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ABSTRACT
We study the dynamical evolution of globular clusters using our new two-dimensional Monte Carlo

code, and we calculate the lifetimes of clusters in the Galactic environment. We include the e†ects of a
mass spectrum, mass loss in the Galactic tidal Ðeld, and stellar evolution. We consider initial King
models containing N \ 105È3 ] 105 stars, with the dimensionless central potential 3, and 7, andW0\ 1,
with power-law mass functions m~a, with a \ 1.5, 2.5, and 3.5. The evolution is followed up to core
collapse or disruption, whichever occurs Ðrst. We compare our results with those from similar calcu-
lations using Fokker-Planck methods. The disruption and core collapse times of our models are signiÐ-
cantly longer than those of one-dimensional Fokker-Planck models. This is consistent with recent
comparisons with direct N-body simulations, which have also shown that the one-dimensional Fokker-
Planck models can signiÐcantly overestimate the escape rate from tidally truncated clusters. However, we
Ðnd that our results are in very good agreement with recent two-dimensional Fokker-Planck calcu-
lations, for a wide range of initial conditions, although our Monte Carlo models have a slightly lower
mass-loss rate. We Ðnd even closer agreement of our results with modiÐed Fokker-Planck calculations
that take into account the Ðnite nature of the system. In agreement with previous studies, our results
show that the direct mass loss due to stellar evolution can signiÐcantly accelerate the mass-loss rate
through the tidal boundary, by reducing the binding energy of the cluster and making it expand. This
e†ect causes most clusters with a low initial central concentration to disrupt quickly in the(W0[ 3)
Galactic tidal Ðeld. The disruption is particularly rapid in clusters with a relatively Ñat mass spectrum.
Only clusters born with high central concentrations or with very steep initial mass functions(W0Z 7)

are likely to survive to the present and undergo core collapse. We identify the mechanism by(a Z 3.5)
which clusters disrupt as a dynamical instability in which the rate of mass loss increases catastrophically
as the tidal boundary moves inward on the crossing timescale. To understand the various processes that
lead to the escape of stars, we study the velocity distribution and orbital characteristics of escaping stars.
We also compute the lifetime of a cluster on an eccentric orbit in the Galaxy, such that it Ðlls its Roche
lobe only at perigalacticon. We Ðnd that such an orbit can extend the disruption time by at most a
factor of a few compared to a circular orbit in which the cluster Ðlls its Roche lobe at all times.
Subject headings : celestial mechanics, stellar dynamics È globular clusters : general È

methods : numerical

1. INTRODUCTION

The development of numerical methods for simulating
the dynamical evolution of dense star clusters in phase
space started in the 1970s with Monte Carlo techniques
(Henon 1971a, 1971b ; Spitzer 1987 and references therein),
and several groups applied these techniques to address
problems related to the evolution of globular clusters. A
method based on the direct numerical integration of the
Fokker-Planck (F-P) equation in phase space was later
developed by Cohn (1979, 1980). The F-P methods have
since been greatly improved, and they have been extended
to more realistic simulations that take into account
(approximately) the presence of a mass spectrum and tidal
boundaries (Takahashi 1995, 1996, 1997 ; Takahashi & Por-
tegies Zwart 1998, 2000, hereafter TPZ00), binary inter-
actions (Gao et al. 1991 ; Drukier et al. 1999), gravitational
shock heating by the galactic disk and bulge (Gnedin, Lee,
& Ostriker 1999), and mass loss due to stellar evolution (see
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Meylan & Heggie 1997 for a recent review). Direct N-body
simulations can also be used to study globular cluster
dynamics (see Aarseth 1999 for a recent review), but, until
recently, they have been limited to rather unrealistic
systems containing very low numbers of stars. The GRAPE
family of special-purpose computers now makes it possible
to perform direct N-body integrations for clusters contain-
ing up to N D 32,000 single stars, although the computing
time for such large simulations remains considerable (see
Makino et al. 1997 and references therein). This is the
second of a series of papers in which we study globular
cluster dynamics using a Monte Carlo technique similar to
the original Henon (1971b) method. Parallel super-
computers now make it possible for the Ðrst time to perform
Monte Carlo simulations for the dynamical evolution of
dense stellar systems containing up to N D 105È106 stars in
less than D1 day of computing time.

The evolution of globular clusters in the Galactic
environment has been studied using a variety of theoretical
and numerical techniques. The Ðrst comprehensive study of
cluster lifetimes was conducted by Cherno† & Weinberg
(1990, hereafter CW90) using F-P simulations. They
included the e†ects of a power-law mass spectrum, a tidal
cuto† radius imposed by the tidal Ðeld of the Galaxy, and
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mass loss due to stellar evolution. Their results were sur-
prising, and far reaching, since they showed for the Ðrst time
that the majority of clusters with a wide range of initial
conditions would be disrupted in yr and would not[1010
survive until core collapse. CW90 carried out their calcu-
lations using a one-dimensional F-P method, in which the
stellar distribution function in phase space is assumed to
depend on the orbital energy only. However, more recently,
similar calculations undertaken using direct N-body simu-
lations gave cluster lifetimes up to an order of magnitude
longer compared to those computed by CW90 (Fukushige
& Heggie 1995 ; Portegies Zwart et al. 1998). The discrep-
ancy appears to be caused by an overestimated mass-loss
rate in the one-dimensional F-P formulation (Takahashi &
Portegies Zwart 1998), which does not properly account for
the velocity anisotropy in the cluster. To overcome this
problem, new two-dimensional versions of the F-P method
(in which the distribution function depends on both energy
and angular momentum) have been employed (Takahashi
1995, 1996, 1997 ; Drukier et al. 1999).

The two-dimensional F-P models provide cluster life-
times in signiÐcantly better agreement with direct N-body
integrations (Takahashi & Portegies Zwart 1998). However,
the two-dimensional F-P models still exhibit a slightly
higher mass-loss rate compared to N-body simulations.
This may result from the representation of the system in
terms of a continuous distribution function in the F-P for-
mulation, which e†ectively models the behavior of the
cluster in the N ] O limit. To test this possibility, Taka-
hashi & Portegies Zwart (1998) introduced an additional
free parameter in their F-P models, attempting to takelescinto account the Ðnite ratio of the crossing time to the
relaxation time (see also Lee & Ostriker 1987 ; Ross,
Mennim, & Heggie 1997). They used this free parameter to
lower the overall mass-loss rate in their F-P models and
obtained better agreement with N-body simulations
(performed with up to N \ 32,768). TPZ00 show that,
after calibration, a single value of gives consistent agree-lescment with N-body simulations for a broad range of initial
conditions.

The Ðrst paper in this series presented details about our
new parallel Monte Carlo code as well as the results of a
series of initial test calculations (Joshi, Rasio, & Portegies
Zwart 2000, hereafter Paper I). We found excellent agree-
ment between the results of our test calculations and those
of direct N-body and one-dimensional Fokker-Planck
simulations for a variety of single-component clusters (i.e.,
containing equal-mass stars). However, we found that, for
tidally truncated clusters, the mass-loss rate in our models
was signiÐcantly lower and the core collapse times signiÐ-
cantly longer than in corresponding one-dimensional F-P
calculations. We noted that, for a single case (a W0 \ 3
King model), our results were in good agreement with those
of two-dimensional F-P calculations by K. Takahashi
(1999, private communication).

