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Ruling Out Chaos in Compact Binary Systems
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We investigate the orbits of compact binary systems during the final inspiral stage before coalescence
by integrating the post-Newtonian equations of motion. We include spin-orbit and spin-spin coupling,
which, according to a recent study [J. Levin, Phys. Rev. Lett. 84, 3515 (2000)], may cause the orbits to
appear chaotic. To examine this claim, we calculate the divergence of nearby trajectories and attempt to
measure the Lyapunov exponent g. For all systems considered, we find no chaotic behavior, placing a
lower limit on the divergence time tL � 1�g that is many times greater than the typical inspiral time,
suggesting that chaos should not adversely affect the detection of inspiral events.
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For the current generation of ground-based gravitational-
wave (GW) detectors, such as LIGO, one of the most
promising sources is the final inspiral of two compact stars
(black holes or neutron stars in a relativistic binary orbit)
[1,2]. To detect such an event successfully, one must be
able to match theoretical GW templates to experimental
data containing a great deal of instrumental noise. This
“matched filtering” technique has the potential of greatly
increasing the effective signal-to-noise ratio for the detec-
tor [1,3]. Even to specify quantitative upper limits on in-
spiral events (a major objective of early LIGO runs), it is
critical to have strong confidence in the physical accuracy
of the templates [4].

Recent work has suggested that the orbits of two rapidly
spinning compact objects may be chaotic [5,6]. The pres-
ence of chaos on the inspiral time scale (typically �100 s
as the frequency sweeps up from �10 to 103 Hz) could
significantly reduce the probability of detection, even with
GW templates that include spin effects [7]. In the matched
filtering technique, if the signal and template are off by as
little as half a wavelength (over �103 cycles), the event
could be missed because of destructive interference [3].
In order to quantify this threat, we attempt to measure
Lyapunov divergence times for a broad sample of initial
conditions.

As in the Newtonian two-body problem, a relativistic
binary system can be expressed in terms of a reduced
mass m � m1m2��m1 1 m2� orbiting a fixed mass m �
m1 1 m2 with a separation �r � �r1 2 �r2. We adopt units
with G � c � m � 1 and use the same notation and post-
Newtonian (PN) equations of motion as described by Kid-
der [8], expanded to second order (2PN) terms in �y�c�2

and Gm�r, and including spin-orbit (SO) and spin-spin
(SS) effects as well as the 2.5PN radiation reaction (RR)
term. The individual spins precess because of frame-

dragging and the Lens-Thirring effect according to
��Si �

�Vi 3 �Si . Here i � 1, 2, �Si is the spin of the compact
object, and �Vi is a variable axis of precession as defined
in Eq. (2.4) of [7]. The magnitude of �Vi is the instanta-
neous spin precession frequency. We also define a mass
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ratio b � m2�m1, and a spin-orbit misalignment angle ui

for each object as the angle between the spin vector �Si and

the Newtonian angular momentum �LN � m��r 3 ��r�. The
relative position vector �r evolves according to a second-
order ordinary differential equation of the type �̈r � �aPN 1

�aSO 1 �aSS 1 �aRR. The full expressions for these terms
can be found in Refs. [6] and [7].

We integrate these equations numerically in double pre-
cision using a fifth-order Runge-Kutta scheme with an
adaptive time step. The robust nature of the Runge-Kutta
algorithm makes it particularly attractive for measuring ex-
ponential divergence of nearby trajectories. Indeed, since
the Runge-Kutta integration can introduce only errors that
grow at a polynomial rate, any exponential divergence, if
it occurs, will rapidly dominate the evolution and should
be easily distinguishable from numerical effects [9]. To
quantify chaotic behavior in a dynamical system, the equa-
tions of motion must be conservative in the sense that there
should be no dissipative terms that could act as attractors
in phase space (which would eliminate the possibility of
the system being formally chaotic; see [10]). For this rea-
son, when integrating the equations of motion to calculate
Lyapunov exponents, the radiation reaction terms are not
included. This also allows for the option of very long inte-
grations to test whether the system is formally chaotic (but
on a time scale much longer than the actual inspiral time).

