the motion,G2and so is by equation (27). Therefore, to quadrupolee2order in secular perturbation theory, there is no variation in
the eccentricity of the outer orbit. This is a well-known
result (see, e.g., Marchal 1990, pp. 79È99). Now there is only
1 degree of freedom left, so the evolution of the inner eccen-
tricity is described by

dg1
dt

\ C2] 6
G 1
G1

[4h2] (5 cos 2g1[ 1)(1[ e12[ h2)]

] h
G2

[2] e12(3[ 5 cos 2g1)]
H

, (34)

with

de1
dt

\ C2
1 [ e12

G1
[30e1(1[ h2) sin 2g1] . (35)

The advantage of using the quadrupole approximation is
that it can describe the secular behavior of systems with
high relative inclinations and a wide range of initial eccen-
tricities, regimes not covered by the classical planetary
perturbation theory. As in the classical theory, the
quadrupole-level perturbation equations (34) and (35) can
be solved exactly for the period and amplitude of oscillation
(Kozai 1962). The period of eccentricity oscillations is given
approximately by

P
e
^ P1

Am0] m1
m2

BAa2
a1

B3
(1[ e22)3@2 , (36)

where is the orbital period of the inner binary (Mazeh &P1Shaham 1978). This expression should be multiplied by a
coefficient of order unity that can be obtained using
WeierstrassÏs zeta function as shown by Kozai (1962).

The secular evolution can be visualized with the help of
phase-space diagrams of versus An example ise1 cos g1.provided in Figure 3. Each contour corresponds to an
initial condition with a certain value of the total angular
momentum H. Since is Ðxed, is coupled to i throughG2 e1equation (20), so the relative inclination oscillates with the
same period as The up-down symmetry forces similare1.behavior in phase space for both andg1-e1 g1 ½ [[n, 0]

One obvious feature is the existence of twog1 ½ [0, n].
regimes : libration and circulation. The libration island gen-

FIG. 3.ÈPhase-space trajectories obtained in the quadrupole approx-
imation for a system with a~1\ 100,m2/m1\ 10~3, m3/m1\ 1, e2\ 0.9,
and initial values of ranging from 0.02 to 0.9. The libration contourse1were obtained by setting the initial value of g1\ 90¡.

erally appears when the initial inclination is greater than
some critical value, which for most systems is around icrit^40¡. Kozai (1962) calculated that, for a ¹ 0.10, 38¡.960 ¹

From the shape of the large libration island,icrit¹ 39¡.231.
we see that can grow from a very small initial value to ae1very large maximum. Holman et al. (1997) approximate the
maximum inner eccentricity as

e1,max^ [1[ (5/3) cos2 i
o
]1@2 , (37)

where is the initial relative inclination. Libration cani
ooccur for low inclinations as well, but this does not lead to

large eccentricity oscillations.
Several erroneous features of the quadrupole approx-

imation are worth noting. For an initial condition with
no evolution occurs at all. This is especially signiÐ-e1\ 0,

cant in a case in which there is no libration island, since in
that case the eccentricity perturbation would appear to
approach zero continuously as the initial eccentricity is
decreased. Similarly, in the coplanar case (h \ 1), the theory
predicts no evolution of eccentricity. From the classical
planetary perturbation theory (° 2.4), which assumes low
eccentricities and inclinations, we know that this is not
correct. These features also contradict the octupole-level
results (° 2.2), as well as the results of direct numerical inte-
grations (° 3.2). We conclude that the quadrupole approx-
imation fails for low inclination and for low inner
eccentricity. However, it remains qualitatively applicable in
the high-inclination regime.

The octupole-level theory has more degrees of freedom
and covers most regimes of hierarchical triple conÐgu-
rations. The perturbation equations (29)È(32) indicate that
there are no additional conserved quantities apart from the
obvious ones (total angular momentum and total energy).
In contrast to the quadrupole theory, the quantities ande2now vary with time and the behavior is much harder tog2visualize. We can notice striking qualitative di†erences
between the two theories by looking at phase-space dia-
grams. An example is provided in Figure 4. Trajectories are
no longer closed, and transitions between libration and cir-
culation occur, since the angular momentum of the outer
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FIG. 4.ÈPhase-space trajectory of the same system as in Fig. 3 with
initial but with the octupole terms included in the integration.e1\ 0.02,
(Note that this corresponds to a single trajectory in Fig. 3.)

orbit now evolves with time. Thus, we now have more than
one frequency in the secular oscillations.

Figure 5 demonstrates that a system can have a qualit-
atively di†erent behavior from what is expected in the quad-
rupole approximation. While the quadrupole theory
predicts periodic variations of constant amplitude, accord-

FIG. 5.ÈThese results illustrate the potential danger of using the quad-
rupole approximation. The inner eccentricity is shown as a function of time
for a system with a~1\ 100, initial eccentric-m1/m0\ 10~3, m2/m1\ 1,
ities and and an initial relative inclination i\ 70¡. Timee1\ 0.05 e2\ 0.9,
is given in years assuming AU and The solid line isa1\ 1 m0\ 1 M

_
.

from the integration of the octupole-level perturbation equations, while the
dashed line is from a direct numerical integration of the three-body system
(see ° 3.1). In the quadrupole approximation all oscillations would have the
same amplitude as the Ðrst shown here. Notice how the eccentricity oscil-
lations in fact increase in amplitude, making the inner periastron separa-
tion quite small. At some point other e†ects such as general relativistic
precession and tidal dissipation (not to mention a collision between the
two inner stars) could become signiÐcant.

ing to the octupole equations (and in agreement with the
results of a direct numerical integration) the amplitude
grows very close to unity. This leads to a very small perias-
tron distance and the possibility of a tidal interaction or
collision between the two inner stars. Thus, one must exer-
cise great caution when modeling systems using the quadru-
pole approximation. Ignoring octupole-level terms can lead
to completely invalid results.

2.4. Comparison with Classical Planetary
Perturbation T heory

For application to many problems in the context of the
Solar System, a classical perturbation theory was developed
many years ago that applies to low-eccentricity, low-
inclination orbits of planets around a central star (one dom-
inant mass). This theory does not assume that the ratio of
semimajor axes is small, and therefore it provides results
valid to all orders in a. A detailed account of the planetary
theory can be found in Brouwer & Clemence (1961, pp.
507È529). For an excellent pedagogic summary, see
Dermott & Nicholson (1986). Rasio (1994, 1995) used the
classical theory to study the eccentricity perturbations in
the PSR B1620[26 triple system in the limit of coplanar
orbits and derived simple approximate expressions for the
period and amplitude of eccentricity oscillations in various
limits.