In this paper we extend our Monte Carlo calculations to
multicomponent clusters (described by a continuous,
power-law stellar mass function), and we study the evolu-
tion of globular clusters with a broad range of initial condi-
tions. Our calculations include an improved treatment of
mass loss through the tidal boundary, as well as mass loss
due to stellar evolution. Our new method treats the mass
loss through the tidal boundary more carefully in part by
making the time step smaller, especially in situations where

the tidal mass loss can lead to an instability resulting in
rapid disruption of the cluster. We also account for the
shrinking of the tidal boundary in each time step by iter-
atively removing stars with apocenter distances greater
than the tidal boundary and recomputing the tidal radius
using the new (lower) mass of the cluster. We compare our
new results with those of CW90 and TPZ00. We also go
beyond these previous studies and explore several other
issues relating to the precollapse evolution of globular clus-
ters. We study in detail the importance of the velocity
anisotropy in determining the stellar escape rate. We also
compare the orbital properties of escaping stars in dis-
rupting and collapsing clusters. Finally, we consider the
e†ects of an eccentric orbit in the Galaxy, allowing for the
possibility that a cluster may not Ðll its Roche lobe at all
points in its orbit.

As in most previous studies, the calculations presented in
this paper are for clusters containing single stars only. The
dynamical e†ects of hard primordial binaries for the overall
cluster evolution are not signiÐcant during most of the pre-
collapse phase, although a large primordial binary fraction
could accelerate the evolution to core collapse since
binaries are on average more massive than single stars.
Energy generation through binaryÈsingle star and binary-
binary interactions becomes signiÐcant only when the
cluster approaches core collapse and interaction rates in the
core increase substantially (Hut, McMillan, & Romani
1992 ; Gao et al. 1991 ; McMillan & Hut 1994). Formation
of hard ““ three-body ÏÏ binaries can also be neglected until
the cluster reaches a deep core collapse phase. During the
precollapse evolution, hard binaries behave approximately
like single more massive stars, while soft binaries (which
have a larger interaction cross section) may be disrupted.
Since we do not include the e†ects of energy generation by
primordial binaries in our calculations, the (well-deÐned)
core collapse times presented here may be reinterpreted as
corresponding approximately to the onset of the ““ binary-
burning ÏÏ phase, during which a similar cluster containing
binaries would be supported in quasi-equilibrium by
energy-generating interactions with hard binaries in its core
(Spitzer & Mathieu 1980 ; Goodman & Hut 1989 ; McMil-
lan, Hut, & Makino 1990 ; Gao et al. 1991). Our calcu-
lations of disruption times (for clusters that disrupt in the
tidal Ðeld of the Galaxy before reaching core collapse) are
largely independent of the cluster binary content, since the
central densities and core interaction rates in these clusters
always remain very low.

Our paper is organized as follows. In ° 2 we describe the
treatment of tidal stripping and mass loss due to stellar
evolution in our Monte Carlo models, along with a dis-
cussion of the initial conditions for our simulations. In ° 3
we present the results of our simulations and comparisons
with F-P calculations. In ° 4 we summarize our results.

2. MONTE CARLO METHOD

Our code, described in detail in Paper I, is based on the
orbit-averaged Monte Carlo method Ðrst developed by
Henon (1971a, 1971b). Although in Paper I we only present-
ed results of test calculations performed for single-
component clusters, the method is completely general, and
the implementation of an arbitrary mass spectrum is
straightforward. This section describes additional features
of our code that were not included in Paper I : an improved
treatment of mass loss through the tidal boundary (° 2.1)
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and a simple implementation of stellar evolution (° 2.2). The
construction of initial multicomponent King models for our
study of cluster lifetimes is described in ° 2.3. The highly
simpliÐed treatments of tidal e†ects and stellar evolution
adopted here are for consistency with previous studies, since
our intent in this paper is still mainly to establish the accu-
racy of our code by presenting detailed comparisons with
the results of other methods. In future work, however, we
intend to implement more sophisticated and up-to-date
treatments of these e†ects.

2.1. T idal Stripping of Stars
In an isolated cluster, the mass-loss rate (up to core

collapse) is relatively small, since escaping stars must
acquire positive energies mostly through rare, strong inter-
actions in the dense cluster core (see discussion in Paper I,
° 3.1). In contrast, for a tidally truncated cluster, the mass
loss is dominated by di†usion across the tidal boundary
(also referred to as ““ tidal stripping ÏÏ). In our Monte Carlo
simulations, a star is assumed to be tidally stripped from the
cluster (and lost instantaneously) if the apocenter of its orbit
in the cluster is outside the tidal radius. This is in contrast to
the energy-based escape criterion that is used in one-
dimensional F-P models, where a star is considered lost if
its energy is greater than the energy at the tidal radius,
regardless of its angular momentum. As noted in Paper I,
the two-dimensional treatment is crucial in order to avoid
overestimating the escape rate, since stars with high angular
momentum, i.e., on more circular orbits, are less likely to be
tidally stripped from the cluster than those (with the same
energy) on more radial orbits.

A subtle yet important aspect of the mass loss across the
tidal boundary is the possibility of the tidal stripping
process becoming unstable if the tidal boundary moves
inward too quickly. As the total mass of the cluster
decreases through the escape of stars, the tidal radius of the
cluster shrinks. This causes even more stars to escape, and
the tidal boundary shrinks further. If at any time during the
evolution of the cluster the density gradient at the tidal
radius is too large, this can lead to an unstable situation, in
which the tidal radius continues to shrink on the dynamical
timescale, causing the cluster to disrupt. The development
of this instability characterizes the Ðnal evolution of all clus-
ters with a low initial central concentration that disrupt in
the Galactic tidal Ðeld before reaching core collapse.

We test for this instability at each time step in our simula-
tions, by iteratively removing escaping stars and recomput-
ing the tidal radius with the appropriately lowered cluster
mass. For stable models, this iteration converges quickly,
giving a Ðnite escape rate. Even before the development of
the instability, this iterative procedure must be used for an
accurate determination of the mass-loss rate. When the
mass-loss rate due to tidal stripping is high, we also impose
a time step small enough that no more than 1% of the total
mass is lost in a single time step. This is to ensure that the
potential is updated frequently enough to take the mass loss
into account. This improved treatment of tidal stripping
was not used in our calculations for Paper I. However, all
the results presented in Paper I were for clusters with equal-
mass stars, with no stellar evolution. Under those condi-
tions, all models reach core collapse, with no disruptions.
The issue of unstable mass loss is not signiÐcant in those
cases, and hence the results of Paper I are una†ected.

