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ABSTRACT
We present a new parallel supercomputer implementation of the Monte Carlo method for simulating

the dynamical evolution of globular star clusters. Our method is based on a modiÐed version of He� nonÏs
Monte Carlo algorithm for solving the Fokker-Planck equation. Our code allows us to follow the evolu-
tion of a cluster containing up to 5 ] 105 stars to core collapse in hours of computing time. In this[40
paper we present the results of test calculations for clusters with equal-mass stars, starting from both
Plummer and King model initial conditions. We consider isolated as well as tidally truncated clusters.
Our results are compared to those obtained from approximate, self-similar analytic solutions, from direct
numerical integrations of the Fokker-Planck equation, and from direct N-body integrations performed
on a GRAPE-4 special-purpose computer with N \ 16384. In all cases we Ðnd excellent agreement with
other methods, establishing our new code as a robust tool for the numerical study of globular cluster
dynamics using a realistic number of stars.
Subject headings : celestial mechanics, stellar dynamics È globular clusters : general È

methods : n-body simulations È methods : numerical

1. INTRODUCTION

The dynamical evolution of dense star clusters is a
problem of fundamental importance in theoretical astro-
physics, but many aspects of the problem have remained
unresolved in spite of years of numerical work and
improved observational data. On the theoretical side, some
key unresolved issues include the role played by primordial
binaries and their dynamical interactions in the overall
cluster dynamics and in the production of exotic sources
(Hut et al. 1992), and the importance of tidal shocking for
the long-term evolution and survival of globular clusters in
the Galaxy (Gnedin, Lee, & Ostriker 1999). On the obser-
vational side, we now have many large data sets providing a
wealth of information on blue stragglers, X-ray sources and
millisecond pulsars, all found in large numbers in dense
clusters (e.g., Bailyn 1995 ; Camilo et al. 2000 ; Piotto et al.
1999). Although it is clear that these objects are produced at
high rates through dynamical interactions in the dense
cluster cores, the details of the formation mechanisms, and
in particular the interplay between binary stellar evolution
and dynamical interactions, are far from understood.

1.1. Overview of Numerical Methods
Following the pioneering work of (1971a, 1971b),He� non

many numerical simulations of globular cluster evolution
were undertaken in the early 1970s, by two groups, at Prin-
ceton and Cornell, using di†erent Monte Carlo methods,
now known as the ““ Princeton method ÏÏ and the ““ Cornell
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method ÏÏ (see Spitzer 1987 for an overview of the methods).
In the Princeton method, the orbit of each star is integrated
numerically, while the di†usion coefficients for the change
in velocity and (*v)2 (which are calculated analytically)*¿
are selected to represent the average perturbation over an
entire orbit. Energy conservation is enforced by requiring
that the total energy be conserved in each radial region of
the cluster. The Princeton method assumes an isotropic,
Maxwellian velocity distribution of stars to compute the
di†usion coefficients, and hence does not take in to account
the anisotropy in the orbits of the Ðeld stars. One advantage
of this method is that, since it follows the evolution of the
cluster on a dynamical timescale, it is possible to follow the
initial ““ violent relaxation ÏÏ phase more easily. Unfor-
tunately, for the same reason, it also requires considerably
more computing time compared to other versions of the
Monte Carlo method. In the Cornell method, also known
as the ““ Orbit-averaged Monte Carlo method ÏÏ, the changes
in energy E and angular momentum J per unit time
(averaged over an orbit) are computed analytically for each
star. Hence, the time consuming dynamical integration of
the orbits is not required. In addition, since the di†usion
coefficients are computed for both *E and *J, the Cornell
method does take in to account the anisotropy in the orbits
of the stars. The method ÏÏ is a variation of the““ He� non
Cornell method, in which the velocity perturbations are
computed by considering an encounter between pairs of
neighboring stars. This also allows the local two-
dimensional phase space distribution f (E, J) to be sampled
correctly. Our code is based on a modiÐed version of

method. We have modiÐed algorithm forHe� nonÏs He� nonÏs
determining the time step and computing the representative
encounter between neighboring stars. Our method allows
the time step to be made much smaller in order to resolve
the dynamics in the core more accurately. We describe the
basic method and our modiÐcations in more detail below in
° 2.
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The Monte Carlo methods were Ðrst used to study the
development of the gravothermal instability (Spitzer &
Hart 1971a, 1971b ; 1971b) and to explore the e†ectsHe� non
of a massive black hole at the center of a globular cluster
(Lightman & Shapiro 1977). In those early studies, the
available computational resources limited the number of
particles used in the Monte Carlo simulations to [103.
Since this is much smaller than the real number of stars in a
globular cluster (N D 105È106), each particle in the simula-
tion represents e†ectively a whole spherical shell containing
many stars, and the method provides no information about
individual objects and their dynamical interactions. More
recent implementations have used up to D104È105 particles
and have established the method as a promising alternative
to direct N-body integrations 1986 ; Giersz(Stodo� lkiewicz
1998). Monte Carlo simulations have also been used to
study speciÐc interaction processes in globular clusters,
such as tidal capture (Di Stefano & Rappaport 1994), inter-
actions involving primordial binaries (Hut, McMillan, &
Romani 1992a) and stellar evolution (Portegies Zwart et al.
1997). However, in all these studies the background cluster
was assumed to have a Ðxed structure , which is clearly not
realistic. The main goal of our study is to perform Monte
Carlo simulations of cluster dynamics treating both the
cluster itself and all relevant interactions self-consistently,
including all dynamical interactions involving primordial
binaries. This idea is particularly timely because the latest
generation of parallel supercomputers now makes it pos-
sible to do such simulations for a number of objects equal to
the actual number of stars in a globular cluster. Using the
correct number of stars in a cluster simulation ensures that
the relative rates of di†erent dynamical processes (which all
scale di†erently with the number of stars) are correct. This is
crucial if many di†erent dynamical processes are to be
incorporated, as we plan to do in this study.

In addition to Monte Carlo and N-body simulations, a
new method was developed, mainly by Cohn and collabo-
rators, based on the direct numerical integration of the
orbit-averaged Fokker-Planck equation (Cohn 1979, 1980 ;
Statler, Ostriker, & Cohn 1987 ; Murphy & Cohn 1988).
Unlike the Monte Carlo methods, the direct Fokker-Planck
method constructs the (smooth) distribution function of the
system on a grid in phase space, e†ectively providing the
N ] O limit of the dynamical behavior. The original for-
mulation of the method used a two-dimensional phase
space distribution function f (E, J) (Cohn 1979). However,
the method was later reduced to a one-dimensional form
using an isotropized distribution function f (E) (Cohn 1980).
The reduction of the method to one dimension speeded up
the calculations signiÐcantly. In addition, the use of the
Chang & Cooper (1970) di†erencing scheme provided much
better energy conservation compared to the original two-
dimensional method. The one-dimensional method provid-
ed very good results for isolated clusters, in which the e†ects
of velocity anisotropy are small. The theoretically predicted
emergence of a power-law density proÐle in the late stages
of evolution for isolated single-component systems has been
clearly veriÐed using this method (Cohn 1980). Calculations
that include the e†ects of binary interactions, including pri-
mordial binaries, have also allowed the evolution to be fol-
lowed beyond core collapse (Gao et al. 1991). However,
results obtained using the one-dimensional method showed
substantial disagreement with N-body results for tidally
truncated clusters, in which the evaporation rate is dramat-

ically a†ected by the velocity anisotropy. Ignoring the
velocity anisotropy led to a signiÐcant overestimate of the
evaporation rate from the cluster, resulting in shorter core-
collapse times for tidally truncated clusters (Portegies
Zwart et al. 1998). A recent implementation of the Fokker-
Planck method by Drukier et al. (1999) has extended the
algorithm to allow a two-dimensional distribution function,
while also improving the energy conservation. A similar
two-dimensional method has also been developed by Taka-
hashi (1995, 1996, 1997). The new implementations produce
much better agreement with N-body results (Takahashi &
Portegies Zwart 1998), and can also model the e†ects of
mass loss due to stellar evolution (Takahashi & Portegies
Zwart 2000), as well as binary interactions (Drukier et al.
1999).