Here we will consider only the variations of the eccentric-
ities, since the results for inclinations are very similar. It
turns out that the inclination evolution is decoupled from
the eccentricity evolution, so the two can be solved separa-
tely. Because eccentricities are very small and can vanish, it
is better to use the variables

h1 \ e1 sin g1 , h2\ e2 sin g2 (38)

and

k1\ e1 cos g1 , k2\ e2 cos g2 . (39)

Since angular momentum is conserved and the mutual incli-
nation stays constant to Ðrst order, the two eccentricities
vary 90¡ out of phase. The linear system of equations
describing the secular evolution of eccentricities in planet-
ary perturbation theory is

dh1
dt

\ ]A11 k1[ A12 k2 , (40)

dk1
dt

\ [A11 h1] A12 h2 , (41)

dh2
dt

\ [A21 k1] A22 k2 , (42)

and

dk2
dt

\ ]A21 h1[ A22 h2 , (43)

where the A are deÐned in terms of Laplace coefficients,
which we truncate at third order in a to obtain

A11\ 3
4

k
a8 13@2
a8 23

m2
Jm0] m1

,

A12\ 15
16

k
a8 15@2
a8 24

m2
Jm0] m1

, (44)
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A21\ 15
16

k
a8 13
a8 29@2

m1
Jm0] m2

,

A22\ 3
4

k
a8 12
a8 27@2

m1
Jm0] m2

, (45)

where and are the averaged semimajor axes measureda8 1 a8 2from to and respectively.m0 m1 m2,Now we rewrite the system in terms of familiar quantities
to Ðnd

de1
dt

\ A12 e2 sin g , (46)

de2
dt

\ [A21 e1 sin g , (47)

and

dg
dt

\ A22 [ A11] A12
e2
e1

cos g [ A21
e1
e2

cos g , (48)

where Indeed the use of this variable is conve-g \ g2[ g1.nient, since for coplanar orbits there is no well-deÐned line
of nodes and only the relative longitudes of perihelia are
important.

Upon expanding the octupole equations (29)È(32) to Ðrst
order in and we obtain an identical linear system ofe1 e2,di†erential equations, but with the A terms replaced by

B11 \ 12C2
L 1

\ 3
4

k
a13@2
a23

m2
Jm0] m1

, (49)

B12 \ 4C3
L 1

\ 15
16

k
a15@2
a24

m2(m0[ m1)
(m0] m1)3@2

, (50)

B21 \ 4C3
L 2

\ 15
16

k
a13
a29@2

]
m0m1(m0[ m1)Jm0] m1] m2

(m0] m2)3
, (51)

and

B22 \ 12C2
L 2

\ 3
4

k
a12
a27@2

m0m1Jm0] m1 ] m2
(m0] m1)2

. (52)

It is easy to see that, in the limit where andm0?m1 m0?
the two sets of equations coincide, as they should. Thism2,establishes the accuracy of our analytic results in this limit.

In general, the two sets of equations di†er in the depen-
dence of the coefficients on the masses. Although the two
theories use di†erent coordinate systems (Jacobi vs.
heliocentric), this alone does not explain the di†erence.
Instead, one must remember that the classical theory was
derived from LagrangeÏs planetary equations (see Brouwer
& Clemence 1961), which assume that the disturbing func-
tions (proportional to and are small. Therefore them1 m2)approximation is valid only if This can alsom0 ?m1, m2.
be seen by considering the case, for which Heggiem0\m1& Rasio (1996, p. 1083) proved that the variation of e1vanishes to all orders in a if the initial In contrast,e1\ 0.
the classical planetary perturbation equation (46) would
predict a nonzero perturbation of for this case (sincee1while our coefficient forA12D 0, B12\ 0 m0\ m1).

Our octupole-level analytic results do not depend on any
assumption about the three masses, as long as the system
can be modeled as a hierarchical triple. The octupole equa-
tions predict constant eccentricities in the case where m0\

and i \ 0. This happens because the odd-power coeffi-m1cients are proportional to in the Hamiltonian (1),m0[ m1so the leading terms vanish. There is no reason to expect the
octupole approximation to work for this very particular
case. However, in ° 3.6 we show explicitly by comparison
with direct numerical integrations that the mass depen-
dences of our equations (29)È(32) are valid for wide ranges
of both mass ratios.

3. COMPARISON WITH DIRECT NUMERICAL

INTEGRATIONS

We have performed extensive numerical integrations of
hierarchical triple systems using both our octupole-order
secular perturbation equations (OSPE) and direct three-
body integrations. In this section we present a sample of
results that establish the validity and accuracy of our analy-
tic results and at the same time illustrate the dependences of
the perturbations on di†erent parameters.

3.1. Numerical Methods
For the numerical integration of the OSPE, we change

variables from toe1, g1, e2, g2 e1 sin g1, e1 cos g1,
to remove singularities associated withe2 sin g2, e2 cos g2the longitude of pericenter for circular orbits. We perform

the numerical integration of the OSPE using the Burlisch-
Stoer integrator of Press et al. (1992). Energy and angular
momentum are automatically conserved, since the semi-
major axes are considered constant and the relative inclina-
tion of the orbits varies to conserve angular momentum.
We present results obtained using an accuracy parameter
EPS\ 10~8. We found that reducing the integration step
sizes did not make a signiÐcant numerical di†erence for
several test systems.

We have compared the results of the OSPE integrations
with direct three-body integrations using a Ðxed time step
mixed-variable symplectic (MVS) integrator (Wisdom &
Holman 1991) available in the software package SWIFT
(Levison & Duncan 1991). For most integrations, we used a
time step of where is the orbital period of theP1/40, P1inner binary. Energy and angular momentum were typically
conserved to 1 part in 106 and 1012, respectively. For some
high-eccentricity systems, we reduced the time step to
values as small as This MVS integrator wasP1/600.
designed for systems in which is much larger than bothm0and For systems with we made use of am1 m2. m1/m0Z 0.1
newer MVS integrator modiÐed to accommodate arbitrary
mass ratios, kindly provided to us by J. Wisdom and
M. Holman. In a number of test calculations with this
newer integrator, we varied the time step systematically to
verify that our results are not a†ected by numerical errors.

To complement integrations using the MVS integrator,
we also used SWIFTÏs Burlisch-Stoer (BS) integrator in a
few test runs. This integrator is valid for arbitrarily strong
interactions between any pair of bodies but is not well
suited for very long integrations. We have performed only a
small number of these tests, since the BS integrations
require a much longer computer time. Energy and angular
momentum in BS integrations were typically conserved to 1
part in 105. Most BS integrations were stopped after one
full oscillation of which we used to determine thee1,
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““maximum eccentricity perturbation ÏÏ of the inner orbit,
although, as pointed out in ° 2.3, the true long-term secular
evolution of the eccentricity will not, in general, be strictly
periodic. A typical BS run lasting for took aboutD105P2400 CPU hours on a MIPS R10000 processor, while the
same run using the MVS integrator would take only about
2 CPU hours.