2.2. Stellar Evolution
Our simpliÐed treatment follows those adopted by CW90

and TPZ00. We assume that a star evolves instantaneously
to become a compact remnant at the end of its main-
sequence lifetime. Indeed, since the evolution of our cluster
models takes place on the relaxation timescale (i.e., the time
step is a fraction of the relaxation time yr), whilet

r
Z 109

the dominant mass-loss phase during late stages of stellar
evolution takes place on a much shorter timescale (D106
yr), the mass loss can be considered instantaneous. We
neglect mass losses in stellar winds for main-sequence stars.
We assume that the main-sequence lifetime and remnant
mass are functions of the initial stellar mass only. Table 1
shows the main-sequence lifetimes of stars with initial
masses up to 15 and the corresponding remnantM

_masses. In order to facilitate comparison with F-P calcu-
lations (CW90; TPZ00), we use the same lifetimes and
remnant masses as CW90. For stars of mass m\ 4 theM

_
,

remnants are white dwarfs of mass 0.58 M
_

] 0.22(m
while for m[ 8 the remnants are neutron[ M

_
), M

_
,

stars of mass 1.4 Stars with intermediate masses areM
_

.
completely destroyed (Iben & Renzini 1983). The lowest
initial mass considered by CW90 was ^0.83 For lowerM

_
.

mass stars, in order to maintain consistency with TPZ00,
we extrapolate the lifetimes assuming a simple m~3.5 scaling
(Drukier 1995). We interpolate the values given in Table 1
using a cubic spline to obtain lifetimes for stars with inter-
mediate masses, up to 15 In our initial models (seeM

_
.

° 2.3) we assign masses to stars according to a continuous
power-law distribution. This provides a natural spread in
their lifetimes and avoids having large numbers of stars
undergoing identical stellar evolution. In contrast, in F-P
calculations the mass function is approximated by 20 dis-
crete logarithmically spaced mass bins over the entire range
of masses. The mass in each bin is then reduced linearly in
time from its initial mass to its Ðnal (remnant) mass, over a
time interval equal to the maximum di†erence in main-
sequence lifetimes spanned by the stars in that mass bin (see
TPZ00 for further details). This has the e†ect of averaging
the e†ective mass-loss rate over the masses in each bin.

We assume that all stars in the cluster were formed in the
same star formation epoch, and hence all stars have the
same age throughout the simulation. During each time step,
all the stars that have evolved beyond their main-sequence

TABLE 1

MAIN-SEQUENCE LIFETIMES AND

REMNANT MASSESa

minitial log (qMS [yr]) mfinal
(M

_
) (M

_
) (M

_
)

0.40 . . . . . . . 11.3 0.40
0.60 . . . . . . . 10.7 0.49
0.80 . . . . . . . 10.2 0.54
1.00 . . . . . . . 9.89 0.58
2.00 . . . . . . . 8.80 0.80
4.00 . . . . . . . 7.95 1.24
8.00 . . . . . . . 7.34 0.00
15.00 . . . . . . 6.93 1.40

a For consistency, we use the same
main-sequence lifetimes and remnant
masses as CW90, from Iben & Renzini
1983 and Miller & Scalo 1979.
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TABLE 2

FAMILY PROPERTIESa

trh R
g

Family F (Gyr) (kpc)

1 . . . . . . 5.00] 104 2.4 5.8
2 . . . . . . 1.32] 105 6.4 15
3 . . . . . . 2.25] 105 11 26
4 . . . . . . 5.93] 105 29 68

a Sample parameters for families 1È4, for
a King model, with andW0\ 3 m6 \ 1 M

_N \ 105. Distance to the Galactic center R
gis computed assuming that the cluster is in a

circular orbit, Ðlling its Roche lobe at all
times.

lifetimes are labeled as remnants, and their masses are
changed accordingly. In the initial stages of evolution (t [
108 yr), when the mass-loss rate due to stellar evolution is
highest, care is taken to make the time step small enough so
that no more than 1% of the total mass is lost in a single
time step. This is to ensure that the system remains very
close to virial equilibrium through this phase.

2.3. Initial Models
The initial condition for each simulation is a King model

with a power-law mass spectrum. In order to facilitate com-
parison with the F-P calculations of CW90 and TPZ00, we
select the same set of initial King models for our simula-
tions, with values of the dimensionless central potential

3, and 7. Most of our calculations were performedW0\ 1,
with N \ 105 stars, with a few calculations repeated with
N \ 3 ] 105 stars and showing no signiÐcant di†erences in
the evolution. We construct the initial model by Ðrst gener-
ating a single-component King model with the selected W0.We then assign masses to the stars according to a power-
law mass function

f (m)P m~a , (1)

with m between 0.4 and 15 We consider three di†erentM
_

.
values for the power-law index, a \ 1.5, 2.5, and 3.5,
assuming no initial mass segregation. Although this method
of generating a multicomponent initial King model is con-
venient and widely used to create initial conditions for
numerical work (including N-body, F-P, and Monte Carlo
simulations), the resulting initial model is not in strict virial
equilibrium since the masses are assigned independently of
the positions and velocities of stars. However, we Ðnd that
the initial clusters relax to virial equilibrium within just a
few time steps in our simulations. Virial equilibrium is then
maintained to high accuracy during the entire calculation,
with the virial ratio 2T / oW o \ 1 to within less than 1%.

In addition to selecting the dimensionless model parame-
ters N, and a (which specify the initial dynamical stateW0,of the system), we must also relate the dynamical timescale
with the stellar evolution timescale for the system. The basic
unit of time in our models is scaled to the relaxation time.
Since the stellar evolution timescale is not directly related to
the dynamical timescale, the lifetimes of stars (in yr) cannot
be computed directly from our code units. Hence, in order
to compute the mass loss due to stellar evolution, we must
additionally relate the two timescales by converting the
evolution time to physical units. To maintain consistency
with F-P calculations, we use the same prescription as

CW90. We assume a value for the initial relaxation time of
the system, which is deÐned as follows :

t
r
\ 2.57F (Myr) , (2)

where

F4
M0
M

_

R
g

kpc
220 km s~1

v
g

1
ln N

. (3)

Here is the total initial mass of the cluster, is itsM0 R
gdistance to the Galactic center (assuming a circular orbit),

is the circular speed of the cluster, and N is the totalv
gnumber of stars. (This expression for the relaxation time is

derived from eqs. [1], [2], and [6] of CW90 with m\M
_

,
and Following CW90, a group of modelsr \ r

t
, c1\ 1.)

with the same value of F (constant relaxation time) at the
beginning of the simulation is referred to as a ““ family.ÏÏ Our
survey covers families 1, 2, 3, and 4 of CW90. For each value
of and a, we consider four di†erent models, one fromW0each family.