For many years direct N-body simulations were limited
to systems with stars. New, special-purpose com-N [ 103
puting hardware such as the GRAPE (Makino et al. 1997)
now make it possible to perform direct N-body simulations
with up to N D 105 single stars (Hut & Makino 1999), but
the inclusion of a signiÐcant fraction of primordial binaries
in these simulations remains prohibitively expensive. The
large dynamic range of the orbital timescales of the stars in
the cluster presents a serious difficulty for N-body simula-
tions. The orbital timescales can be as small as the periods
of the tightest binaries. The direct integration of stellar
orbits is especially plagued by this e†ect. These difficulties
are overcome using techniques such as individual integra-
tion time steps, and various schemes for regularizing
binaries (see, e.g., Aarseth 1998 for a review). These short-
cuts introduce speciÐc selection e†ects, and complicate code
development considerably. Instead, in the Monte Carlo
methods, individual stellar orbits are represented by their
constants of the motion (energy E and angular momentum
J for a spherical system) and perturbations to these orbits
are computed periodically on a time step that is a fraction of
the relaxation time. Thus the numerical integration pro-
ceeds on the natural timescale for the overall dynamical
evolution of the cluster. Note also that, because of exponen-
tially growing errors in the direct integration of orbits,
N-body simulations, just like Monte Carlo simulations, can
only provide a statistically correct representation of cluster
dynamics (Goodman, Heggie, & Hut 1993 ; Hernquist, Hut,
& Makino 1993).

A great advantage of the Monte Carlo method is that it
makes it particularly easy to add more complexity and
realism to the simulations one layer at a time. The most
important processes that we will focus on initially will be
stellar evolution and mass loss through a tidal boundary.
Interactions of single stars with primordial binaries, binary-
binary interactions, stellar evolution in binaries, and a
detailed treatment of the inÑuence of the Galaxy, including
tidal shocking of the cluster when it passes through the
Galactic disk, will be incorporated subsequently.

Recent improvements in algorithms and available com-
putational resources have allowed meaningful comparisons
between the results obtained using di†erent numerical
methods (see for example the ““ collaborative experiment ÏÏ
by Heggie et al. 1998). However, there still remain substan-
tial unresolved di†erences between the results obtained
using various methods. For example, the lifetimes of clus-
ters computed recently using di†erent methods have been
found to vary signiÐcantly. Lifetimes of some clusters com-
puted using direct Fokker-Planck simulations by Cherno†
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& Weinberg (1990) are up to an order of magnitude shorter
than those computed using N-body simulations and a more
recent version of the Fokker-Planck method (Takahashi &
Portegies Zwart 1998). It has been found that, in many
cases, the di†erences between the two methods can be
attributed to the lack of an appropriate discrete representa-
tion of the cluster in the Fokker-Planck simulations. This
can lead to an overestimate of the mass-loss rate from the
cluster, causing it to disrupt sooner. Recently, new cali-
brations of the mass loss in the Fokker-Planck method
(Takahashi & Portegies Zwart 2000) that account for the
slower mass loss in discrete systems, has led to better agree-
ment between the methods. The limitation of N-body simu-
lations to small N (especially for clusters containing a large
fraction of primordial binaries) makes it particularly diffi-
cult to compare the results with Fokker-Planck calcu-
lations, which are e†ectively done for very large N
(Portegies Zwart et al. 1998 ; Heggie et al. 1998). This gap
can be Ðlled very naturally with Monte Carlo simulations,
which can be used to cover the entire range of N not acces-
sible by other methods.

1.2. Astrophysical Motivation
The realization over the last 10 years that primordial

binaries are present in globular clusters in dynamically sig-
niÐcant numbers has completely changed our theoretical
perspective on these systems (see e.g., the review by Hut
et al. 1992b). Most importantly, dynamical interactions
between hard primordial binaries and other single stars or
binaries are now thought to be the primary mechanism for
supporting a globular cluster against core collapse
(McMillan, Hut, & Makino 1990, 1991 ; Gao et al. 1991).
In addition, exchange interactions between primordial
binaries and compact objects can explain very naturally the
formation of large numbers of X-ray binaries and recycled
pulsars in globular cluster cores (Sigurdsson & Phinney
1995 ; Davies & Hansen 1998 ; Portegies Zwart et al. 1997).
Previously, it was thought that primordial binaries were
essentially nonexistent in globular clusters, and so other
mechanisms such as tidal capture and three-body encoun-
ters had to be invoked in order to form binaries dynami-
cally during core collapse. However, these other
mechanisms have some serious problems, and are much
more likely to result in mergers than in the formation of
long-lived binaries (Cherno† 1996 ; Kochanek 1992 ; Kumar
& Goodman 1996).

Hubble Space Telescope (HST ) observations have provid-
ed direct constraints on primordial binary fractions in clus-
ters. The binary fraction is a key input parameter for any
realistic study of cluster dynamics. For example, the recent
observation of a broadened main sequence in NGC 6752,
based on HST PC images of its core, suggest that the binary
fraction is probably in the range 15%È38% in the inner core
(Rubenstein & Bailyn 1997).

Despite the fact that binaries play a crucial role in the late
phases of evolution of a cluster, the overall evolution of a
binary population within a cluster, and its direct implica-
tions for the formation rate of observable binaries and blue
stragglers remains poorly understood. In addition, the rela-
tive importance of binaries in a cluster, like many other
physical processes, may depend on the actual size (N) of the
cluster. This makes it difficult to extend results obtained
from smaller N-body simulations to realistic globular

cluster models. When the initial primordial binary fraction
is below a certain critical value, a globular cluster core can
run out of binaries before the end of its lifetime, i.e., before
being evaporated in the tidal Ðeld of the Galaxy (McMillan
& Hut 1994). Without the support of binaries, the cluster
will undergo a much deeper core collapse and so-called
gravothermal oscillations (Sugimoto & Bettwieser 1983 ;
Breeden, Cohn, & Hut 1994 ; Makino 1996). At maximum
contraction, the core density may increase by many orders
of magnitude, leading to greatly enhanced interaction rates.
Our new Monte Carlo code will allow us to follow the
evolution of a cluster through this phase, including in detail
the dynamical interactions between the D103 objects in the
core.

Of particular interest is the possibility that successive col-
lisions and mergers of MS stars might lead to a runaway
process. The recent HST observations of stellar cusps in the
cores of M15 (Guhathakurta et al. 1996 ; Sosin & King
1997) and NGC 6624 (Sosin & King 1995) have generated
renewed interest in the possibility of massive black holes in
globular clusters. The most signiÐcant unresolved theoreti-
cal issue concerns the manner in which such a black hole
could form in a dense cluster. One of the likely routes,
which we plan to examine with our simulations, is via the
collisions and mergers of main-sequence stars, leading to
the runaway build-up of a massive object and its eventual
gravitational collapse (Portegies Zwart et al. 1999).

A very signiÐcant e†ect of the galactic environment on a
cluster is the gravitational shock heating of the cluster due
to passages close to the bulge and through the disk. When a
cluster passes through the Galactic disk, it experiences a
time-varying gravitational force that pulls the cluster
toward the equatorial plane. The net e†ect of the shock is to
induce an increase in the average energy of the stars,
causing the binding energy of the cluster to decrease, and
the rate of escape of stars through evaporation to increase
(Cherno†, Kochanek, & Shapiro 1986). In addition, in some
cases, ““ shock-induced relaxation ÏÏ can be almost as impor-
tant as two-body relaxation in the overall evolution of the
cluster (Gnedin et al. 1999 ; Gnedin & Ostriker 1997). Both
the energy shift and the relaxation induced by tidal shock-
ing can be incorporated in our Monte Carlo method by
assuming an orbit for the cluster around the Galactic center
and introducing an appropriate perturbation to the energy
of the stars each time the cluster passes through the disk.
This can be done without adding much computational
overhead to the problem, since tidal shocking only occurs
twice during the orbital period of the cluster. The ability of
the Monte Carlo method to model such e†ects simulta-
neously with a realistic treatment of the internal dynamical
evolution of the cluster makes it a very useful tool in verify-
ing and extending previous results obtained using other
methods.