The numerical integrations all started with initial values
of the inner and outer arguments of pericenter of 0¡ and
180¡, respectively. This choice leads to the maximum eccen-
tricity induced in the inner binary in both the planetary
limit (see ° 2.4) and the quadrupole approximation (see
° 2.3). We have performed additional integrations to verify
that the remaining angles (longitudes of ascending node and
initial anomalies) do not signiÐcantly a†ect the secular evol-
ution of the system. For large inclinations, the initial argu-
ment of pericenter of the inner binary is important in
determining whether the system will undergo circulation or
libration, if the inner orbit has a signiÐcant initial eccentric-
ity (see Fig. 3). However, if the inner orbit is nearly circular
initially, then the initial values of the angles are of little
importance since the inner orbit can switch from circulation
to libration and vice versa. For coplanar orbits, the magni-
tude of the angular momentum of the inner orbit increases
when and decreases when g [ 0. For small,g \ g2[ g1\ 0
nonzero inclinations this can still serve as a guide when
considering the e†ect of varying the angles.

3.2. Eccentricity Oscillations
First, we investigate the dependence of the maximum

eccentricity perturbation of the inner orbit on the initial
relative inclination (see Fig. 6). We see that, as expected
(° 2.3), for small inclinations, the perturbations arei[ 40¡,
dominated by the octupole term, while for higher inclina-
tions the quadrupole-level perturbations dominate. In both
regimes the OSPE results match the direct numerical inte-
grations very well. Near the transition, numerical integra-
tions (both OSPE and MVS) show a beatlike pattern of
eccentricity oscillations suggesting an interference between
the quadrupole and octupole terms. Note that the results of
Figure 6 are for a system with and form1 >m0 m2> m0,which the analytic results from the classical planetary per-
turbation theory (° 2.4) can be applied for small eccentric-
ities and inclinations. We see that the agreement with both
MVS and OSPE integrations is excellent for i[ 30¡.

We now discuss in some more detail the evolution of
systems in the low- and high-inclination regimes.

3.2.1. L arge-Inclination Regime

Figure 7 illustrates the evolution of and ie1, g1, e2, g2,
obtained from a numerical MVS integration for a typical
system with large relative inclination. For large inclination,
the secular quadrupole-level perturbations dominate the
evolution. In the quadrupole approximation the inner
eccentricity undergoes periodic oscillations, while the outer
eccentricity remains constant. Indeed, we see in Figure 7
that undergoes approximately periodic oscillations ofe1large amplitude (with corresponding oscillations in i), while

remains approximately constant. The small-amplitudee2(about 10%) Ñuctuations in are due mainly to thee2smaller, octupole-level perturbations.
Deviations from strict periodicity in the variation of e1and i are also caused by octupole-level perturbations. The

period of a quadrupole eccentricity oscillation is a function

FIG. 6.ÈMaximum eccentricity of the inner orbit after a single oscil-
lation, as a function of the relative inclination. Here m1/m0\ 10~3,

a~1\ 100, and the initial The squaresm2/m0\ 0.01, e2\ 0.05, e1\ 10~5.
are from MVS integrations, and the double dashes on either side are from
OSPE integrations with varying initial longitude of periastron. The hori-
zontal line indicates the amplitude of the eccentricity oscillations calcu-
lated analytically in the planetary theory (° 2.4). The solid curve indicates
the amplitude of eccentricity oscillations calculated analytically according
to the quadrupole-level theory for iZ 40¡.

FIG. 7.ÈTypical evolution of the eccentricities, longitudes of perias-
tron, and relative inclination for a system in the high-inclination regime.
Here a~1\ 100, the initial inclinationm1/m0\ 10~3, m2/m0\ 0.01,
i\ 60¡, and the initial eccentricities and Time is givene1\ 10~5 e2\ 0.05.
in years assuming AU and These results were obtaineda1\ 1 m0\ 1 M

_
.

using numerical MVS integrations.
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of the mass ratios and the outer eccentricity (see ° 2.3). Our
numerical integrations of the OSPE reveal that the most
signiÐcant corrections to this period come from the variable
time spent at low eccentricities. Equation (35) implies that
the time derivative of is small when the inner orbit has ae1small eccentricity. Then the octupole (and higher order) per-
turbations can become important, causing signiÐcant varia-
tion in the time a system will spend with a small inner
eccentricity. This e†ect can be seen clearly in Figure 7.

The OSPE do not correctly describe the evolution of a
systems starting with However for any system withe1\ 0.
arbitrarily small but nonzero the inner orbit can switche1,back and forth between libration and circulation in the

plane, achieving the full range of eccentricities. In oure1-g1MVS integrations the short-period variations (averaged out
in secular perturbation theory) provide the necessary per-
turbations to allow for the full eccentricity oscillations, even
if the initial e1\ 0.

3.2.2. Small-Inclination Regime

For small inclinations the secular octupole-level(i[ 40¡),
perturbations dominate and both and typicallye1 e2undergo very small-amplitude Ñuctuations, as does the rela-
tive inclination (Fig. 8). In the octupole approximation
angular momentum is periodically transferred from one
orbit to the other. In this regime, the special case of initially
circular orbits is stable to eccentricity oscillations. Short-
period perturbations will still cause small Ñuctuations in
both eccentricities, but since the inclination does not
undergo large oscillations, the angular momentum trans-
ferred from one orbit to another is limited by angular
momentum conservation, preventing large eccentricities
from developing in either orbit.

For inclinations approaching D40¡, the octupole-level
interaction still leads to a noticeable amplitude oscillation
superimposed onto the quadrupole-level result. For a small
range of inclinations the two eccentricity oscillations can

FIG. 8.ÈTypical evolution of a system in the low-inclination regime.
All parameters are as in Fig. 7, except that the initial inclination i\ 15¡.
These results were obtained using numerical MVS integrations.

become comparable leading to a secular evolution with a
period and amplitude larger than either of the two oscil-
lations in isolation.

3.3. Dependence on the Ratio of Semimajor Axes
Numerical results illustrating the dependence of the

maximum eccentricity perturbation of the inner orbit on the
ratio of semimajor axes are shown in Figure 9. Some small
deviations between the OSPE and MVS results appear for
small where higher order secular perturbations maya2/a1,be signiÐcant. As predicted by the quadrupole-level approx-
imation, the amplitude of the eccentricity oscillations
becomes independent of a for high inclinations.

3.4. Dependence on the Initial Eccentricity
Figure 10 shows the dependence of the maximum inner

eccentricity on its initial value. For low inclinations increas-
ing the inner eccentricity nearly adds to the maximum
induced eccentricity. In the high-inclination regime increas-
ing the initial inner eccentricity does not a†ect the
maximum inner eccentricity signiÐcantly until the two
become comparable.