To convert from our code units, or ““ virial units ÏÏ (see
Paper I, ° 2.8 for details), to physical units, we proceed as
follows. For a given family (i.e., a speciÐed value of F),
cluster mass and N, we compute the distance to theM0,Galactic center using equation (3). The circular velocityR

gof 220 km s~1 for the cluster (combined with thenR
g
)

provides an inferred value for the mass of the Galaxy M
gcontained within the cluster orbit. Using andM0, M

g
, R

g
,

we compute the tidal radius for the cluster, as r
t
\

in physical units (pc). The ratio of the tidalR
g
(M0/3M

g
)1@3,

radius to the virial radius (i.e., in code units) for a Kingr
tmodel depends only on and hence is known for theW0initial model. This gives the virial radius in pc. The unit of

mass is simply the total initial cluster mass HavingM0.expressed the units of distance and mass in physical units,
the unit of evolution time (which is proportional to the
relaxation time) can easily be converted to physical units
(yr) using equation (31) from Paper I.

Table 2 shows the value of F for the four selected families.
For reference, we also give the relaxation time at the half-
mass radius for the models with and a \ 2.5trh W0\ 3
(mean stellar mass which we compute using them6 ^ 1 M

_
),

standard expression (see, e.g., Spitzer 1987),

trh \ 0.138
N1@2r

h
3@2

m6 1@2G1@2 ln N
, (4)

where is the half-mass radius of the cluster.r
h

3. RESULTS

In Paper I we presented our Ðrst results for the evolution
of single-component clusters up to core collapse. We com-
puted core collapse times for the entire sequence of King
models including the e†ects of a tidal bound-(W0\ 1È12),
ary. Here we extend our study to clusters with a power-law
mass spectrum and mass loss due to stellar evolution.

3.1. Qualitative E†ects of T idal Mass L oss and
Stellar Evolution

We begin by brieÑy reviewing the evolution of single-
component, tidally truncated systems. In Figure 1 we show
the core collapse times for King models with W0\ 1È12
(Paper I). The core collapse times for tidally truncated
models are compared with equivalent isolated models.
Although the isolated models also begin as King models
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FIG. 1.ÈComparison of core collapse times for single-W0\ 1È12
component King models. Isolated models, i.e., without an enforced tidal
boundary, are indicated by Ðlled circles, while tidally truncated models are
indicated by Ðlled squares.

with a Ðnite tidal radius, the tidal boundary is not enforced
during their evolution, allowing the cluster to expand freely.
The most notable result is that the maximum core collapse
time for the tidally truncated clusters occurs at W0^ 5,
compared to for isolated clusters. This is becauseW0\ 1
the King models have a less centrally concentratedlow-W0density proÐle and hence a higher density at the tidal radius
compared to the models. This leads to higher masshigh-W0loss through the tidal boundary, which reduces the mass of
the cluster and shortens the core collapse time. This e†ect is
further complicated by the introduction of a nontrivial mass
spectrum and mass loss due to stellar evolution in the
cluster.

In Figure 2 we show a comparison of the mass-loss rate
due to the tidal boundary, a power-law mass spectrum, and
stellar evolution. We consider the evolution of a W0\ 3
King model, in four di†erent environments. All models con-
sidered in this comparison belong to family 1 (see ° 2.3). We
Ðrst compare an isolated, single-component model (without
an enforced tidal boundary) and a tidally truncated model
(as in Fig. 1). Clearly, the presence of the tidal boundary is
responsible for almost all the mass loss from the cluster, and
it slightly reduces the core collapse time. Introducing a
power-law mass spectrum further reduces the core collapse
time, since mass segregation increases the core density and
accelerates the development of the gravothermal instability.
The shorter core collapse time reduces the total mass loss
through the tidal boundary by leaving less time for evapo-
ration. This results in a higher Ðnal mass compared to the
single-component system, even though the mass-loss rate is
higher. Finally, allowing mass loss through stellar evolution
causes even faster overall mass loss, which eventually dis-
rupts the system. The introduction of a Salpeter-like power-
law initial mass function (a \ 2.5) is sufficient to cause this
cluster to disrupt before core collapse.

FIG. 2.ÈComparison of the mass-loss rate in a King model dueW0\ 3
to a tidal boundary, a power-law mass spectrum, and stellar evolution. The
mass of the cluster, in units of the initial mass is shown as a function ofM0,time. The solid and short-dashed lines are for a single-component model
with and without a tidal boundary (family 1), respectively. The dotted line
shows a model with a power-law mass spectrum, with a \ 2.5, and a tidal
boundary. The long-dashed line is for a more realistic model with a tidal
boundary, power-law mass spectrum, and stellar evolution. The circle at
the end of the line indicates core collapse. The line without a circle indi-
cates disruption of the cluster.

The presence of a tidal boundary causes stars on radial
orbits in the outer regions of the cluster to be removed
preferentially. This produces a signiÐcant anisotropy in the
outer regions as the cluster evolves. As noted in Paper I, a
proper treatment of this anisotropy is essential in comput-
ing the mass-loss rate. A star in an orbit with low angular
momentum has a larger apocenter distance compared to a
star (with the same energy) in a high angular momentum
orbit. Hence, stars in low angular momentum (i.e., radial)
orbits are preferentially lost through the tidal boundary,
causing an anisotropy to develop in the cluster. In one-
dimensional F-P models, this is not taken into account, and
therefore one-dimensional F-P models predict a much
larger mass loss compared to two-dimensional models. In
Figure 3 we show the anisotropy parameter b \ 1 [ p

t
2/p

r
2,

for a King model (a \ 2.5, family 1), at two di†erentW0\ 3
times during its evolution. Here and are the one-p

t
p
rdimensional tangential and radial velocity dispersions,

respectively. The initial King model is isotropic. At later
times, the anisotropy in the outer region grows steadily as
the tidal radius moves inward.

Another important consequence of stellar evolution and
mass segregation is the gradual Ñattening of the stellar mass
function as the cluster evolves. In Figure 4 we show the
main-sequence mass spectrum in the core and at the half-
mass radius of a King model (a \ 2.5, family 2), atW0\ 7
two di†erent times during its evolution. Since the heavier
stars concentrate in the core and have lower mean veloci-
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FIG. 3.ÈEvolution of the anisotropy parameter for ab \ 1 [ p
t
2/p

r
2

King model (a \ 2.5, family 1). The bottom panel shows the initialW0\ 3
isotropic King model. The top panel shows the anisotropy just before
disruption. The radius is in units of the virial radius. Stars on highly
eccentric orbits with large apocenter distances in the cluster are prefer-
entially removed, causing to increase in the outer region.p

t
2/p

r
2

ties, the mass loss across the tidal boundary occurs prefer-
entially for the lighter stars. This leads to a gradual
Ñattening of the overall mass function of the cluster.
However, this picture is somewhat complicated by stellar
evolution, which continuously depletes high-mass stars
from the cluster. The remaining heavier stars gradually
accumulate in the inner regions as the cluster evolves.
Therefore, the Ñattening of the mass function becomes par-
ticularly evident in the cluster core.

3.2. Cluster L ifetimes : Comparison with
Fokker-Planck Results

We now present our survey of cluster lifetimes and
compare our results with equivalent one-dimensional and
two-dimensional F-P results. For each combination of W0and a, we perform four di†erent simulations (families 1È4),
corresponding to di†erent initial relaxation times (see Table
2). We follow the evolution until core collapse or disruption,
whichever occurs Ðrst. We also stop the computation if the
total bound mass decreases below 2% of the initial mass
and consider the cluster to be disrupted in such cases. We
compare our results with those of two di†erent F-P studies :
the one-dimensional F-P calculations of CW90 and the
more recent two-dimensional calculations of TPZ00.