Historically, an important tool for identifying chaos in
celestial mechanics has been the Poincaré surface of sec-
tion [11]. By plotting the position in phase space only at
certain values of independent coordinate variables, one can
reduce a complicated four-dimensional (4D) phase space
trajectory to a 2D scatter plot. Conserved quantities such
as energy or angular momentum generally are held con-
stant for different initial conditions plotted on a single sec-
tion. For many systems, some initial conditions behave
regularly, producing 1D curves as if there were additional
integrals of the motion, while others fill out 2D regions of
the section. This spreading away from the invariant curves
is evidence for chaotic behavior in the system. However,
this method is successful only in reducing the phase space
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by one additional dimension, so for systems with [num-
ber of degrees of freedom] 2 [number of integrals of mo-
tion] greater than two, the surface of section technique is
not very useful for identifying chaos [12]. For higher-
dimensional systems, the projection of nonchaotic orbits
onto a two-dimensional section in general will not gener-
ate confined curves, and thus a spreading of points in this
pseudosection is not necessarily an indication of chaos.
For the problem of two spinning compact objects, the
phase space is 10D (3 from �r, 3 from ��r, and 2 each from
the spin vectors �S1 and �S2, which can precess in arbitrary
orientations but maintain constant magnitude [13]) while
there are only four obvious constraints, corresponding to
angular momentum and energy conservation due to the in-
variance of the PN Lagrangian under rotations and time
translations [8]. This almost guarantees that the projection
of the trajectory onto a 2D section of phase space will not
be constrained to a 1D curve, so regular behavior could
easily be misinterpreted as chaos (cf. [5,6]).

A more quantitative method for identifying and measur-
ing chaos is to calculate the maximum Lyapunov exponent,
defined as the divergence rate between initially nearby
trajectories:

g�t� �
1
t

ln

µ
dX�t�
dX�0�

∂
. (1)

Here the difference dX between two points in phase space
is simply the Cartesian distance between the dimension-
less 12-component coordinate vectors ��r, ��r, �S1, �S2� and

��r0, ��r
0
, �S0

1, �S0
2� of two nearby trajectories. In our numerical

integrations, the initial separation is a small displace-
ment in phase space with a random orientation and a
magnitude of dX�0� � 10210. The two trajectories are
then integrated forward in time, recording the separation
dX�t�, from which g is computed. In chaotic systems,
the divergence will be exponential in time with a roughly
constant (positive) exponent: dX�t� � dX�0� exp�gt�. To
be precise, there are actually many different Lyapunov
exponents, one for each dimension of phase space. The
maximum Lyapunov exponent is automatically selected
because, like a classical eigenvector problem, any vector
(such as the random initial displacement vector) when
multiplied repeatedly by the same matrix will grow fastest
in the direction corresponding to the largest eigenvalue.
Similarly, for a chaotic system, any random initial dis-
placement in phase space is expected to grow as fast
as the maximum Lyapunov exponent. However, for a
regular system, the divergence generally grows linearly
or at most as a power law in time. In that case, the
Lyapunov exponent g approaches zero for large t. We
define the Lyapunov time tL � 1�g as the time scale
on which nearby trajectories separate by a factor of
e (the “e-folding time”). While it is difficult, on the
basis of numerical integrations, to claim that a system is
categorically nonchaotic on all time scales, we can make
the more precise claim that on a particular time scale the
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system shows no chaotic behavior; that is, we can set a
lower limit on tL. For the problem of coalescing compact
binaries, the relevant time scale is the inspiral time tinsp,
so if tinsp ø tL, chaos will not affect the dynamics.