3.5. Dependence on the Outer Eccentricity
Figure 11 shows the e†ect of varying the outer eccentric-

ity. The OSPE and MVS integrations agree precisely for
moderate eccentricities but show discrepancies for both
very large and very small e2.For low i and short-period eccentricity varia-e2 [ 10~2,
tions become important. These are not included in the
OSPE since they were averaged out of the Hamiltonian.
Formally, is a Ðxed point, since it impliesi \ e1\ e2\ 0

FIG. 9.ÈMaximum eccentricity as a function of the ratio of semi-e1major axes The integrations are for a system witha~1 \ a2/a1. m1/m0\
10~3, and initial eccentricities and Them2/m0\ 0.01, e1\ 10~5 e2\ 0.05.
various symbols (lines) are from MVS (OSPE) integrations of systems with
various relative inclinations : 0¡ (open triangles, solid line), 15¡ (open squares,
dotted lineÈhere quasi-indistinguishable from the solid line ; cf. subsequent
Ðgures), 30¡ (open circles, short-dashed line), 45¡ ( Ðlled triangles, long-
dashed line), 60¡ ( Ðlled squares, dotÈshort-dashed line), 75¡ ( Ðlled circles,
dotÈlong-dashed line), and 89¡ (stars, short-dashedÈlong-dashed line).
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FIG. 10.ÈMaximum change in as a function of its initial value. Thesee1integrations are for andm1/m0\ 10~3, m2/m0\ 0.01, e2\ 0.05,
a~1\ 100. Symbols and lines are as in Fig. 9.

in the OSPE. For low inclinations and eccentric-de1/dt \ 0
ities, the short-period eccentricity oscillations determine the
maximum eccentricity, since this Ðxed point is stable to the
small-amplitude short-period perturbations. However, for
large relative inclinations, the initial condition e1^ e2^ 0
will lead to large amplitude oscillations as discussed in
° 3.2.1. Thus, the small-amplitude, short-period oscillations

FIG. 11.ÈMaximum as a function of the initial outer eccentricity,e1 e2,for a system with and initial Form1/m0\ 10~3, m2/m0\ 0.01, e1\ 10~5.
we used a~1\ 100 as in previous Ðgures, while for wee2\ 0.6 e2[ 0.6

increased the value to a~1\ 300 (to avoid close interactions with m2).Symbols and lines are as in Fig. 9.

not included in the OSPE allow the system to explore the
full range of allowed eccentricities.

For large some discrepancies may be caused by inac-e2,curacies in the MVS integrations : the Ðxed time step implies
that periastron passages may not be fully resolved. We have
performed additional MVS integrations with a smaller time
step (shown in Fig. 11) and a smaller number of BS integra-
tions to verify that most of the discrepancy is indeed caused
by inaccuracies in the MVS integrator and not the OSPE.
However, for sufficiently large the disagreement remains.e2,As periastron passages begin to resemble close dynamical
encounters, the averaging over orbits becomes invalid, and
the OSPE are no longer applicable. In this limit where the
outer orbit is nearly parabolic, it may be better to treat each
periastron passage as a separate encounter. The results of
Heggie & Rasio (1996) may be used to calculate analytically
the eccentricity perturbation of the inner binary after each
encounter.

3.6. Dependence on the Mass Ratios
First, we investigate the dependence of the maximum

induced on (Fig. 12). The MVS and OSPE integra-e1 m2tions are in excellent agreement, except for very large m2.For sufficiently large the binding energy of tom2, m1 m2becomes comparable to its binding energy to and them0,inner orbit deviates signiÐcantly from a Keplerian orbit,
making the basic assumption of a hierarchical triple invalid.
As discussed in ° 3, the MVS integrator was not designed
for large However, we have performed a number ofm2/m0.test integrations, both BS and MVS (with a smaller time
step), and found that the MVS integrations are generally
accurate even for provided that the system ism2Zm0,stable.

Next, we explore the e†ects of varying the ratio m1/(m0(Fig. 13). The agreement between MVS and OSPE] m1)results is very good, even when In the OSPE, them1^ m0.
octupole-level perturbations vanish when remo-m2/m1\ 1,

FIG. 12.ÈMaximum as a function of the mass of the outer body,e1 m2,for a system with a~1\ 100, and initial eccentricitiesm1/m0\ 10~3, e1\
10~5 and Symbols and lines are as in Fig. 9.e2\ 0.05.
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FIG. 13.ÈMaximum as a function of the mass ratio of the innere1binary, for a system with the same parameters as in Fig. 12.m1/(m0] m1),Symbols and lines are as in Fig. 9.

ving the dominant term of the expansion for low inclina-
tions. Therefore we did not expect the OSPE to properly
model the systems with low inclinations. Using the modiÐed
MVS integrator of Wisdom & Holman (1991 ; see ° 3.1) for

we Ðnd surprisingly good agreement betweenm1/m0Z 0.1,
the OSPE and MVS results for both low and high inclina-
tions. In particular the OSPE and MVS integrations agree
on the maximum induced eccentricity in the equal-mass
case, which is an important case for binary stars.m1 \m0,Additionally, the OSPE and MVS results show similar
peaks in the maximum induced eccentricity around the
resonance between the quadrupole and octupole terms.
Both MVS and limited BS integrations also indicate that
the vanishing of the induced eccentricity for low-inclination
systems when is real. (Unfortunately, it is very timem0\ m1consuming to integrate these systems numerically with a BS
integrator, prohibiting us from doing a more thorough
investigation.) For example, for the initial conditions m0\

a~1\ 100, and i\ 0, we observedm1\ m2, e1\ e2\ 0,
only short-term eccentricity Ñuctuations of magnitude
D10~12. Thus, we conclude that the OSPE results are accu-
rate for all values of the inner mass ratio m1/(m0] m1).

3.7. Summary and Discussion
We have performed a large number of numerical integra-

tions (including many not shown here) to establish the
validity of our analytic results for a broad range of triple
conÐgurations. The only signiÐcant di†erence we observed
was in the regime where In that regime the systeme1^ 0.
will chaotically choose circulation or libration about an
island in the phase space. Since creates a(e1, g1) e1 \ 0
singularity in the OSPE, we circumvented this problem by
starting runs with While varying the time stepe1\ 10~5.
a†ected when chose to librate or circulate, it did notm1create any signiÐcant di†erence in the ratio of circulation to
libration time.

We conclude that the OSPE provide an accurate descrip-
tion of the secular evolution of hierarchical triple systems
(containing unevolving point masses and in Newtonian
gravity) for nearly all inclinations, initial eccentricities, and
mass ratios. The OSPE may be used for small providede1,that since this can be unstable to large oscillations.e1D 0,
When secular perturbations are sufficiently small, short-
period perturbations may provide the larger contribution
to the eccentricity oscillations. The OSPE are not applic-
able when since the inner orbit is thenm0/m2\ a 4 a1/a2,no longer nearly Keplerian. The OSPE also break down
whenever since the triplea2(1 [ e2)/a1(1 ] e1) [ 3È5
system is then likely unstable and its evolution will not be
dominated by secular e†ects. Similarly, the OSPE should
not be applied when where is the radiusa1(1 [ e1) [R0, R0of the larger of the two inner stars, since the tidal interaction
with that star would then be important. One should also be
careful whenever since a small fractional error ine1^ 1, e1can lead to a signiÐcant change in which isr

p,14 a1(1 [ e1),important in di†erentiating purely gravitational inter-
actions from a strongly dissipative tidal encounter or colli-
sion between the inner components.