3.2.1. Comparison with One-dimensional Fokker-Planck Models

Table 3 compares our Monte Carlo models with the one-
dimensional F-P calculations conducted by CW90. Follow-
ing the same notation as CW90, the Ðnal core collapse of a
cluster is denoted by ““ C ÏÏ and disruption by ““D.ÏÏ The Ðnal

mass of the cluster (in units of the initial mass) and the
lifetime in units of 109 yr (time to disruption or core
collapse) are also given. The evolution of clusters that reach
core collapse is not followed beyond the core collapse
phase. The core collapse time is taken as the time when the
innermost Lagrange radius (radius containing 0.3% of the
total mass of the cluster) becomes smaller than 0.001 (in
virial units). For disrupting clusters, CW90 provide a value
for the Ðnal mass, which corresponds to the point at which
the tidal mass loss becomes unstable and the cluster dis-
rupts on the dynamical timescale. However, we Ðnd that the
point at which the instability develops depends sensitively
on the method used for computing the tidal mass loss and
requires the potential to be updated on a very short time-
scale. In this regime, since the system evolves (and disrupts)
on the dynamical timescale, the orbit-averaged approxi-
mation used to solve the F-P equation also breaks down.
This is true for both Monte Carlo and F-P simulations. The
only way to determine the point of instability reliably is to
follow the evolution on the dynamical timescale using direct
N-body integrations. Hence, for disrupting models we
quote the Ðnal mass as zero and only provide the disruption
time (which can be determined very accurately).

We Ðnd that all our Monte Carlo models disrupt later
than those of CW90. However, for models that undergo
core collapse, the core collapse times are shorter in some
cases compared to CW90 because the lower mass-loss rate
in our Monte Carlo models causes core collapse to take
place earlier. The discrepancy in the disruption times some-
times exceeds an order of magnitude (e.g., a \ 2.5).W0\ 1,
On the other hand, the discrepancy in the lifetimes of the
clusters with a \ 1.5, and 3 is only about a factor ofW0\ 1
2. These models disrupt very quickly, and a proper treat-
ment of anisotropy does not extend their lifetimes very
much, since the combination of a Ñat initial mass function
and a shallow initial potential leads to rapid disruption.

Out of 36 models, we Ðnd that half (18) of our Monte
Carlo models reach core collapse before disruption, com-
pared to fewer than 30% (10) of models in the CW90 survey.
The longer lifetimes of our models allow more of the clus-
ters to reach core collapse in our simulations. All the clus-
ters that experience core collapse according to CW90 also
experience core collapse in our calculations. Since the main
di†erence between our models and those of CW90 comes
from the di†erent mass-loss rates, we predictably Ðnd that
our results match more closely those of CW90 in all cases in
which the overall mass loss up to core collapse is relatively
small. For example, the more concentrated clusters (W0\
7) with steep mass functions (a \ 2.5 and 3.5) show very
similar behavior, with the discrepancy in Ðnal mass and
core collapse time being less than a factor of 2. However, we
cannot expect complete agreement even in these cases, since
the e†ects of anisotropy cannot be completely ignored.

The overall disagreement between our Monte Carlo
models and one-dimensional F-P models is very signiÐcant.
This was also evident in some of the results presented in
Paper I, where we compared core collapse times for tidally
truncated single-component King models, with one-
dimensional F-P calculations by Quinlan (1996). This dis-
crepancy has also been noted by Takahashi & Portegies
Zwart (1998) and Portegies Zwart et al. (1998). The
improved two-dimensional F-P code developed by Taka-
hashi (1995, 1996, 1997) is now able to account properly for
the anisotropy, allowing for a more meaningful comparison
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FIG. 4.ÈEvolution of the main-sequence mass spectrum for a King model with an initial power-law mass function m~a, with a \ 2.5, family 2. TheW0\ 7
mass spectra in the core (left panels) and at the half-mass radius (right panels) are shown at 1 and 10 Gyr. The mass spectrum in the core Ñattens dramatically
as a result of stellar evolution, mass segregation, and evaporation.

with other two-dimensional calculations, including our
own.

3.2.2. Comparison with Two-dimensional Fokker-Planck Models

Comparisons of the mass-loss evolution are shown in
Figures 5, 6, and 7, where the solid lines show our Monte
Carlo models and the dashed lines show the two-
dimensional F-P models from TPZ00.

In Figure 5 we show the evolution of KingW0\ 1
models. The very low initial central density of these models
makes them very sensitive to the tidal boundary, leading to
very rapid mass loss. As a result, almost all the W0\ 1
models disrupt without ever reaching core collapse. In addi-

tion, these models demonstrate the largest variation in life-
times depending on their initial mass spectrum. For a
relatively Ñat mass function (a \ 1.5), the disruption time is
D2 ] 107 yr. The large fraction of massive stars in these
models, combined with the shallow initial central potential,
leads to very rapid mass loss and complete disruption. For
a more realistic, Salpeter-like initial mass function (a \ 2.5),
the models have a longer lifetime but still disrupt inW0\ 1

yr. The a \ 3.5 models have very few massive stars[109
and hence behave almost like models without stellar evolu-
tion. We see that it is only with such a steep mass function
that the models can survive until the present epochW0\ 1

yr). We also Ðnd that the family 1 and 2 models can(Z1010
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TABLE 3

COMPARISON OF MONTE CARLO RESULTS WITH ONE-DIMENSIONAL FOKKER-PLANCK CALCULATIONSa

FAMILY 1 FAMILY 2 FAMILY 3 FAMILY 4

W0 a CW90 MC CW90 MC CW90 MC CW90 MC

1 . . . . . . 1.5 D D D D D D D D
0.0092 0.019 0.0094 0.019 0.0093 0.02 0.0092 0.02

0 0 0 0 0 0 0 0
2.5 D D D D D D D D

0.034 0.43 0.034 0.46 0.035 0.55 0.034 0.58
0 0 0 0 0 0 0 0

3.5 D C D C D D D D
2.5 31 2.9 52 3.1 55 3.2 70
0 0.07 0 0.02 0 0 0 0

3 . . . . . . 1.5 D D D D D D D D
0.014 0.031 0.014 0.032 0.014 0.033 0.014 0.036

0 0 0 0 0 0 0 0
2.5 D D D D D D D D

0.28 3.6 0.29 5.1 0.29 5.8 0.29 6.5
0 0 0 0 0 0 0 0

3.5 C C C C D C D C
21.5 33 44.4 83 42.3 130 43.5 350
0.078 0.25 0.035 0.22 0 0.20 0 0.18

7 . . . . . . 1.5 D C D C D C D C
1.0 2.9 3.0 6.6 4.2 10 5.9 21
0 0.02 0 0.02 0 0.02 0 0.02

2.5 C C C C C C C C
9.6 6.3 22.5 10.5 35.5 21 83.1 60
0.26 0.50 0.26 0.47 0.26 0.47 0.25 0.41

3.5 C C C C C C C C
10.5 6.0 31.1 22 51.3 38 131.3 80
0.57 0.78 0.51 0.70 0.48 0.67 0.49 0.67

a The results of CW90 are taken from their Table 5. MC denotes our Monte Carlo results. The
Ðrst line describes the Ðnal state of the cluster at the end of the simulation : C indicates core collapse,
while D indicates disruption. The second line gives the time to core collapse or disruption, in units of
109 yr. The third line gives the Ðnal cluster mass in units of the initial mass.

reach core collapse despite having lost most of their mass,
while family 3 and 4 models are disrupted.