To establish the validity of our numerical approach,
we have reexamined the problem studied by Suzuki and
Maeda [14], where both chaotic and regular trajectories
have clearly been identified for supermaximally spinning
test particles (S2 ¿ m2

2; m ¿ m) orbiting around a
Schwarzschild black hole (S1 � 0). While physically
unrealistic, these conditions introduce no mathematical
singularities into the equations of motion and are therefore
fine examples for identifying chaotic or regular behavior
in this dynamical system. Here we show numerical results
for two different sets of initial conditions: both begin
with r�m � 4.5, b � 1024, S1 � 0, S2 � 1.4 3 104m2

2,
and spin-orbit misalignment angle u2 � p�4, but one
trajectory has an initial Newtonian orbital angular mo-
mentum of LN�m � 1.485m while the other begins with
LN�m � 1.53m. In Fig. 1 we show the measured value
of g as a function of time (measured in orbital periods).
The orbit with LN�m � 1.485m (a) is clearly chaotic
with g � 0.1 (corresponding to a divergence time scale of
tL � 10 orbital periods). The other trajectory (b) exhibits
very different qualitative behavior, with no evidence for
chaos even on the time scale of thousands of orbits. Our
results for these and many other trajectories that we have
computed agree well with Suzuki and Maeda’s results,
confirming that both chaotic and regular orbits exist for
rapidly spinning test particles around a Schwarzschild
black hole.

Another method for distinguishing between chaotic
and quasiperiodic orbits is to look for certain qualitative
features in the power spectrum of one of the dynamical
variables [9,15]. For the compact binary problem, the ob-
vious choice is to analyze the spectrum of the GW signal,

FIG. 1. Lyapunov exponent g for test-particle orbits around a
black hole. The orbits in case (a) are chaotic, with g approaching
a positive value corresponding to a divergence time of tL � 10
orbital periods. The regular orbits in case (b) diverge linearly in
time so that g�t� ! 0.
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defined as the squared amplitude of the Fourier transform
of the GW strain h�t�. With RR turned off, the spectrum
should exhibit sharp lines for quasiperiodic orbits, but
broadband noise for chaotic orbits. Including only the
leading quadrupole radiation terms, the components of
the transverse-traceless GW tensor observed from the ẑ
direction are

h1 �
4m

D

µ
y2

x 2
m
r3

x2
∂

, (2)

h3 �
4m

D

µ
yxyy 2

m
r3 xy

∂
, (3)

where D is the distance to the source and yi � �xi [7,16].
Figure 2 shows the power spectra in h1�t� for the same
two test-particle orbits as in Fig. 1. Both spectra show
peaks around fGW � 25 Hz, the fundamental quadrupole
frequency (twice the orbital frequency) for these initial
conditions. As expected, the chaotic orbit (a) produces pri-
marily broadband noise with few distinguishable features,
whereas the spectrum for the quasiperiodic orbit (b) shows
many sharp lines.

Having established the ability of our method to distin-
guish between regular and chaotic trajectories described by
the PN equations of motion, we now apply the same tech-
niques to the astrophysically relevant systems expected to
be detectable by ground-based laser interferometers. Here
we will show results for an illustrative case of two maxi-
mally spinning 10MØ black holes (Si � m2

i ) in an ini-
tially circular orbit with spin-orbit misalignment angles of
u1 � 38± and u2 � 70±. To measure the Lyapunov expo-
nent at different points during the final inspiral, four dif-
ferent trajectories were integrated, corresponding to GW
frequencies of 10, 40, 100, and 400 Hz, emitted at orbital
separations r�m � 50, 20, 10, and 5, respectively [17].
For each separation, we then integrate the PN equations of

FIG. 2. Power spectra of the GW signal h1�t� for the same
two cases as in Fig. 1. The chaotic system in (a) produces
broadband noise while the quasiperiodic orbit (b) exhibits sharp
spectral lines. The GW frequency is given in units of m21

10 Hz,
where m10 � m�10MØ.
121101-3
motion (with RR turned off) over a period much longer
than the inspiral time. If no exponential divergence is ob-
served, we can safely conclude that the system is, for all
practical purposes, not chaotic.

The measured values for g�t� are plotted in Fig. 3
for each of the selected stages of the inspiral. For any
power-law divergence in phase space with dX�t� � ta , on
a log-log plot of g versus time the slope is d lng�d lnt �
1� lnt 2 1, so that for large times the curve should be
linear with slope 21 [as we see in Fig. 1(b)]. All plots in
Fig. 3 clearly show this behavior, characteristic of regular,
nonchaotic orbits. Also shown for comparison in Fig. 3
are the inspiral times corresponding to each separation. In
all four cases, the lower limit on tL far exceeds tinsp.