The star-by-star representation of the system in Monte
Carlo simulations makes it easy to study of the evolution of
a particular population of stars within a cluster. For
example, the evolution of a population of neutron stars
could be followed closely, to help predict their properties
and expected distributions within clusters. Of particular
interest are M15 and 47 Tuc, which have both been the
targets of several highly successful searches for pulsars
(Anderson 1992 ; Robinson et al. 1995 ; Camilo et al. 2000).
The observed properties of pulsars in these clusters are
found to be very di†erent. The pulsars in 47 Tuc are all
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millisecond pulsars, and most are in short-period binaries,
while those in M15 are mostly single recycled pulsars with
longer pulse periods. This suggests that these two clusters
may provide very di†erent dynamical environments for the
formation of recycled pulsars.

2. THE MONTE CARLO METHOD

2.1. Overview
Our basic algorithm for doing stellar dynamics is based

on the ““ orbit-averaged Monte Carlo method ÏÏ developed
by (1971a, 1971b). The method was later used andHe� non
improved by (1982, 1985, 1986). It has alsoStodo� lkiewicz
recently been used by Spurzem & Giersz (1996) to follow
the evolution of hard three-body binaries in a cluster with
equal point-mass stars. New results using Stodo� lkiewiczÏs
version of the method were also presented recently by
Giersz (1998). In earlier implementations of the Monte
Carlo method with N D 103, each particle in the simulation
was a ““ superstar,ÏÏ representing many individual stars with
similar orbital properties. In our implementation, with
N D 105È106, we treat each particle in the simulation as a
single star. We have also modiÐed original algo-He� nonÏs
rithm to allow the time step to be made much smaller in
order to resolve the dynamics in the core more accurately.

In the simplest case of a spherical system containing N
point masses the algorithm can be summarized as follows.
We begin by assigning to each star a mass, radius and veloc-
ity by sampling from a spherical and isotropic distribution
function (for example, the Plummer model). Once the posi-
tions and masses of all stars are known, the gravitational
potential of the cluster is computed assuming spherical
symmetry. The energy and angular momentum of each star
are then calculated. Energy and angular momentum are
perturbed at each time step to simulate the e†ects of two-
body and three-body relaxation. The perturbations depend
on each starÏs position and velocity, and on the density of
stars in its neighborhood. The time step should be a fraction
of the relaxation time for the cluster (which is larger than
the dynamical time by a factor P N/ ln N). The pertur-
bation of the energy and angular momentum of a star at
each time step therefore represents the cumulative e†ect of
many small (and distant) encounters with other stars. Under
the assumption of spherical symmetry, the cross sections for
these perturbations can be computed analytically. The local
number density is computed using a sampling procedure.
Once a new energy and angular momentum is assigned to
each star, a new realization of the system is generated by
assigning to each star a new position and velocity in an
orbit that is consistent with its new energy and angular
momentum. In selecting a new position for each star along
its orbit, each position is weighted by the amount of time
the star spends around that position. Using the new posi-
tions, the gravitational potential is then recomputed for the
entire cluster. This procedure is then repeated over many
time steps. After every time step, all stars with positive total
energy (see ° 2.7) are removed from the computation since
they are no longer bound to the cluster and are hence con-
sidered lost from the cluster instantly on the relaxation
timescale. The method allows stars to have arbitrary masses
and makes it very easy to allow for a stellar mass spectrum
in the calculations.

We now describe our implementation of the Monte Carlo
method in detail. For completeness, we also include some of

the basic equations of the method. For derivations of these
equations, and a more detailed discussion of the basic
method, see (1971b), (1982), andHe� non Stodo� lkiewicz
Spitzer (1987).

2.2. Initial Conditions
The initial model is assumed to be in dynamical equi-

librium, so that the potential does not change on the cross-
ing timescale. This is important since the Monte Carlo
method uses a time step that is of the order of the relaxation
time, and hence cannot handle the initial phase of ““ violent
relaxation ÏÏ during which the potential changes on the
dynamical timescale. Under the assumption of spherical
symmetry, the distribution function for such an equilibrium
system can be written in the form f \ ((E, J), where E and
J are the energy per unit mass, and angular momentum per
unit mass,

E\ '(r) ] 12(vr2] v
t
2) , (1)

J \ rv
t
. (2)

Here r is the distance from the cluster center, is thev
rradial velocity, is the transverse velocity, and '(r) is thev

tgravitational potential. In principle, the initial distribution
function ((E, J) can be arbitrary. However, in practice,
computing a self-consistent potential for an arbitrary dis-
tribution function can be quite difficult. Since the method
requires the initial potential '(r) to be known, a simple
initial model is usually selected so as to allow the potential
to be computed quasianalytically. Common examples are
the sequence of King models and the Plummer model.

Once the number of stars N is selected, the initial condi-
tion is constructed by assigning to each star values for r, v

r
,

and m, consistent with the selected model. Once the posi-v
t
,

tions and masses of all the stars are known, the gravita-
tional potential ' is computed as a function of distance
from the center. The energy per unit mass E, and angular
momentum per unit mass J of each star are then computed
using equations (1) and (2).

2.3. T he Gravitational Potential
We compute the mean potential of the cluster by

summing the potential due to each star, under the assump-
tion of spherical symmetry. We use only the radial position
r of each star (since we assume spherical symmetry, we can
neglect the angular positions of the stars, to a very good
approximation). We begin by sorting all the stars by
increasing radius. Then the potential at a point r, which lies
between two stars at positions and is given byr
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At each time step, we store precomputed values of '
k
\

for each star k in the cluster. The potential at an'(r
k
),

arbitrary point r can then be quickly computed simply by
Ðnding the index k such that and then usingr

k
¹ r ¹ r

k`1equation (4).
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We now describe the process of evolving the system
through one complete time step.

2.4. Two-Body Relaxation and T ime step Selection
We simulate the e†ect of interactions during each time

step *t by perturbing the energy and angular momentum of
each star in the cluster. The perturbations *E and *J for a
star are determined by computing a single e†ective encoun-
ter between the star and its nearest neighbor (in terms of
distance from the center, since we assume spherical
symmetry). During such an encounter, the two stars
exchange kinetic energy, but the total energy is conserved.
In the center of mass frame of the two interacting stars, the
magnitude of the velocity does not change ; instead the
velocity is deÑected through an angle b.

In the original method described by (1971b), theHe� non
time step used was a small fraction of the relaxation time for
the entire cluster. Although the time step computed in this
way is suitable for the outer regions of the cluster, it is too
large to provide an accurate representation of the relax-
ation in the core, especially in the later stages of cluster
evolution, where the relaxation time in the core can be
many orders of magnitude smaller than in the outer regions.
This caused the inner regions of the cluster to be under-
relaxed. The limited computational resources available at
that time did not permit the time step to be made much
smaller without slowing down the computation to a crawl.
The greatly increased computational power available today
allows us to use a time step that is small enough to resolve
the relaxation process in the core, even for systems with
N Z 105.

To provide an accurate description of the overall relax-
ation of the cluster, each e†ective encounter should give the
correct mean value of the change in energy at each position.
We achieve this by selecting the e†ective deÑection angle b

efor the encounter (in the center of mass frame of the two
interacting stars) as follows. If the masses of the two stars
are and and their velocities and respectively,m1 m2, v1 v2,then the kinetic energy changes can be written as

*KE1\ m1 v1 *v1] 12m1(*v1)2 , (5)

*KE2\ m2 v2 *v2] 12m2(*v2)2 , (6)

where and are the changes in the velocities during*v1 *v2the encounter. Since the total kinetic energy in each encoun-
ter is conserved, the mean value of the Ðrst terms on the
right-hand side of equations (5) and (6) must equal the mean
value of the second terms (with the opposite sign). This
indicates that in order to get a good representation of the
energy exchange between stars in the relaxation process, we
must consider the mean value of during each timem1(*v1)2step.