We see very good agreement throughout the evolution
between our Monte Carlo models and the two-dimensional
F-P models. In all cases, the qualitative behaviors indicated
by the two methods are identical, even though the Monte
Carlo models consistently have somewhat longer lifetimes
than the F-P models. The average discrepancy in the dis-
ruption times for all models is approximately a factor of 2.
The discrepancy in disruption times is due to a slightly
lower mass-loss rate in our models, which allows the clus-
ters to live longer. Since the F-P calculations correspond to
the N ] O limit, they tend to overestimate the overall
mass-loss rate (we discuss this issue in more detail in the
next section). This tendency has been pointed out by Taka-
hashi & Portegies Zwart (1998), who compared the results
of two-dimensional F-P simulations with those of direct
N-body simulations with up to N \ 32,768. They have
attempted to account for the Ðniteness of the system in their
F-P models by introducing an additional parameter in their
calculations to modify the mass-loss rate. The comparison
shown in Figures 5, 6, and 7 is for the unmodiÐed N ] O
F-P models.

We Ðnd complete agreement with TPZ00 in dis-
tinguishing models that reach core collapse from those that
disrupt. The only case in which there is some ambiguity is
the a \ 3.5, family 2 model, which clearly collapsesW0\ 1,
in our calculations, while TPZ00 indicate nearly complete

disruption. This is obviously a borderline case, in which the
cluster reaches core collapse just prior to disruption in our
calculation. Since the cluster has lost almost all its mass at
core collapse, the distinction between core collapse and dis-
ruption is largely irrelevant. It is important to note,
however, that we Ðnd the boundary between collapsing and
disrupting models at almost exactly the same location in
parameter space a, and relaxation time) as TPZ00.(W0,This agreement is as signiÐcant, if not more, than the com-
parison of Ðnal masses and disruption times.

In Figure 6 we show the comparison of KingW0\ 3
models. Again, the overall agreement is very good, except
for the slightly later disruption times for the Monte Carlo
models. The most notable di†erence from the W0\ 1
models is that the models clearly reach core collapseW0\ 3
prior to disruption for a \ 3.5. The core collapse times for
the a \ 3.5 models are very long (3 ] 1010È3 ] 1011 yr),
with only D20% of the initial mass remaining bound at
core collapse. Here also we Ðnd perfect agreement between
the qualitative behaviors of the F-P and Monte Carlo
models.

In Figure 7 we show the evolution of the KingW0\ 7
models. In the presence of a tidal boundary, the W0^ 5
King models have the distinction of having the longest core
collapse times (see Fig. 1). This is because they begin with a
sufficiently high initial core density and do not expand very
much before core collapse. Hence, the mass loss through the
tidal boundary is minimal. King models with a lower W0
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FIG. 5.ÈEvolution of the total mass with time for King models,W0\ 1
families 1È4. Comparison is made between our Monte Carlo models (solid
lines) and two-dimensional F-P models (dashed lines). The three panels
show results for di†erent values of the exponent a of the initial power-law
mass function (m~a). The four lines for each case represent families 1È4,
from left to right. We indicate a core-collapsed model with a circle at the
end of the line. Lines without a circle at the end indicate disruption.

lose more mass through the tidal boundary and evolve
more quickly toward core collapse or disruption, while
models with higher have very high initial core densities,W0leading to short core collapse times. All our modelsW0 \ 7
reach core collapse. Even the models with a very Ñat mass
function (a \ 1.5) achieve core collapse, although the Ðnal
bound mass in that case is very small. We again see very

FIG. 6.ÈSame as Fig. 5, but for King modelsW0\ 3

FIG. 7.ÈSame as Fig. 5, but for King modelsW0\ 7

good overall agreement between the Monte Carlo and F-P
models, except for the slightly higher mass-loss rate predict-
ed by the F-P calculations. In the next section we discuss
the possible reasons for this small discrepancy in the mass-
loss rate between the Monte Carlo and F-P models.

3.2.3. Comparison with Finite Fokker-Planck Models

We Ðrst highlight some of the general issues relating to
mass loss in the systems we have considered. In Figure 8 we
show the relative rates of mass loss due to stellar evolution
and tidal stripping, for 3, and 7 King models, withW0\ 1,
di†erent mass spectra (a \ 1.5, 2.5, and 3.5). We see that
stellar evolution is most signiÐcant in the early phases,
while tidal mass loss dominates the evolution in the later
phases. The relative importance of stellar evolution depends
on the fraction of massive stars in the cluster, which domi-
nate the mass loss early in the evolution. Hence, the a \ 1.5
models su†er the greatest mass loss due to stellar evolution,
accounting for up to 50% of the total mass loss in some
cases (e.g., a \ 1.5). All models shown belong toW0\ 7,
family 2. It is important to note the large variation in the
timescales and in the relative importance of stellar evolu-
tion versus tidal mass loss across all models.

Through comparisons with N-body simulations, Taka-
hashi & Portegies Zwart (1998) have argued that assuming
N ] O leads to an overestimate of the mass-loss rate due to
tidal stripping of stars. To compensate for this, they intro-
duce a free parameter in their calculations, to accountlescfor the Ðnite time (of the order of the crossing time) it takes
for an escaping star to leave the cluster. They calibrate this
parameter through comparisons with N-body simulations,
for N \ 1024È32,768. Since for low N the N-body models
are too noisy and the F-P models are insensitive to forlesclarge N, TPZ00 Ðnd that the calibration is most suitably
done using N D 16,000 (for further details see discussion by
TPZ00). They show that a single value of this parameter
gives good agreement with N-body simulations for a wide
range of initial conditions. Using this prescription, TPZ00
provide results of their calculations for Ðnite clusters with
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FIG. 8.ÈComparison of the mass loss due to stellar evolution (solid
lines) and mass loss due to tidal stripping of stars (dotted lines), for W0\ 1,
3, and 7 King models, with initial mass functions m~a, a \ 1.5, 2.5, and 3.5.
The numbers 1, 3, and 7 next to the lines indicate an initial model with

3, and 7, respectively. All models belong to family 2. Results forW0\ 1,
other families show similar trends. Note that the mass loss due to stellar
evolution is almost independent of (as expected), but the tidal mass lossW0varies signiÐcantly with In the early phases of evolution the mass lossW0.due to stellar evolution dominates, while in the later stages tidal stripping
of stars is the dominant mechanism.