4. RESONANT PERTURBATIONS : THE CASE OF

PSR B1620[26

4.1. Introduction
Hierarchical triple systems can be a†ected by many dif-

ferent types of perturbations acting on secular timescales. In
general, during a given phase in the evolution of a triple,
only one type of perturbation will be important. However, it
is possible that, in some cases, two perturbation mecha-
nisms with di†erent physical origins may be acting simulta-
neously and combine in a nontrivial manner. In particular,
whenever two perturbations are acting on comparable
timescales, the possibility exists that they will reinforce each
other in a nonlinear way, leading to a kind of resonant
ampliÐcation. This is not to be confused with orbital reso-
nances, which can lead to nonlinear perturbations of two
tightly coupled Keplerian orbits when the ratio of orbital
periods is close to a ratio of small integers (see, e.g., Peale
1976).

Perturbation e†ects coming from the stellar evolution of
the components or from tidal dissipation in the inner binary
were mentioned brieÑy in ° 1 and will not be discussed
extensively in this paper. Instead, we consider the case
where the inner binary contains compact objects and its
orbit is a†ected by general relativistic corrections on a time-
scale comparable to that of the Newtonian secular pertur-
bations calculated in ° 2. Rather than basing our discussion
on hypothetical cases, we concentrate on the real example
provided by the PSR B1620[26 system.

4.2. T he PSR B1620[26 Triple System
PSR B1620[26 is a millisecond radio pulsar in a triple

system, located near the core of the globular cluster M4.
The inner binary consists of a ^1.4 neutron star with aM

_^0.3 white-dwarf companion in a 191 day orbit withM
_an eccentricity of 0.025. The mass and orbital parameters of

the third body are less certain, since the duration of the
radio observations covers only a small fraction of the outer
period. However, from the modeling of the pulse frequency
derivatives as well as short-term orbital perturbation e†ects
it appears that the second companion is most likely a low-
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mass object in a wide orbit of semimajor(m2 ^ 0.01 M
_

)
axis AU (orbital period yr) and eccentric-a2 ^ 50 P2^ 300
ity (Joshi & Rasio 1997 ; Ford et al. 2000a). Thee2^ 0.45
eccentricity of the inner binary, although small, is several
orders of magnitude larger than expected for a binary milli-
second pulsar of this type, raising the possibility that it may
have been produced by long-term secular perturbations in
the triple.

An analysis based on the classical planetary theory (i.e.,
for small relative inclination ignoring general relativistic
precession) shows that a second companion of stellar mass
would be necessary to induce an eccentricity as large as
0.025 in the inner binary (Rasio 1994, 1995). Such a large
mass for the second companion has now been ruled out by
recent pulsar timing data and by the absence of an optical
counterpart for the system (Ford et al. 2000a).

It is reasonable to assume that the relative inclination is
large, since the location of the system near the core of a
dense globular cluster suggests that the triple was formed
through a dynamical interaction between binaries (Rasio et
al. 1995 ; Ford et al. 2000a). For a sufficiently large relative
inclination, we have seen (Fig. 6) that it should always be
possible to induce an arbitrarily large eccentricity in the
inner binary. Therefore, this would seem to provide a
natural explanation for the anomalously high eccentricity of
the binary pulsar in the PSR B1620[26 system (Rasio et al.
1997). However, there are two additional conditions that
must be satisÐed for this explanation to hold.

First, the timescale for reaching a high eccentricity must
be shorter than the lifetime of the triple system. In this case
the lifetime of the triple is determined by the timescale for
encounters with passing stars in the cluster, since any such
encounter is likely to disrupt the orbit of the (very weakly
bound) second companion. As discussed in detail by Ford et
al. (2000a), this is unlikely to be the case in the high-
inclination regime of secular perturbations, given the
parameters of PSR B1620[26 and its location near the
core of M4 (or insideÈit is seen just inside the edge of the
core in projection).

Second, the secular perturbation of the inner binary
pulsar by its distant second companion must be the domi-
nant source of orbital perturbation. Additional pertur-
bations that alter the longitude of periastron of the inner
binary can indirectly a†ect the evolution of its eccentricity.
For a binary pulsar, general relativity contributes a signiÐ-
cant orbital perturbation. If the additional precession of
periastron induced by general relativity is much slower than
the precession due to the Newtonian secular perturbations,
then the eccentricity oscillations should not be signiÐcantly
a†ected. However, if the additional precession is faster than
the secular perturbations, then eccentricity oscillations may
be severely damped (Holman et al. 1997 ; Lin et al. 2000). In
addition, if the two precession periods are comparable, then
a type of resonance could occur, leading to a signiÐcant
increase in the eccentricity perturbation.

4.3. Secular Evolution of the Eccentricity
We have used the OSPE to study the secular evolution of

the inner binary eccentricity in the PSR B1620[26 system.
We integrate the system using the variables h1, h2, k1, k2(eqs. [38] and [39]), which makes it easy to incorporate the
Ðrst-order post-Newtonian correction. We restrict our
attention to the one-parameter family of orbital solutions
calculated by Ford et al. (2000a), based on the modeling of

the four pulse frequency derivatives measured by Thorsett
et al. (1999). For each solution, the maximum induced
eccentricity of the inner orbit depends only on the
(unknown) relative inclination of the two orbits. In Figure
14, we show this maximum induced eccentricity as a func-
tion of the second companionÏs semimajor axis for several
inclinations.

For most solutions and most values of the inclination, the
maximum induced eccentricity remains signiÐcantly smaller
than the observed value of 0.025. However, for low enough
inclinations, there is a narrow range of solutions (around

AU) for which the observed value can be reached.a2^ 45
Most remarkably, these solutions are also the ones current-
ly preferred if one takes into account preliminary measure-
ments of the Ðfth pulse derivative and short-term orbital
perturbation e†ects in the theoretical modeling (see Ford et
al. 2000a). We also see from Figure 14 that the maximum
induced eccentricity has a peak where the precession period
due to the secular perturbation of the second companion is
comparable to the precession period due to general rela-
tivity, as expected. As the inclination increases, the
maximum induced eccentricity (at the peak) becomes
smaller and the peak moves toward lower values of Thisa2.
pattern continues for inclinations slightly larger the normal
cuto† for the low-inclination limit (^40¡). For relative incli-
nations we do not Ðnd a peak in the50¡ [ i [ 70¡
maximum induced eccentricity. For inclinations weZ75¡
again Ðnd a peak, which becomes smaller and moves
toward larger separations as the relative inclination of the
two orbits is increased.