The change in velocity during an encounter with a*v1deÑection angle b, can be calculated from elementary
mechanics as (see, e.g., Spitzer 1987, eq. [2]È[6]),

(*v1)2 \ 4
m22

(m1] m2)2
w2 sin2 (b/2) , (7)

where w is the relative speed of the two stars before the
encounter. The mean overall rate of change in the velocity

due to many distant (weak) encounters of the starS(*v1)2Twith other cluster stars can then be calculated by averaging
over the impact parameter (see Spitzer 1987, eq. [2]È[8]).
Using this, the mean change in the velocity in the time *t is

given by

S(*v1)2T \ 8nG2l*tSm22 w~1T ln " , (8)

where ln "4 ln (cN) is the Coulomb logarithm (c is a con-
stant D0.1 ; see ° 3.1), and l is the local number density of
stars. We obtain the correct mean value of bym1(*v1)2equating the right-hand side of equations (7) and (8), giving

T
4

m1m22
(m1] m2)2

w2 sin2 (b/2)
U

\ 8nG2l*tSm1m22w~1T ln (cN) . (9)

Equation (9) relates the time step *t to the deÑection angle
b for the encounter. Thus, in order to get the correct mean
value of for the star during the time *t, we canm1(*v1)2deÐne the e†ective deÑection angle for the representativeb

eencounter, as

sin2 (b
e
/2) \ 2nG2 (m1] m2)2

w3 l*t ln (cN) . (10)

In addition to using the correct mean value of m1(*v1)2,we can also require that its variance be correct. To compute
the variance, we must calculate the mean value of (*v1)4.Using equation (7), we have

(*v1)4 \ 16
m24

(m1] m2)4
w4 sin4 (b/2) . (11)

We then use SpitzerÏs equations (2)È(5), and again integrate
over the impact parameter to get the mean value of in(*v1)4the time *t,

S(*v1)4T \ 16nG2 m24
(m1] m2)2

wl*t . (12)

Comparing equations (11) and (12), we see that, in order to
have the correct variance of we should havem1(*v1)2,

sin4 (b
e
/2) \ nG2 (m1] m2)2

w3 l*t . (13)

Consistency between equations (10) and (13) gives the rela-
tion between the number of stars in the system, and the
e†ective deÑection angle that must be used,

sin2 (b
e
/2) \ 1

2 ln (cN)
. (14)

This relation indicates that for large N, the e†ective deÑec-
tion angle must be small, while as N decreases, close
encounters become more important. If the time step is too
large, then Ssin2 (b/2)T is also too large, and the system is
underrelaxed. Hence the time step used should be sufficient-
ly small so as to get a good representation of the relaxation
process in the cluster. In addition, the local relaxation time
varies greatly with distance from the cluster center. In prac-
tice we use the shortest relaxation time in the core to
compute the time step. We Ðrst evaluate the local density o

cin the core and the approximate core radius r
c
\

We then compute the time step *t using(3v
c
2/4nGo

c
)1@2.

equation (10) and requiring that the average value of
for the stars within the core radius be suffi-sin2 (b

e
/2) r

cciently small. The value of given by equation (14)sin2 (b
e
/2)

varies only slightly between 0.046 and 0.072 for N between
104 and 5] 105 (assuming c^ 0.1). Hence for all our simu-
lations, we require that sin2 (b

e
/2) [ 0.05.
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Equation (10) is then used to compute the e†ective deÑec-
tion angle for all stars in the cluster. The local number
density l is computed by averaging over the nearest p stars.
We Ðnd that using a value of p between 20 and 50 gives the
best results for N D 105. We Ðnd that the di†erence in the
core-collapse times obtained for various test models using
values of p between 20 and 50 is less than 1%. Of course, the
value of p should not be too large so as to maintain a truly
local estimate of the number density. We use a value of
p \ 40 in all our calculations, which gives consistently good
agreement with published results.

2.5. Computing the Perturbations *E and *J
during an Encounter

To compute the velocity perturbation during each time
step, a single representative encounter is computed for each
star, with its nearest neighbor in radius. Selecting the
nearest neighbor ensures that the correct local velocity dis-
tribution is sampled and also accounts for any anisotropy
in the orbits. Because of spherical symmetry, selecting the
nearest neighbor in radius is equivalent to selecting the
nearest neighbor in three dimensions, since only the velocity
(and not the position) of the nearest neighbor is used in the
encounter. Following notation, we let (r, andHe� nonÏs v

r
, v

t
)

(r@, represent the phase space coordinates of the twov
r
@ , v

t
@)

interacting stars, with masses m and m@, respectively. In
addition to these parameters, the angle t of the plane of
relative motion deÐned by (r@[ r, with some refer-¿@ [ ¿)
ence plane is selected randomly between 0 and 2n, since the
distribution of Ðeld stars is assumed to be spherically sym-
metric.

We take our frame of reference such that the z-axis is
parallel to r, and the (x, z)-plane contains Then the veloci-¿.
ties of the two stars are given by

¿\ (v
t
, 0, v

r
) , ¿@\ (v

t
@ cos /, v

t
@ sin /, v

r
@) , (15)

where / is also randomly selected between 0 and 2n, since
the transverse velocities are isotropic because of spherical
symmetry. The relative velocity is thenw \ (w

x
, w

y
, w

z
)

w \ (v
t
@ cos /[ v

t
, v

t
@ sin /, v

r
@ [ v

r
) . (16)

We now deÐne two vectors and with the samew1 w2magnitude as w, such that and w are mutuallyw1, w2,orthogonal. The vectors and are given byw1 w2
w1\ (w

y
w/w

p
,[ w

x
w/w

p
, 0) , (17)

w2\ ([w
x
w
z
/w

p
,[ w

y
w

z
/w

p
, w

p
) , (18)

where The angle t is measured from thew
p
\ (w

x
2] w

y
2)1@2.

plane containing the vectors w and The relative velocityw1.of the two stars after the encounter is given by

w* \ w cos b ] w1 sin b cos t] w2 sin b sin t , (19)

where b is the deÑection angle computed in ° 2.4. The new
velocities of the two stars after the interaction are then given
by

¿* \ ¿ [ m@
m] m@

(w* [ w) , (20)

¿@* \ ¿@] m
m] m@

(w* [ w) . (21)

The new radial and transverse velocities for the Ðrst star
are given by and from whichv

r
* \ v

z
*, v

t
* \ (v

x
*2] v

y
*2)1@2,

we compute the new orbital energy E and angular momen-
tum J as and SimilarE* \ '(r) ] 12(vr*2] v

t
*2), J* \ rv

t
*.

quantities E@* and J@* are also computed for the second
star.

2.6. Computing New Positions and Velocities
Once the orbits of all the stars are perturbed, i.e., new

values of E and J are computed for each star, a new realiza-
tion of the system is generated, by selecting a new position
for each star in its new orbit, in such a way that each posi-
tion in the orbit is weighted by the amount of time that the
star spends at that position. To do this, we begin by com-
puting the pericenter and apocenter distances, andrmin rmax,for each star. The orbit of a star in the cluster potential is a
rosette, with r oscillating between and which arermin rmax,roots of the equation

Q(r) \ 2E[ 2'(r) [ J2/r2\ 0 . (22)

See Binney & Tremaine (1987, ° 3.1) for a general dis-
cussion, and see (1971b, eqs. [41]È[45]) for a conve-He� non
nient method of solution. The new position r should now be
selected between and in such a way that the prob-rmin rmax,ability of Ðnding r in an interval dr is equal to the fraction of
time spent by the star in the interval during one orbit, i.e.,

dt
P

\ dr/ o v
r
o

/
rmin
rmax dr/ o v

r
o

, (23)

where P is the orbital period, and is given byo v
r
o

o v
r
o\ [2E[ 2'(r) [ J2/r2]1@2\ [Q(r)]1@2 . (24)

Thus the value of r should be selected from a probability
distribution that is proportional to Unfor-f (r) \ 1/ o v

r
o .

tunately, at the pericenter and apocenter points and(rminthe radial velocity is zero, and the probability dis-rmax), v
rtribution becomes inÐnite. To overcome this problem, we

make a change of coordinates by deÐning a suitable func-
tion r \ r(s) and selecting a value of s from the distribution

g(s) 4
1

o v
r
o

dr
ds

. (25)

We must select the function r(s) such that g(s) remains Ðnite
in the entire interval. A convenient function r(s) that satisÐes
these requirements is given by

r \ 12(rmin] rmax) ] 14(rmax [ rmin)(3s [ s3) , (26)

where s lies in the interval [1 to 1. We then generate a
value for s, which is consistent with the distribution g(s),
using the von Neumann rejection technique. Equation (26)
then gives a corresponding value for r that is consistent with
the distribution function f (r).