N \ 3 ] 105 in addition to their N ] O results. They Ðnd
that their Ðnite models, as expected, have lower mass-loss
rates and consequently longer lifetimes compared to their
inÐnite models.

In Table 4 we compare the results of our Monte Carlo
calculations with N \ 3 ] 105 stars with the Ðnite and
inÐnite F-P models of TPZ00. We consider four cases :

family 1 ; family 4 ; family 1 ; andW0\ 1, W0\ 1, W0\ 3,
family 4 (all with a \ 2.5). All Ðnite TPZ00 modelsW0\ 3,

have longer lifetimes than their inÐnite models. However,
there is practically no di†erence between their Ðnite and
inÐnite models for core-collapsing clusters. Hence, we focus
our attention only on the disrupting models. We see that in
all four cases the longer lifetimes of the Ðnite models are in
better agreement with our Monte Carlo results, although
the agreement is still not perfect. The largest di†erence
between the Ðnite and inÐnite F-P models is for the W0\ 1

TABLE 4

COMPARISON OF DISRUPTION TIMES FOR INFINITE (N ] O) AND

FINITE (N \ 3 ] 105) F-P MODELS FROM TPZ00 WITH

MONTE CARLO (N \ 3 ] 105) MODELSa

Fokker-Planck Fokker-Planck Monte Carlo
(N ] O) (N \ 3 ] 105) (N \ 3 ] 105)

Cases (yr) (yr) (yr)

W0\ 1, family 1 . . . 3.1 ] 108 4.8 ] 108 4.3] 108
W0\ 1, family 4 . . . 3.3 ] 108 12.2 ] 108 5.8] 108
W0\ 3, family 1 . . . 2.2 ] 109 2.6 ] 109 3.6] 109
W0\ 3, family 4 . . . 3.1 ] 109 5.3 ] 109 6.5] 109

a All models have a mass function m~a with a \ 2.5 (m6 \ 1 M
_

).

models, in which case the Monte Carlo results lie between
the Ðnite and inÐnite F-P results. For models, theW0\ 3
Monte Carlo disruption times are still slightly longer than
those of the Ðnite F-P models, although the agreement is
better.

Both Monte Carlo and F-P methods are based on the
orbit-averaged Fokker-Planck approximation, which treats
all interactions in the weak scattering limit, i.e., it does not
take into account the e†ect of strong encounters. Both
methods compute the cumulative e†ect of distant encounters
in one time step (which is a fraction of the relaxation time).
In this approximation, events on the crossing timescale
(such as the escape of stars) are treated as being instantane-
ous. Since the relaxation time is proportional to N/ ln N
times the crossing time, this is equivalent to assuming
N ] O in the F-P models. However, in our Monte Carlo
models there is always a Ðnite N, since we maintain a dis-
crete representation of the cluster at all times and follow the
same phase-space parameters as in an N-body simulation.
Thus, although both methods make the same assumption
about the relation between the crossing time and relaxation
time, for all other aspects of the evolution the Monte Carlo
models remain Ðnite. This automatically allows most
aspects of cluster evolution, including the escape of stars,
stellar evolution, and computation of the potential, to be
handled on a discrete, star-by-star basis. On the other hand,
the F-P models use a few coarsely binned individual mass
components represented by continuous distribution func-
tions (consistent with N ] O) to model all processes. In this
sense, the Monte Carlo models can be regarded as being
intermediate between direct N-body simulations and F-P
models.

The importance of using the correct value of N in
dynamical calculations for realistic cluster models has also
been demonstrated through N-body simulations, which
show that the evolution of Ðnite clusters scales with N in a
rather complex way (see Portegies Zwart et al. 1998 and the
““ collaborative experiment ÏÏ by Heggie et al. 1999). Hence,
despite correcting for the crossing time, it is not surprising
that the Ðnite F-P models are still slightly di†erent from the
Monte Carlo models. It is also possible that the calibration
of the escape parameter obtained by TPZ00 may not be
applicable to large-N clusters, since it was based on com-
parisons with smaller N-body simulations. It is reassuring
to note, however, that the Monte Carlo models, without
introducing any new free parameters, have consistently
lower mass-loss rates compared to the inÐnite F-P models
and show better agreement with the Ðnite F-P models.

3.3. Velocity and Pericenter Distribution of Escaping Stars
A major advantage of the Monte Carlo method is that it

allows the evolution of speciÐc subsets of stars, or even
individual stars, to be followed in detail. We use this capa-
bility to examine, for the Ðrst time in a cluster simulation
with realistic N, the properties of stars that escape from the
cluster through tidal stripping. We also examine the di†er-
ences between the properties of escaping stars in clusters
that reach core collapse and those that disrupt. In Figure 9
we show the distribution of escaping stars for two di†erent
models and 7, family 1, a \ 2.5). In each case we(W0\ 3
show a two-dimensional distribution of the pericenter dis-
tance and the velocity at inÐnity for all the escaping stars.
The velocity at inÐnity is computed as v=\ [2(E[ /

t
)]1@2,

where E is the energy per unit mass of the star and is the/
t
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FIG. 9.ÈDistribution of the pericenter distance and velocity of the
escaping stars, for two di†erent King models : and 7 (family 1,W0\ 3
a \ 2.5). The model (top panel) disrupts, while the modelW0\ 3 W0\ 7
(bottom panel) undergoes core collapse. The pericenter distance is given in
units of the initial tidal radius of the cluster. The velocity ““ at inÐnity ÏÏ is
computed as where E is the energy per unit mass ofv= \ [2(E[ /

t
)]1@2,

the star and is the potential at the tidal radius. The escape velocity is/
tdeÐned as where is the potential at the center ofvesc \ [2(/

t
[ /0)]1@2, /0the cluster. The distribution of escape velocities looks signiÐcantly di†erent

in the two clusters. In the disrupting cluster the escaping stars(W0\ 3)
have a wide range of escape energies at all pericenter distances, whereas in
the collapsing cluster a large fraction of the stars escape with close(W0\ 7)
to the minimum energy. Only the escapers from within the central region
have a signiÐcant range of escape energies.

potential at the tidal radius. We see that the distribution of
pericenter distances is very broad, indicating that escape
takes place from within the entire cluster, and not just near
the tidal boundary. We see that the distribution of peri-
centers is slightly more centrally peaked in the W0\ 7
model than in the case. Note that the sizes of theW0\ 3
cores are very di†erent for the two clusters. The W0\ 7
cluster initially has a core radius of 0.2 (in virial units),
which gets smaller as the cluster evolves, while the W0\ 3
cluster has an initial core radius of 0.5, which does not
change signiÐcantly as the cluster evolves and disrupts. The
main di†erence between the clusters, however, is in the
velocity distribution of escaping stars. In the disrupting
cluster the escaping stars have a wide range of(W0\ 3)
escape energies at all pericenter distances, whereas in the
collapsing cluster a large fraction of the stars(W0\ 7)
escape with close to the minimum energy. Only the escapers
from within the central region have a signiÐcant range of
escape energies.