FIG. 14.ÈTop panel : Comparison of several timescales in the PSR
B1620[26 binary pulsar as a function of the semimajor axis, of itsa2,second companion : is the general relativistic precession period of thePGRinner binary ; and are the periods of the eccentricity oscil-PHighvi PLowvilations in the high and low relative inclination regimes, respectively ; and q

cand are the expected lifetimes of the triple in the core of M4 and at theqhmhalf-mass radius, respectively. Bottom panel : Maximum induced eccentric-
ity of the inner binary for several di†erent values of the (unknown) relative
inclination. The peaks correspond to a resonance between the general
relativistic precession of the inner orbit and the Newtonian secular pertur-
bation by the second companion.
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The maximum inner eccentricity is also limited in this
case by the relatively short lifetime of the triple system in
M4, D107È109 yr depending on whether the system resides
inside or outside the cluster core (Ford et al. 2000a). For
solutions near a resonance, the inner eccentricity starts
growing linearly at nearly the same rate as it would without
general relativistic perturbations. However the period of the
eccentricity oscillations can be many times the period of
the classical eccentricity oscillations. Although this allows
the eccentricity to grow to a larger value, the timescale for
this growth is also longer. For PSR B1620[26, Ford et al.
(2000a) show that, near resonance, the inner binary achieves
an eccentricity of 0.025 in a time comparable to the
expected lifetime of the triple in the core of M4. However,
the location of the pulsar near the edge of the core (in
projection) suggests that it may in fact reside well outside
the cluster core, where its lifetime can be signiÐcantly
longer. In summary, the resonance between general rela-
tivistic precession and Newtonian secular perturbations by
the outer companion provides a possible explanation for
the inner binaryÏs eccentricity.

4.4. Comparison with Direct Numerical Integrations
We have conducted a few long integrations with our

MVS symplectic integrator for model systems similar to
PSR B1620[26, in order to check the validity of the OSPE
in the presence of a resonance (Fig. 15). Although there is
good overall agreement, we Ðnd that both the amplitude
and the width of the peak is slightly narrower in the MVS
integrations. Note that the values of the masses and semi-

FIG. 15.ÈMaximum induced eccentricity as a function of the ratio ofe1semimajor axes, The di†erent symbols show the results ofa~1 \ a2/a1.numerical integrations with and without the general relativistic term, using
both OSPE and MVS integrators : MVS integrations are shown by
squares, OSPE integrations are shown by triangles, integrations that
include general relativistic precession are indicated by open symbols, inte-
grations that ignore GR are shown with Ðlled symbols. These results are
for a system similar to PSR B1620[26, but with the masses and semimajor
axes altered to facilitate the numerical integrations : m0\ 1.4 M

_
, m1\

5 ] 10~3 M
_

, m2\ 8 ] 10~4 M
_

, e1,init \ 10~4, e2,init \ 0.193, a1\
2 ] 10~4 AU, and i\ 0¡.

major axes were decreased in order to speed up the direct
integrations and to satisfy the assumptions of the well-
tested MVS integrator provided in SWIFT (i.e., m1> m0and This results in smaller values for the ratio ofm2> m0).semimajor axes, implying less accurate results from the
OSPE. Nevertheless, the OSPE integrator performs well,
even near a resonance such as the one produced by general
relativistic precession in a system like the PSR B1620[26
triple.

5. APPLICATION TO OTHER OBSERVED TRIPLES

5.1. T he 16 Cygni Binary and Its Planet
The 16 Cyg system contains two solar-like main-

sequence stars in a wide orbit (separation D103 AU) and a
low-mass companion orbiting 16 Cyg B in a 2.2 yr (D1.7
AU) eccentric orbit (e\ 0.67). The amplitudes of the
observed radial velocity variations indicate that the low-
mass companion has a mass m sin i ^ 0.6 suggestingMJup,that it is a giant planet (Cochran et al. 1997). However the
large orbital eccentricity is surprising for a planet.

Holman et al. (1997) and Mazeh, Krymolowski, &
Rosenfeld (1997) pointed out that the secular perturbation
by 16 Cyg A could explain the large eccentricity of the
planetary orbit for a sufficiently large relative inclination. In
order for the quadrupole perturbations to be e†ective, the
precession of the longitude of periastron must be dominated
by the secular perturbations of 16 Cyg A. The general rela-
tivistic precession period (D7 ] 107 yr) can be signiÐcant in
the eccentricity evolution of the planet (Holman et al. 1997).
Similarly, if additional companions to 16 Cyg B are found
in larger orbits (like those recently detected around
t Andromedae ; see Butler et al. 1999), these would also
induce a secular change in the longitude of pericenter of the
presently known planet. Thus, additional companions
could also a†ect the eccentricity generated by the inÑuence
of 16 Cyg A. Such an interaction could prevent the quadru-
polar secular perturbation by 16 Cyg A from accumulating
long enough to produce the observed large eccentricity.

Hauser & Marcy (1999) have combined radial velocity
and astrometric data to compute a one-parameter family of
solutions, which they tabulate as a function of the line-of-
sight component z of the position vector of B relative to A.
There is also a possibility that 16 Cyg A may have an
M-dwarf companion, which would a†ect the orbital solu-
tions for the 16 Cyg AB binary and hence the secular per-
turbation timescale (Hauser & Marcy 1999). We have used
their orbital solutions for 16 Cyg A (with no M dwarf
companion) to estimate the e†ects of secular perturbations
in this system. If we assume that the eccentricity of 16 Cyg
Bb is due to quadrupolar secular perturbations, then both
general relativity and any additional planets around 16 Cyg
B could constrain the orbit of the 16 Cyg AB binary. In
Figure 16 we compare timescales for eccentricity oscil-
lations induced by 16 Cyg A and general relativistic precess-
ion, as well as the eccentricity oscillations induced by a
hypothetical second planet around 16 Cyg B. While the
period of eccentricity oscillations is shorter than 5 Gyr (the
approximate age of 16 Cyg AB; see Ford, Rasio, & Sills
1998, 2000b) for about 75% of the orbital solutions listed by
Hauser & Marcy (1999 ; we actually used an extended
version of their Table 4 kindly provided by H. Hauser), the
period of the eccentricity oscillations is shorter than the
general relativistic precession period for only about 25% of
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FIG. 16.ÈComparison of the timescales for precession of the longitude
of pericenter of the planet around 16 Cyg B due to the secular pertur-
bations by 16 Cyg A and for high and low relative(PA,Highvi PA,Lowviinclination regimes, respectively), general relativity and secular(PGR),
perturbations by a hypothetical second planet assuming that it is(PBc),coplanar with 16 Cyg Bb and has a mass of 1 Note thatMJup. PA,Highvi,and are plotted as a function of the binary semimajor axis,PA,Lowvi , PGRwhile is shown as a function of the orbital radius of the additionalPBcplanet. and were calculated for the one-parameter familyPA,Highvi PA,Lowviof orbital solutions given by Hauser & Marcy (1999), which do not extend
below a ^ 900 AU. indicates the age of 16 Cyg B.qms

their solutions (assuming sin i^ 1 ; with sin i^ 0.5 this
fraction increases to about 60%).