The magnitude of the new radial velocity is computedv
rusing equation (24), and its sign is selected randomly. The

transverse velocity is given by v
t
\ J/r.

Once a new position is selected for each star using the
above procedure, the gravitational potential '(r) is recom-
puted as described in ° 2.3. This completes the time step,
and allows the next time step to be started.

Note that the gravitational potential used to compute
new positions and velocities of the stars is from the previous
time step. The new potential can only be computed after the
new positions are assigned, and it is then used to recompute
the positions in the next time step. Thus the computed
potential always lags slightly behind the actual potential of
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the system. The exact potential is known only at the initial
condition. This only introduces a small systematic error in
the computation, since the potential changes signiÐcantly
only on the relaxation timescale.

A more important source of error, especially in comput-
ing the new energies of the stars after the potential is recom-
puted, is the random Ñuctuation of the potential in the core,
which contains relatively few stars, but has a high number
density. Since the derivative of the potential is also steepest
in the core, a small error in computing a starÏs position in
the core can lead to a large error in computing its energy. As
the simulation progresses, this causes a slow but consistent
leak in the total system energy. The magnitude of this error
(i.e., the amount of energy lost per time step) depends partly
on the number of stars N in the system. For large N, the
grid on which the potential is precomputed (see ° 2.3) is
Ðner, and the number of stars in the core is larger, which
reduces the noise in the potential. The overall error in
energy during the course of an entire simulation is typically
of order a few percent for N \ 105 stars. In any realistic
simulation, the actual energy gain or loss due to real physi-
cal processes such as stellar evolution, escape of stars
through a tidal boundary, and interactions involving
binaries, is at least an order of magnitude greater than this
error. Hence we choose not to renormalize the energy of the
system, or employ any other method to artiÐcially conserve
the energy of the system, which could a†ect other aspects of
the evolution.

Another possible source of error in Monte Carlo simula-
tions, which was noted by (1971b) is the ““ spuriousHe� non
relaxation ÏÏ e†ect. This is the tendency for the system to
relax because of the potential Ñuctuations from one time
step to the next, even in the absence of orbital perturbations
due to two-body relaxation. However, this e†ect is signiÐ-
cant only for simulations done with very low N D 102È103.
In test calculations performed with N D 104È105 and two-
body relaxation explicitly turned o† (by setting the scat-
tering angle in eq. [10]), we Ðnd no evidence ofb

e
\ 0

spurious relaxation. Indeed (1971b) himself showedHe� non
that spurious relaxation was not signiÐcant in his models
for N Z 103.

2.7. Escape of Stars and the E†ect of a T idal Boundary
For an isolated system, the gradual evaporation of stars

from the cluster is computed in the following way. During
each time step, after the perturbations *E and *J are com-
puted, all stars with a positive total energy (given by eq. [1])
are assumed to leave the cluster on the crossing timescale.
They are therefore considered lost immediately on the
relaxation timescale, and removed from the simulation. The
mass of the cluster (and its total energy) decreases gradually
as a result of this evaporation process.

As a simple Ðrst step to take in to account the tidal Ðeld
of the Galaxy, we include an e†ective tidal boundary
around the cluster, at a distance r

t
^R

g
(Mcluster/3M

g
)1@3,

where is the distance of the cluster from the GalacticR
gcenter and is the mass of the Galaxy (approximated as aM

gpoint mass). The tidal radius is roughly the size of the Roche
lobe of the cluster in the Ðeld of the Galaxy. Once the initial
tidal radius is speciÐed, the tidal radius at a subsequentr

t0time t during the simulation can be computed by r
t
(t) \

After each time step, we remover
t0[Mcluster(t)/Mcluster(0)]1@3.

all stars with an apocenter distance greater than thermaxtidal radius, since they are lost from the cluster on the cross-

ing timescale. As the cluster loses stars as a result of evapo-
ration and the presence of the tidal boundary, its mass
decreases, which causes the tidal boundary to shrink, in
turn causing even more stars to be lost. The total mass loss
due to a tidal boundary can be very signiÐcant, causing up
to 90% of the mass to be lost (depending on the initial
model) over the course of the simulation (see ° 3.2).

2.8. Units
Following the convention of most previous studies, we

deÐne dynamical units so that [G]\ [M0]\ [[4E0]\ 1,
where and are the initial total mass and total energyM0 E0of the system 1971b). Then the units of length L ,(He� non
and time T are given by

L \ GM02([4E0)~1 , and T \ GM05@2([4E0)~3@2 .

(27)

We see that L is basically the virial radius of the cluster, and
T is of the order of the initial dynamical (crossing) time. To
compute the evolution of the cluster on a relaxation time-
scale, we rescale the unit of time to which isT N0/ ln (cN0),of the order of the initial relaxation time. Using this unit of
time allows us to eliminate the ln (cN) dependence of the
evolution equations. The only equation that explicitly con-
tains the evolution time is equation (10), which relates the
time step and the e†ective deÑection angle. In our units,
equation (10) can be written as,

[sin2 (b
e
/2)]\ 2n

([m1]] [m2])2
[w]3 [l][*t]N , (28)

where [q] indicates a quantity q expressed in our simulation
units. Using a unit of time that is proportional to the initial
relaxation time has the advantage that the evolution time-
scale is roughly independent of the number of stars N once
an initial model has been selected. This is only true approx-
imately, for isolated systems of equal-mass stars, with no
other processes that depend explicitly on the number of
stars (such as stellar evolution or mass segregation). For
example, the half-mass relaxation time for the Plummer
model,

trh \ 0.138N
ln (cN)

A r
h
3

GM
B1@2

, (29)

is always 0.093 in our units, independent of N.
The dynamical units deÐned above are identical to the

standard N-body units (Heggie & Mathieu 1986). Hence to
convert the evolution time from N-body time units to our
Monte Carlo units, we must simply multiply by a factor
ln (cN0)/N0.

2.9. Numerical Implementation
We have implemented our Monte Carlo code on the

SGI/CRAY Origin2000 parallel supercomputer at the
National Center for Supercomputing Applications (NCSA),
and at Boston University. Our parallelized code can be used
to get signiÐcant speedup of the simulations, using up to
eight processors, especially for large N simulations. This
ability to perform large N simulations will be particularly
useful for doing realistic simulations of very large globular
clusters such as 47 Tuc (with stars). A simulationN Z 106
with N \ 105 stars can be completed in approximately
15È20 CPU hours on the Origin2000, which uses MIPS
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R10000 processors. For comparison, a simulation of this
size would take D6 months to complete using the GRAPE-
4, which is the fastest available hardware for N-body
methods.