The very narrow distribution of escape energies for the
collapsing cluster suggests that the mechanism for escape in
collapsing and disrupting clusters may be qualitatively dif-
ferent. It also suggests that the single escape parameter used
by TPZ00 to correct for the tidal mass-loss rate in their
Ðnite F-P calculations may be insufficient in correcting for
both types of escaping stars. This might also account for the
fact that TPZ00 Ðnd almost no change in the mass-loss
rate after introducing their parameter in core-lesc

FIG. 10.ÈComparison of the mass loss for a a \ 2.5 (family 2)W0\ 3,
King model, on three di†erent assumed orbits in the Galaxy. The leftmost
line shows a circular orbit, with radius kpc. The cluster isR

g
\ 5.76

assumed to Ðll its Roche lobe at this distance. The rightmost line shows a
Keplerian elliptical orbit with eccentricity 0.6 and a pericenter distance of
5.76 kpc. Since the cluster on such an orbit spends most of its time at a
larger distance, the cluster does not Ðll its Roche lobe at all times. This
results in a sharp mass loss every time the cluster approaches pericenter.
The lifetime of the cluster is longer by almost a factor of 2. The interme-
diate line is for an orbit in a more realistic Galactic potential, with a
constant circular velocity of 220 km s~1, with the same pericenter and
apocenter distances as for the Keplerian elliptical orbit. The orbit is no
longer elliptical, and the orbital period is shorter, resulting in a lifetime that
is intermediate between the circular and elliptical cases.

collapsing models, while disrupting models show a signi-
Ðcant di†erence.

3.4. E†ects of Noncircular Orbits on Cluster L ifetimes
In all the calculations presented above (as in most pre-

vious numerical studies of globular cluster evolution), we
assumed that the cluster remained in a circular orbit at a
Ðxed distance from the center of the Galaxy. We also
assumed that the cluster was born Ðlling its Roche lobe in
the tidal Ðeld of the Galaxy. Both of these assumptions are
almost certainly unrealistic for the majority of clusters.
However, one could argue that even for a cluster on an
eccentric orbit one might still be able to model the evolu-
tion using an appropriately averaged value of the tidal
radius over the orbit of the cluster. Here we brieÑy explore
the e†ect of an eccentric orbit, by comparing the evolution
of one of our Monte Carlo models a \ 2.5, family(W0\ 3,
2) on a Roche lobe Ðlling circular orbit and on an eccentric
orbit. We assume that the pericenter distance of the eccen-
tric orbit is equal to the radius of the circular orbit. This is
to ensure that the cluster Ðlls its Roche lobe at the same
location, and the same value of is used to compute F inR

gthe models being compared (see eq. [3]). If we alternatively
selected the orbit such that the cluster Ðlls its Roche lobe at
apocenter instead of pericenter, the outcome would be
obvious : the mass loss at pericenter would be considerably
higher, leading to much more rapid disruption of the cluster
compared to the circular orbit.
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In Figure 10 we show the evolution of the selected model
for three di†erent orbits. The leftmost line shows the evolu-
tion for the circular orbit. The rightmost line shows the
evolution for an eccentric Keplerian orbit with a typical
eccentricity of 0.6 (see, e.g., Odenkirchen et al. 1997). The
Keplerian orbit assumes that the inferred mass of the
Galaxy interior to the circular orbit is held Ðxed for the
eccentric orbit as well. The intermediate line shows the evol-
ution for an orbit in a more realistic potential for the
Galaxy, which is still spherically symmetric, but with a con-
stant circular velocity of 220 km s~1 in the region of the
cluster orbit (Binney & Tremaine 1987). The orbit is chosen
so that it has the same pericenter and apocenter distance as
the Keplerian orbit. However, since the orbital velocity is
higher, it has a shorter period compared to the Keplerian
orbit. In each of the two eccentric orbits, we see that the
cluster lifetime is extended slightly (by a factor of D2). Most
of the mass loss takes place during the short time that the
cluster spends near its pericenter, where it Ðlls its Roche
lobe. The Keplerian orbit gives the longest lifetime, since
the cluster spends most of its time near its apocenter, where
it does not Ðll its Roche lobe.

This comparison suggests that the lifetime of a cluster can
vary by at most a factor of a few, depending on the shape of
its orbit. However, such corrections should be taken into
account in building accurate numerical models of real clus-
ters. In addition, other e†ects that we have neglected here,
such as tidal shocking during Galactic disk crossings, may
a†ect cluster lifetimes more signiÐcantly (see ° 4).

4. SUMMARY

We have calculated lifetimes of globular clusters in the
Galactic environment using two-dimensional Monte Carlo
simulations with N \ 105È3 ] 105 King models, including
the e†ects of a mass spectrum, mass loss in the Galactic
tidal Ðeld, and stellar evolution. We have studied the evolu-
tion of King models with 3, and 7, and with power-W0\ 1,
law mass functions m~a, with a \ 1.5, 2.5, and 3.5, up to
core collapse or disruption, whichever occurs Ðrst. In our
broad survey of cluster lifetimes, we Ðnd very good overall
agreement between our Monte Carlo models and the two-
dimensional F-P models of TPZ00 for all 36 models
studied. This is very reassuring, since it is impossible to
verify such results using direct N-body integrations for a
realistic number of stars. The Monte Carlo method has
been shown to be a robust alternative for studying the evol-
ution of multicomponent clusters. It is particularly well

suited to studying Ðnite but large-N systems, including
many di†erent processes, such as tidal stripping and stellar
evolution, which operate on di†erent timescales. We Ðnd
that our Monte Carlo models are in better agreement with
the Ðnite-N F-P models of TPZ00, compared to their stan-
dard F-P (N ] O) models, although our models still appear
to have a slightly lower overall mass-loss rate.

Even though our simulations are becoming more sophis-
ticated and realistic with the inclusion of many new impor-
tant processes, there still remain substantial difficulties in
relating our results directly to observed clusters. We ignore
several potentially important e†ects in these calculations,
including the tidal shock heating of the cluster following
passages through the Galactic disk, as well as the presence
of primordial binaries, which can support the core against
collapse. In recent studies using one-dimensional F-P calcu-
lations, it has been shown that shock heating and shock-
induced relaxation of clusters caused by repeated close
passages near the bulge and through the disk of the Galaxy
can sometimes be as important as two-body relaxation for
their overall dynamical evolution (Gnedin, Lee, & Ostriker
1999). In addition, the initial mass function of clusters is
poorly constrained observationally, and our simple power
laws may not be realistic. In our study, we assume that
clusters begin their lives Ðlling their Roche lobes. But, as we
have shown, a cluster on an eccentric orbit may spend most
of its time farther away in the Galaxy, where it might not Ðll
its Roche lobe. This can lead to somewhat longer lifetimes.

The broad survey of cluster lifetimes presented here and
the similar e†ort by TPZ00 lay the foundations for more
detailed calculations, which may one day allow us to
conduct reliable population synthesis studies to understand
in detail the history, and predict the future evolution, of the
Galactic globular cluster system.
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