Just as in the test particle example presented above, we
also calculate the gravitational wave power spectrum for
this black hole binary. Here the results are even more
striking: Fig. 4 shows the h1�t� power spectrum at the
point in the inspiral where the GW frequency is 100 Hz.
The spectrum has a few very sharp lines with no evidence
for broadband noise. The strongest features correspond
to the fundamental GW quadrupole and spin-orbit preces-
sional frequencies (100 and 7 Hz, respectively) and their
harmonics. The spectra from the other points in the in-
spiral show the same qualitative features, all indicative of
quasiperiodic motion.

In addition to this prototypical binary black hole system,
we have investigated the behavior of a large number of
other systems at different stages throughout the inspiral.
Varying the binary mass ratio, spin magnitudes (always
with Si # m2

i ), misalignment angles, eccentricity, and
initial separation over wide ranges, we consistently find
the same regular, nonchaotic behavior for all trajectories.
In particular, we have calculated orbits for the same
high-eccentricity systems considered by Levin in Ref. [5]
and again measure only linear divergence of nearby initial

FIG. 3. Lyapunov exponent g�t� for different stages in the
inspiral of two maximally spinning 10MØ black holes: fGW �
10 Hz, r�m � 47.25, tinsp � 69 s; fGW � 40 Hz, r�m �
18.75, tinsp � 7.5 s; fGW � 100 Hz, r�m � 9.2, tinsp � 0.2 s;
fGW � 400 Hz, r�m � 4.0, tinsp � 0.01 s. No evidence for
chaos is seen, with tL � 1�g ¿ tinsp in all cases.
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FIG. 4. Power spectrum of the GW signal h1�t� calculated
from the initial conditions of Fig. 3 at the stage in the inspiral
where fGW � 100 Hz. The frequency is in units of m21

20 Hz,
where m20 � m�20MØ. The sharp lines in the spectrum confirm
that the orbit is regular.

conditions, finding tinsp ø tL [18]. We have also looked
at many binary systems in which either one or both objects
are solar-mass neutron stars. Because of their smaller
mass (and thus slower radiation loss), these systems can
spend significantly longer times in the inspiral band,
completing tens of thousands of orbits before merger. Yet,
even on the longest relevant time scales (tinsp * 104 s),
we again find no chaotic behavior.

Recent work in binary star evolution [19] suggests that
systems with large spin misalignment angles are likely to
be astrophysically relevant sources, giving rise to com-
plicated nonlinear SO and SS interactions. It is possible
that there are undiscovered narrow regions in phase
space where specific resonant conditions could give rise
to chaotic behavior, yet even if a binary system passes
through them during inspiral, the time spent in these
resonant bands will most likely be much shorter than the
Lyapunov time. Even though the Lyapunov exponent ap-
proaches zero for all the systems we have considered, their
orbits can still appear quite irregular, especially when both
objects are spinning rapidly [5]. As mentioned above, this
can lead to the spreading of the surface of section away
from a 1D curve, but in dynamical systems with many
degrees of freedom, this spreading alone does not imply
the presence of chaos. Nevertheless, the detection of GW
signals from binaries with rapidly spinning components
may be very challenging. Systems with similar initial
conditions still may produce waveforms that look quite
different even without exponential divergence. Orbital
precession will add many complicated features to the
basic inspiral waveforms. The current template database
will most likely need to be extended (perhaps by orders of
magnitude) to include at least a portion of parameter space
where the signals are significantly modified by spin effects
[20]. Furthermore, for the late stages of inspiral, the
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2.5PN expansion becomes invalid and one should include
higher order PN terms (or even perform calculations in
full general relativity [21]). While these terms introduce
additional features in the dynamics, at this late stage the
orbit is certainly decaying too rapidly for the final GW
signal to be affected by formal chaotic behavior.
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