The most computationally intensive step in the simula-
tion is the calculation of the new positions of stars. The
operation involves solving for the roots of an equation (eq.
[22]) using the indexed values of the positions of the N
stars. We Ðnd that the most efficient method to solve for the
roots in this case is the simple bisection method (e.g., Press
et al. 1992), which requires steps to converge toDN log2 N
the root. Hence the computation of the positions and
velocities also scales as in our method. TheDN log2 N
next most expensive operation is the evaluation of the
potential at a given point r. As described in ° 2.3, this
requires Ðnding k such that and then usingr

k
¹ r ¹ r

k`1equation (4). This search can again be done easily using the
bisection algorithm. However, since the evaluation of the
potential is required several times for each star, in each time
step, it is useful to tabulate the values of k on Ðne grid in r at
the beginning of the time step. This allows the required
values of k to be found very quickly, at the minor cost of
using more memory to store the table. The rest of the steps
in the simulation scale almost linearly with N. This makes
the overall computation timescale (theoretically) as
N log2 N.

In Figure 1, we show the scaling of the wall-clock time
with the number of processors, and also the scaling of the
overall computation time with the number of stars N in the
simulation. The overall computation time is consistent with
the theoretical estimate for For larger N, the com-N [ 105.
putation time is signiÐcantly higher, because of the less effi-
cient use of cache memory and other hardware inefficiencies

FIG. 1.ÈTop frame shows the total computation time required (for an
initial Plummer model evolved up to core collapse) using one processor for
simulations with up to N \ 5 ] 105. The dotted line indicates the theoreti-
cally estimated scaling of the computation time as In practice,DN log2 N.
we Ðnd that the computation timescales as DN1.4 for N \ 1È5 ] 105. The
bottom frame shows the scaling of the computation time (““ wall-clock
time ÏÏ) with the number of processors for N \ 2 ] 105.

that are introduced while handling large arrays. For N in
the range 1È5 ] 105, we Ðnd that the actual computation
timescales as DN1.4.

We Ðnd that we can easily reduce the overall computa-
tion time by a factor of B3 by using up to eight processors.
The scaling is most efficient for twoÈfour processors for
simulations with N D 1È5 ] 105. The scaling gets progres-
sively worse for more than eight processors. This is in part
caused by the distributed shared-memory architecture of
the Origin2000 supercomputer, which allows very fast com-
munication between the nearest twoÈfour processors, but
slower communication between the nearest eight pro-
cessors. Beyond eight processors, the communication is
even slower, since the processors are located on di†erent
nodes. The most suitable architecture for implementing the
parallel Monte Carlo code would be a truly shared memory
supercomputer, with roughly uniform memory access times
between processors. Our code is implemented using the
Message Passing Interface (MPI) parallelization library,
which is actively being developed and improved. The MPI
standard is highly portable, and available on practically all
parallel computing platforms in use today. The MPI library
is optimized for each platform and automatically takes
advantage of the memory architecture to the maximum
extent possible. Hence we expect that future improvements
in the communication speed and memory architectures will
make our code scale even better. We are also in the process
of improving the scaling of the code to a larger number of
processors by designing a new algorithm for reducing the
amount of communication required between processors.
This will be described in detail in a subsequent paper, where
we incorporate primordial binary interactions in our code.

3. TEST RESULTS

In this section, we describe our Ðrst results using the new
Monte Carlo code to compute the evolution of the
Plummer and King models. We explore the evolution of the
Plummer model in detail, and compare our results with
those obtained using Fokker-Planck and N-body methods.
We also compare core-collapse times and mass-loss rates
for the series of King models including a tidal(W0\ 1È12),
radius, with similar results obtained by Quinlan (1996)
using a one-dimensional Fokker-Planck method.

3.1. Evolution of an Isolated Plummer Model
We Ðrst consider the evolution of a cluster with the

Plummer model (which is a polytropic model, with index
n \ 5 ; see, e.g., Binney & Tremaine 1987) as the initial con-
dition. Perhaps the best known result for single-component
systems, is the expected homologous evolution of the halo,
leading to the eventual development of a power-law density
proÐle between the core and the outer halo, during the late
phases of evolution. At late times the cluster evolves
through a sequence of nearly self-similar conÐgurations,
with the core contracting and a power-law halo with
density o P r~b expanding out. The development of this
power law has been predicted theoretically (Lynden-Bell &
Eggleton 1980 ; Heggie & Stevenson 1988), and veriÐed
using direct Fokker-Planck integrations (Cohn 1980). The
exponent b is theoretically and numerically estimated to be
about 2.2 (Spitzer 1987). However, since the theoretical deri-
vations are based on an analysis of the Fokker-Planck
equation, it is not surprising that the numerical Fokker-
Planck integrations (which solve the same Fokker-Planck
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equation numerically) reproduce the theoretical exponent
exactly. Because of limitations in computing accurate
density proÐles using a small number of stars, this result has
not been conÐrmed independently using an N-body simula-
tion.

Here, we explore numerically for the Ðrst time the devel-
opment of this power law using an independent method.
Some early results were obtained using previous versions of
the Monte Carlo method, but with a small number of stars
N D 103 (Duncan & Shapiro 1982). Although the Monte
Carlo method can be thought of as just another way of
solving the Fokker-Planck equation, there are signiÐcant
di†erences between solving the equation in the continuous
limit (N ] O), as in direct Fokker-Planck integrations, and
by using a discrete system with a Ðnite N as in our method.
There are also many subtle di†erences in the assumptions
and approximations made in the two methods, and even in
di†erent implementations of the same method.

In Figures 2aÈ2c we show the density proÐle of the
cluster at three di†erent times during its evolution, up to
core collapse. We start with an N \ 105 isolated Plummer
model, and follow the evolution up to core-collapse, which
occurs at This simulation, performed witht \ tcc ^ 15.2trh.N \ 105 stars, took about 18 CPU hours on the SGI/Cray
Origin2000. In our calculations, the core-collapse time is
taken as the time when the innermost Lagrange radius
(radius containing 0.3% of the total mass of the cluster)
becomes smaller than 0.001 (in our units described in ° 2.8),
at which point the simulation is terminated. Given the very
rapid evolution of the core near core collapse, we Ðnd that
we can determine the core-collapse time to within [1%.
The accuracy is limited mainly by noise in the core. The
value we obtain for is in very good agreement withtcc/trhother core-collapse times between for the Plummer15È16trhmodel, reported using other methods. For example Quinlan
(1996) obtains a core collapse time of for the15.4trhPlummer model using a one-dimensional Fokker-Planck
method, and Takahashi (1993) Ðnds a value of using15.6trh,a variational method to solve the one-dimensional Fokker-
Planck equation.

Figure 2a shows the density proÐle at an intermediate
time during the evolution. The dotted line indi-t \ 11.4trhcates the initial Plummer proÐle. At this point in the evolu-
tion, we still see a well-deÐned core, with the core density
increased by a factor of D30 compared to the initial core
density. We see the power-law density proÐle developing,
with the best-Ðt index b \ 2.8. In Figure 2b, we show the
density proÐle just before core collapse, at We seet \ 15trh.that the core density has now increased by a factor of D104
over the initial core density. The power law is now clearly
visible, with the best-Ðt index b \ 2.3. Finally, in Figure 2c,
we show the density proÐle at core-collapse, Thet \ 15.2trh.dashed line now indicates the theoretical power law with
b \ 2.2. We see that the actual density proÐle seems to
approach the theoretical proÐle asymptotically as the
system approaches core collapse. At this point in the evolu-
tion, the core density as measured in our simulation is
about 106 times greater than the initial density. In a globu-
lar cluster with N \ 2 ] 105, an average stellar mass
SmT \ 0.5 and a mean velocity dispersion Sv2T1@2\M

_
,

5 km s~1, this would correspond to a number density of
D2 ] 109 pc~3. Note that a real globular cluster is not
expected to reach such high core densities, since the forma-
tion of binaries and the subsequent heating of the core due

to binary interactions become signiÐcant at much lower
densities. Numerical noise due to the extremely small size of
the core makes it difficult to determine the core radius and
density accurately at this stage. This also causes the numeri-
cal accuracy of the Monte Carlo method to deteriorate,
forcing us to stop the computation. Thus, we Ðnd that the
power-law structure of the density proÐle as the cluster
approaches core collapse is consistent with theoretical pre-
dictions, and the power-law index approaches its theoretical
value asymptotically during the late stages of core collapse.