Given the large mass ratio of 16 Cyg A to 16 Cyg Bb and
the high eccentricity of the orbit ([0.53), the ratio C3/C2(see eqs. [23] and [24]) can approach unity. Thus, the octu-
pole term can be very signiÐcant in the dynamics of this
system on sufficiently long timescales. As an example, we
use the z\ 0 solution of Hauser & Marcy (1999) and
assume that the planet was initially on a nearly circular
orbit with an initial relative inclination of 60¡. We Ðnd that
the period of eccentricity oscillations is then D3 ] 107 yr
(D4 ] 107 yr if general relativistic precession is not
included ; D6 ] 107 yr if neither general relativistic precess-
ion nor the octupole term is included) and the amplitude of
the Ðrst eccentricity oscillation is ^0.685 (^0.767 without
GR; ^0.764 without GR or octupole term). However, there
is a longer term oscillation with a period of D7 ] 108 yr
and an amplitude of 0.766 (^0.774 without GR), which is
not present when the octupole term is ignored. Thus, in this
example, the primary e†ect of general relativistic precession
is to reduce the fraction of the time where the planet has a
very high eccentricity.

5.2. T he Protobinary System T MR-1
HST /NICMOS observations of the TMR-1 system by

Terebey et al. (1998) reveal, in addition to the two proto-
stars (of masses D0.5 with a projected separation ofM

_
)

42 AU, a faint third body (TMR-1C) that appears to have
been recently ejected from the system. The association of

TMR-1C with the protobinary is suggested by a long,
narrow Ðlament that seems to connect the protobinary to
the faint companion. Given the observed luminosity of
TMR1-C and evolutionary models for young, low-mass
objects, the estimated age of D3 ] 105 yr for the system
leads to a mass estimate of D2È5 This suggests thatMJup.the object may be a planet that was formed in orbit around
one of the two protostars and later ejected from the system
(Terebey et al. 1998). If the age were increased to D107 yr,
the mass would increase to D15 and TMR1-C couldMJup,also have been a low-mass, brown dwarf companion to one
of the stars.

If TMR-1C is indeed a planet that was ejected from the
binary system, this may place signiÐcant constraints on
planet formation theory. Here we speculate about the
process that may have led to the ejection of a planet from
the TMR-1 system. In the standard planet formation
theory, TMR-1C must have formed in a nearly circular
orbit around one of the protostars. Secular perturbations
by the other protostar may then have driven a gradual
increase in the eccentricity of the planetÏs orbit, gradually
pushing the system toward instability. Large apocenter dis-
tances render perturbations by the other protostar increas-
ingly important. The planet could then enter the chaotic
regime in which it can switch into an orbit around the other
protostar, possibly switching between stars many times
before Ðnally being ejected from the system. The expected
velocity after such an ejection is in agreement with the esti-
mated velocity of TMR-1C (de la Fuente Marcos & de la
Fuente Marcos 1998). One concern with this scenario is
that the timescale for ejection may be short compared to the
timescale for planet formation. Early in the evolution the
protostellar disk will damp the planetÏs eccentricity.
However, as the planet becomes more massive, the gravita-
tional perturbation by the other protostar becomes domi-
nant. In fact, after the protoplanetary core has formed, it
may be able to accrete more mass than in the standard
scenario, since it is no longer conÐned to accrete from a
narrow feeding zone.

We have investigated systems similar to TMR-1, but with
the low-mass companion in a nearly circular orbit around
one of the stars. We assume that the two protostars have
masses of 1 and 0.5 with a binary semimajor axisM

_
M

_
,

of 50 AU and a planet mass of 5 We estimate whenMJup.the triple system will become unstable by combining our
models of the secular eccentricity evolution of the binary
with the stability criterion of Eggleton & Kiseleva (1995).
We calculate the amplitude of secular eccentricity pertur-
bations and see if the system would violate the Eggleton &
Kiseleva (1995) instability criterion [Y 4 a2(1[ e2)/when the planetÏs orbit reaches itsa1(1] e1) \ Ymin]maximum eccentricity. For orbits with a large relative incli-
nation, planetary semimajor axes from 14 to 8 AU are
expected to become unstable as the relative inclination is
varied from 40¡ to 85¡. For nearly coplanar orbits, planet-
ary semimajor axes from 16 to 3 AU will become unstable
according to this criterion, as the outer eccentricity is varied
from 0 to 0.8. Thus, it seems plausible that a protoplanet
could begin to form near the critical semimajor axis and
eventually be ejected from the system after it has accreted a
large amount of gas. If we assume the initial semimajor axis
of the planet to be 5 AU, then we can solve for a critical
binary eccentricity, which we Ðnd to be 0.65. The period of
the eccentricity oscillations responsible for reducing the
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FIG. 17.ÈResults of Monte Carlo simulations for the dynamical evolu-
tion of possible progenitor systems of TMR-1. The systems contain a
5 planet in an initially circular 10 AU orbit around a 1 star with aMJup M

_0.5 companion star in a 50 AU orbit. All other orbital parametersM
_(initial phases, longitudes of pericenter, relative inclination, and binary

eccentricity) were assigned random values. Triangles correspond to cases
in which the planet was ejected (escaped), and squares correspond to cases
in which the planet collided with one of the stars. The time to ejection
(triangles) or collision (squares) is shown as a function of the initial stability
parameter Y 4 a2(1[ e2)/a1.

instability parameter from ^10 to ^3 is about 3 ] 104 yr.
In the coplanar regime we can also apply the stability cri-
teria of Holman & Wiegert (1999).4 As the eccentricity of
the TMR-1 binary increases from 0 to 0.8, the critical semi-
major axis decreases from about 11 to 2 AU. This is preci-
sely the region where giant planets are expected to form. If
we assume the initial semimajor axis of the planet to be 5
AU, then we can again solve for a critical binary eccentric-
ity, which we Ðnd to be 0.48. The two estimates are in
reasonable agreement, and both also agree with the results
of preliminary numerical simulations that we have per-
formed for this system.

We have conducted Monte Carlo simulations to study
the process of planet ejection from protobinaries (Fig. 17).
For systems with large inclinations, the most common
outcome for unstable systems is a collision of the planet
with its parent star. However, for systems with low relative
inclinations, the most common outcome was for the planet
to be ejected from the system. Furthermore, we found that
in many cases it can take up to D107 yr for the planet to be
ejected. Since this is longer than a typical planetary forma-
tion timescale, the scenario proposed above appears reason-
able.

4 They deÐne the critical semimajor axis as the largest orbital radius for
which planets of all initial longitudes of periastron survived for 104 binary
periods. This is di†erent from the criterion obtained by combining secular
perturbation theory with the results of Eggleton & Kiseleva (1995).
However both criteria provide an estimate of when the triple system
becomes unstable. It is reassuring that both criteria yield similar results.

5.3. Systems with Short-Period Inner Binaries
Finally, we discuss brieÑy some observations and related

theoretical work on triple systems containing short-period
inner binaries. If the outer period is also relatively short,
it may be possible to observe the secular perturbations
directly, since the timescale for eccentricity modulations
and orbital precession may become comparable to the time-
scale of observations. Unfortunately, in these systems, other
perturbation e†ects such as tidal dissipation are likely to
a†ect the secular evolution, making the theoretical analysis
more difficult.