Next we look at the evolution of the Lagrange radii (radii
containing constant fractions of the total mass), and we
compare our results with those of an equivalent N-body
simulation. In Figure 3, we show the evolution of the Lag-
range radii for an N \ 16384 direct N-body integration by
Makino (1996) and for our Monte Carlo integration with
N \ 105 stars. Time in the direct N-body integration is
scaled to the initial relaxation time (the standard time unit
in our Monte Carlo method) using equation (27) with
c\ 0.11 (see Heggie & Mathieu 1986 ; Giersz & Heggie
1994 ; Makino 1996). The agreement between the N-body
and Monte Carlo results is excellent over the entire range of
Lagrange radii and time. The small discrepancy in the outer
Lagrange radii is caused in part by a di†erent treatment of
escaping stars in the two models. In the Monte Carlo
model, escaping stars are removed from the simulation and
therefore not included in the determination of the Lagrange
radii, whereas in the N-body model escaping stars are not
removed. The di†erence is further explained by the e†ect of
strong encounters, which is greater in the N-body simula-
tion by a factor D ln (105)/ ln (16384), or about 20%. In an
isolated cluster, the overall evaporation rate is very low (less
than 1% of stars escape up to core collapse). In this regime,
the escape of stars is dominated by strong interactions in
the core. Since the orbit-averaged Fokker-Planck equation
is only valid when the fractional energy change per orbit is
small, it does not account for strong interactions. Hence,
our Monte Carlo simulations cannot accurately predict the
rate of evaporation from an isolated cluster (see, e.g., Binney
& Tremaine 1987, ° 8.4). This problem does not occur in
tidally truncated clusters, where the escape rate is much
higher, and is dominated by the di†usion of stars across the
tidal boundary, and not by strong interactions.

In Figure 4 we show the evolution of various global
quantities for the system during the same simulation as in
Figure 3. The virial ratio (K/ oW o , where K and W are the
total kinetic and potential energies of the cluster) remains
very close to 0.5 (within 1%), indicating that dynamical
equilibrium is maintained very well during the entire simu-
lation. The virial ratio provides a very good measure of the
quality of our numerical results, since it is not controlled in
our calculations (except for the initial model, which is con-
structed to be in equilibrium). We see that in the absence of
a tidal radius, there is very little mass loss (less than 1%),
and hence very little energy is carried away by escaping
stars.

3.2. Evolution of Isolated and T idally Truncated
King Models

King models (King 1966) have long been used to Ðt
observed proÐles of globular clusters. They usually provide
a very good Ðt for most clusters, except for those that have
reached core collapse. A King model has a well-deÐned,
nearly constant-density core, and a ““ lowered Maxwellian ÏÏ
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FIG. 2.È(a) Density proÐle at an intermediate time, during the evolution of an isolated Plummer model with N \ 105 stars. The expectedt \ 11.4trhpower-law in the density proÐle is clearly seen, with the best-Ðt exponent b \ 2.8. The power-law exponent approaches its theoretical value of 2.2 as the
cluster approaches core-collapse (see Figs. 2b & 2c). The dotted line indicates the initial Plummer proÐle. Units are deÐned in ° 2.8. (b) Density proÐle at

( just before core-collapse) for the same model as in Fig. 2a. The expected power-law in the density proÐle is now clearly seen, with the best-Ðtt \ 15trhexponent b \ 2.3, which is now closer to its theoretical value of 2.2. The core density is about 104 times greater than the initial density. (c) Density proÐle at
(at core-collapse) for the same model as in Fig. 2a. The dashed line now indicates the theoretical power law, with exponent b \ 2.2. The coretcc \ 15.2trhdensity is almost 106 times greater than the initial density.
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FIG. 3.ÈLagrange radii indicating the evolution of the Plummer
model, with N \ 105 stars, compared with an N-body simulation with
N \ 16,384 stars. Lagrange radii shown correspond to radii containing
0.35, 1, 3.5, 5, 7, 10, 14, 20, 30, 40, 50, 60, 70, and 80% of the total mass. The
Monte Carlo simulation is terminated at core-collapse, while the N-body
simulation continues beyond core-collapse.

FIG. 4.ÈEvolution of the total mass and energies for the same
Plummer model as in Fig. 3. The total mass loss at the time of core-
collapse is 0.3%, and the total energy loss is about 4%. Most of the energy
is lost during the late stages of evolution, with the energy loss up to

being less than 1%. Here the energy carried away by escapingt \ 10trhstars is negligible.(Eescaped)

velocity distribution, which represents the presence of a
Ðnite tidal radius. A King model is usually speciÐed in terms
of the dimensionless central potential or, equivalently,W0the central concentration where is the tidalc\ log (r

t
/r

c
), r

tradius, and is the core radius.r
cWe study the evolution of the entire family of King

models from to in two di†erent conÐgu-W0\ 1 W0\ 12,
rations. We Ðrst consider the evolution of an isolated cluster
i.e., even though the initial King model is truncated at its
Ðnite tidal radius, we do not enforce that tidal boundary
during the evolution, allowing the cluster to expand indeÐ-
nitely. We compute the core-collapse times for the entire
sequence of King models. We then redo the calculations
with a tidal boundary in place, to determine the enhanced
rate of mass loss from the cluster and the Ðnal remaining
mass at the time of core collapse. We compare our results
for the sequence of King models with equivalent results
obtained by Quinlan (1996) using direct Fokker-Planck
integrations in one dimension. In Table 1, we show the core
collapse times for the various models, along with the equiv-
alent results from Quinlan (1996). All our Monte Carlo
calculations were performed using N \ 105 stars. We see
that the agreement in the core collapse times for isolated
clusters is excellent (within a few percent for the low-W0models, and within 10% up to For theW0\ 9). W0[ 9,
agreement is still good, considering that the models start o†
in a highly collapsed state and therefore have very short
core-collapse times, which leads to larger fractional errors.

In Figure 5, we show the evolution of the Lagrange radii
for a tidally truncated King model with The initialW0\ 3.
tidal radius is ^3.1 times the virial radius. In this case, the
mass loss through the tidal boundary is very signiÐcant, as
is seen from the evolution of the outer Lagrange radii. The
mass loss causes the tidal radius to constantly move inward,
which further accelerates the process. Figure 6 shows the
evolution of the total mass and energy of the tidally trun-
cated cluster. Only 44% of the initial mass is retained in the
cluster at core-collapse. Also, the binding energy of the
cluster is signiÐcantly lower at core-collapse, since the
escaping stars carry away mass as well as kinetic energy
from the cluster. In contrast, the evolution of an isolated

King model is very much like that of the isolatedW0\ 3
Plummer model described earlier, with a very low mass-loss
rate, and a longer core-collapse time of (intcc \ 17.7trhexcellent agreement with the value of computed by17.6trhQuinlan 1996).

Our results for clusters with a tidal boundary show sys-
tematic di†erences from the one-dimensional Fokker-
Planck results of Quinlan (1996). We Ðnd that the mass loss
through the tidal boundary is signiÐcantly higher for the
low-concentration models in the Fokker-Planck(W0\ 6)
models. For the high-concentration models, the(W0[ 6)
di†erence between isolated models and tidally truncated
models is small, and the agreement between the methods
remains very good. Hence, for low our models undergoW0,core collapse at a much later time compared to the Fokker-
Planck models, and retain more mass at core collapse. This
discrepancy is caused by the one-dimensional nature of the
Fokker-Planck models. In one-dimensional Fokker-Planck
calculations, stars are considered lost from the cluster when
their energy is greater than the energy at the tidal radius.
This clearly provides an overestimate of the escape rate,
since it assumes the most extended radial orbits for stars,
and ignores stars on more circular orbits with high angular
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TABLE 1

CORE-COLLAPSE TIMES FOR KING MODELS

TIDALLY TRUNCATED

ISOLATED tcc/trh tcc/trh Mfinal
W0 tcc/trh (Quinlan) tcc/trh (Quinlan) (Mfinal) (Quinlan)