5.3.1. HD 109648

HD 109648 is a triple-lined spectroscopic triple probably
composed of three main-sequence stars all with masses D1

(Jha et al. 2000). The inner orbit has a short period,M
_^5.5 days, so tidal dissipation e†ects are likely to be impor-

tant. The small but signiÐcant eccentricity (e1\ 0.0119
of the inner orbit has been attributed to the per-^ 0.0014)

turbation by the outer companion (Jha et al. 2000). This
system is strongly coupled, with a ^ 0.1, so the timescale for
eccentricity modulations is short, yr. Thus, theP

e
D 15

available observations, spanning over 8 yr, may already
have detected changes in the inner eccentricity and longi-
tude of pericenter. Theoretical models by Jha et al. based on
current data provide a loose constraint on the relative incli-
nation of the orbits : or5¡.9 ¹ i ¹ 54¡ 126¡ ¹ i¹ 174¡.1.
Future observations are likely to produce tighter con-
straints on this and other orbital parameters for the triple
system. However, Jha et al. speculate that additional varia-
tions may also be caused by the presence of a fourth object
in a much wider orbit.

5.3.2. HD 284163

HD 284163 is a triple system in the Hyades. The inner
binary consists of a 0.72 primary and a secondary withM

_a minimum mass of 0.33 in a 2.4 day orbit (Griffin &M
_Gunn 1981 ; Ford et al. 2000b). The outer companion (of

mass D0.5 has a projected separation of 7.4 AUM
_

)
(Patience et al. 1998). Theoretical and empirical evidence
indicate that tidal dissipation in the primary should have
circularized the inner binary (Ford et al. 2000b). However,
the radial velocity curves indicate a signiÐcant eccentricity,

(Griffin & Gunn 1981). The secular per-e1\ 0.057 ^ 0.005
turbation by the outer companion is likely responsible for
inducing this observed eccentricity. At present, however, the
outer orbit is not well constrained, making further analysis
difficult.

5.3.3. b Per

This is another triple system with a short-period (2.87
day) inner binary (1.7 that is expected toM

_
] 3.7 M

_
)

have a very nearly circular orbit on the basis of tidal dissi-
pation theory but has a signiÐcantly larger observed eccen-
tricity of 0.0653. Secular perturbations by the outer
companion (mass 1.7 in a 1.86 yr orbit) are likelyM

_responsible for maintaining the inner binaryÏs eccentricity
(Kiseleva et al. 1998).

Kiseleva et al. (1998) suggest that the inner binary may
have originally been signiÐcantly wider. In their scenario,
quadrupole perturbations drive a eccentricity increase. As
the eccentricity increases, tidal dissipation becomes signiÐ-
cant and removes energy from the orbit. As the orbit
shrinks, precession of the longitude of periastron due to the
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stellar quadrupole moments and general relativity increase,
eventually suppressing the eccentricity perturbations. The
secular decrease in the semimajor axis due to the coupling
of quadrupole perturbations and tidal dissipation is then
halted near the presently observed orbit.

In this system the ratio of semimajor axes is rather small,
^40. Thus the octupole-level perturbations could play an
important role in the secular evolution. In particular, this
could lead to signiÐcantly larger eccentricities in the initial
orbit if other e†ects have not yet started to suppress the
perturbations. Thus, the range of initial conditions that
could lead to such an evolution can be much larger than
would be expected by considering quadrupole-level pertur-
bations only.
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ERRATUM: ‘‘SECULAR EVOLUTION OF HIERARCHICAL TRIPLE STAR SYSTEMS’’ (ApJ, 535, 385 [2000])

Eric B. Ford

Astronomy Department, University of California at Berkeley

Boris Kozinsky

Physics Department, Massachusetts Institute of Technology

and

Frederic A. Rasio

Department of Physics and Astronomy, Northwestern University

The following corrections should be made to our original paper:

1. In our derivation of the octupole-order secular perturbation equations (OSPE, x 2.2) the sign of C3 in equation (24) should be
negative. This change affects the doubly averaged Hamiltonian (eq. [22]), the OSPE (eqs. [29]–[32]), and the comparison with
classical planetary perturbation theory (x 2.4, eqs. [50]–[51]). The doubly averaged Hamiltonian (eq. [22]) was used only in the
derivation of the OSPE, which are corrected with the new C3. The comparison between the OSPE and the classical planetary
perturbation equations (x 2.4) and direct numerical integrations (x 3) still show agreement, as discussed below.

2. In the comparison with the classical planetary perturbation theory (x 2.4), the sign of A12 and A21 should be negative (eqs. [44]–
[45]), since we used the arguments of periastron rather than longitudes of periastron. (The argument of periastron is measured in
the orbital plane and is defined to be the angle between the intersection of the orbital plane and the reference plane and the ray from
the focus of the ellipse towards the location of pericenter. The longitude of periastron is the sum of the argument of pericenter and the
longitude of ascending node.) This change affects the classical secular perturbation equations (eqs. [46]–[48]). Since the sign error in
C3 (eq. [24]) implicitly affected the sign of B12 and B21 (eqs. [50]–[51]), the comparison between the corrected octupole secular
perturbation equations of motion and the corrected classical secular perturbation equations of motion yields agreement in the
appropriate limit where m0 3m1 and m0 3m2. The classical secular perturbation equations were used only in x 2.4 for comparison
purposes.

The comparison between OSPE and direct numerical integrations demonstrated that the OSPE accurately modeled the secular
evolution of most hierarchical triple systems. In the OSPE, replacing C3 with �C3 is equivalent to rotating the argument of periastron
of the inner binary (g1) by 180�. Thus, the OSPE integrations were begun with g ¼ g2 � g1 ¼ 0�, while the direct numerical
integrations were begun with g ¼ 180�. This difference of initial conditions does not affect the period of the inclination or
eccentricity oscillations according to the analytic treatment of either the planetary or high-inclination regime. While the difference of
initial conditions does not affect the amplitude of the eccentricity variations in the analytic treatment of the high-inclination regime, it
does make a small difference in the planetary regime.

To quantify the differences in the maximum induced eccentricity in the inner binary (e1;max) between systems begun with g ¼ 0�

and 180
�
, we consider the comparison between OSPE and direct numerical integrations for hierarchical triple systems of varying

initial relative inclinations (i) and g (Fig. 6). The maximum fractional difference in e1;max between integrations beginning with g ¼ 0�

and 180� is 2.4% for i ¼ 30�. For an inclination of i ¼ 0� the difference is 1.6%, and for i � 40� the maximum fractional difference
is 2� 10�4.

We conclude that the sign error in C3 (eq. [24]) did not significantly affect the comparison between the OSPE and direct numerical
integrations and that the OSPE provides an accurate description of the secular evolution of most hierarchical triple systems as
discussed in x 3.7 of the original paper.

We thank O. Blaes, M. H. Lee, & A. Socrates (ApJ, 578, 775 [2002]), N. Georgakarakos (MNRAS, 337, 559 [2002]), and
M. H. Lee & S. J. Peale (ApJ, 592, 1201 [2003]) for notifying us of the sign error.

966

The Astrophysical Journal, 605:966, 2004 April 20

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.