1 . . . . . . . 18.1 17.89 10.0 5.98 0.30 0.10
2 . . . . . . . 17.9 17.85 10.8 7.74 0.37 0.17
3 . . . . . . . 17.7 17.61 12.0 9.49 0.44 0.24
4 . . . . . . . 17.3 17.24 12.9 11.26 0.53 0.33
5 . . . . . . . 15.9 16.37 13.3 12.73 0.64 0.44
6 . . . . . . . 13.9 14.49 12.4 12.94 0.76 0.57
7 . . . . . . . 10.6 10.84 9.30 10.50 0.86 0.72
8 . . . . . . . 5.32 5.79 5.21 5.76 0.88 0.85
9 . . . . . . . 2.10 2.25 2.01 2.25 0.96 0.92
10 . . . . . . 0.86 0.93 0.80 0.93 0.97 0.96
11 . . . . . . 0.41 0.47 0.40 0.47 0.99 0.98
12 . . . . . . 0.20 0.26 0.20 0.26 0.99 0.99

NOTE.ÈCore-collapse times for the sequence of isolated and tidally truncated King
models, computed using N \ 105 stars. Comparison is made with similar results
obtained by Quinlan (1996) using a one-dimensional Fokker-Planck method.

momentum, which would have much smaller orbits at the
same energy. In contrast, in the Monte Carlo method, the
orbit of each star is computed using its energy and angular
momentum, which allows the apocenter distance to be
determined correctly. Stars are considered lost only if their

FIG. 5.ÈLagrange radii for the evolution of a tidally truncated King
model with The tidal boundary causes stars to be lost at a muchW0\ 3.
higher rate compared to the isolated model. The vertical line indicates the
core-collapse time The presence of the tidal boundary reducestcc \ 12.0trh.the core-collapse time by about 32% compared to the isolated model. In
contrast, the evolution of an isolated King model is very much likeW0\ 3
that of the Plummer model shown in Fig. 3, with a total mass loss less than
1%, and tcc \ 17.7trh

apocenter distances from the cluster center are greater than
the tidal radius. As stars on radial orbits are removed pref-
erentially, this creates an anisotropy within the cluster,
which a†ects the overall evolution. The artiÐcially high rate
of mass loss in one-dimensional Fokker-Planck simulations
has also been pointed out recently in comparisons with
N-body results (Portegies Zwart et al. 1998 ; Takahashi &
Portegies Zwart 2000). These authors show that, with
appropriate modiÐcations, the results of two-dimensional

FIG. 6.ÈEvolution of the total mass and energies for the model shown
in Fig. 5. Only 44% of the initial mass remains in the cluster at core
collapse. The dotted line indicates the energy carried away by escaping
stars. The large mass loss due to the tidal boundary causes the overall
binding energy of the cluster to decrease signiÐcantly.
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Fokker-Planck calculations can be made to agree much
better with those from N-body simulations. Indeed, we Ðnd
that our result for the model with a tidal boundaryW0\ 3

and agrees much better with(tcc\ 12.0trh, Mfinal\ 0.44)
that obtained using the improved two-dimensional Fokker-
Planck method, which gives andtcc\ 11.3trh, Mfinal\ 0.34
(K. Takahashi 1999, private communication). For further
comparison, and to better understand the cause of the
higher mass loss in the one-dimensional Fokker-Planck cal-
culation, we have performed a Monte Carlo simulation
using the same energy-based escape criterion that is used in
the one-dimensional Fokker-Planck integrations. We Ðnd
that using the energy-based escape criterion for W0\ 3
gives and which agrees bettertcc\ 10.9trh, Mfinal\ 0.30,
with the one-dimensional Fokker-Planck result, but a sig-
niÐcant discrepancy still remains. This is not surprising,
since, even when using a one-dimensional escape criterion,
our underlying method still remains two-dimensional.
Again, our result agrees better with the corresponding result
obtained by K. Takahashi (1999, private communication)
using the energy-based escape criterion in his two-
dimensional Fokker-Planck method, andtcc\ 10.2trh,It is reassuring to note that the di†erencesMfinal\ 0.28.
between our two-dimensional results and one-dimensional
Fokker-Planck results are also mirrored in the two-
dimensional Fokker-Planck calculations of Takahashi.
Since our Monte Carlo method is intrinsically two-
dimensional, it is not possible for us to do a true one-
dimensional (isotropic) calculation to compare results
directly with one-dimensional Fokker-Planck calculations.

4. SUMMARY AND FUTURE DIRECTIONS

We have presented results obtained using our new Monte
Carlo code for the evolution of clusters containing 105 stars,
up to core collapse. We have compared our results with
those of one-dimensional Fokker-Planck calculations
(Quinlan 1996) for isolated as well as tidally truncated King
models with We Ðnd very good agreement forW0\ 1È12.
the core-collapse times of isolated King models. For tidally
truncated models (especially for we Ðnd that theW0\ 6),
escape rate of stars in our models is signiÐcantly lower than
in the one-dimensional Fokker-Planck models. This is to be
expected, since the one-dimensional Fokker-Planck models
use an energy-based escape criterion, which does not
account for the anisotropy in the orbits of stars, and hence
overestimate the escape rate. This e†ect is most evident in
tidally truncated clusters, since stars on radial orbits are
preferentially removed, while those on more circular orbits
(with the same energy) are not. In one case we(W0 \ 3),
have veriÐed that our results are in good agreement with
those from new two-dimensional Fokker-Planck calcu-
lations (K. Takahashi 1999, private communication), which
properly account for the velocity anisotropy, and use the
same apocenter-based escape criterion as in our models.
Further comparisons of our results with two-dimensional
Fokker-Planck calculations will be presented in a sub-
sequent paper (Joshi, Nave, & Rasio 2000). Our detailed
comparison of the evolution of the Plummer model with an
equivalent direct N-body simulation also shows excellent
agreement between the two methods up to core collapse.

Our results clearly show that the Monte Carlo method
provides a robust, scalable and Ñexible alternative for
studying the evolution of globular clusters. Its strengths are

complementary to those of other methods, especially
N-body simulations, which are still prohibitively expensive
for studying large systems with The Monte CarloN Z 105.
method requires more computational resources compared
to Fokker-Planck methods, but it is several orders of mag-
nitude faster than N-body simulations. The star-by-star
representation of the system in this method makes it partic-
ularly well suited for studying the evolution of interesting
subpopulations of stars within globular clusters, such as
pulsars, blue stragglers, or black holes.

Our method also presents the interesting possibility of
performing hybrid simulations that use the Monte Carlo
method for the bulk of the evolution of a cluster up to the
core collapse phase, and then switch to an N-body simula-
tion to follow the complex core-collapse phase during
which the high reliability of the N-body method is desirable.
The discreteness of the Monte Carlo method, and the fact
that it follows the same phase space parameters for a cluster
as the N-body method, make it easy to switch from one
method to the other during a single simulation.

In subsequent papers, we will present results for the
dynamical evolution of clusters with di†erent mass spectra,
including the e†ects of mass loss due to stellar evolution.
We are also in the process of incorporating primordial
binaries in our Monte Carlo code, in order to follow the
evolution in the post-core collapse phase. Dynamical inter-
actions involving binaries will be treated using a com-
bination of direct numerical integrations of the orbits on a
case-by-case basis and precomputed cross sections. The
cross sections will be obtained from separate sets of scat-
tering experiments as well as Ðtting formulae (Sigurdsson &
Phinney 1995 ; Heggie, Hut, & McMillan 1996, and refer-
ences therein). Our code will also incorporate a simple
treatment of stellar evolution in binaries, using an extensive
set of approximate recipes and Ðtting formulae developed
recently for StarLab (Portegies Zwart 1995). Simulations of
clusters containing realistic numbers of stars and binaries
will allow us for the Ðrst time ever to compute detailed
predictions for the properties and distributions of all inter-
action products, including blue stragglers (from mergers of
main-sequence stars), X-ray binaries and recycled pulsars
(from interactions involving neutron stars) and cataclysmic
variables (from interactions involving white dwarfs).
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