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ABSTRACT

Coalescing binary neutron stars (NS) are expected to be an important source of gravitational waves detectable
by laser interferometers. We discuss recent theoretical work on the hydrodynamics of NS binary mergers and
possible methods for determining the NS compactness ratio M=R and constraining the equation of state of
dense nuclear matter using gravitational wave signals. One particularly simple and promising method is based
on the properties of quasi-equilibrium binary NS sequences and does not require full hydrodynamic merger
calculations.
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1. INTRODUCTION

Coalescing compact binaries containing two neutron stars (NS) are among the most important sources of grav-
itational waves (GW) for LIGO,1 VIRGO,2 and other laser interferometers. Should the inspiral of such a
binary be detected, the frequency evolution of the GW signal will immediately yield the system's \chirp mass"
Mch � �3=5M2=5, where � and M are the reduced and total mass of the binary, respectively. Higher-order
post-Newtonian e�ects on the phase evolution of the signal also allow for the determination of the reduced mass
�, and thus the individual masses M1 and M2 of the two NS.3 The determination of the NS radii in addition
to their masses would yield important information about the equation of state (EOS) at nuclear densities, and
could even indicate the presence of more exotic phases, such as strange quark matter instead of ordinary nuclear
matter.4 The GW signal of a coalescing binary could yield such information but this is limited in two di�erent
ways. During the slow inspiral phase at large separations, i.e., low frequencies (f � 1 kHz), the stars behave
like point masses, and �nite-size e�ects are not expected to leave any signature in the GW signal.3, 5, 6 During
the �nal hydrodynamic merger, characteristic frequencies of GW emission could yield important information
about the uid EOS,7, 8, 10 but these frequencies are expected to lie well above the photon shot noise limit of
current interferometers (around 1 kHz). Thus, it is only during the last few orbits of the inspiral, just prior to
merger, that we can hope to see the imprint of the NS radii on a measurable GW signal (below � 1 kHz).

Several groups have studied this terminal phase of inspiral by constructing quasi-equilibrium sequences of
close NS binaries in the conformal atness approximation of general relativity (GR).11{14 In this approximation,
it is assumed that the binary system evolves along a sequence of appropriately constructed equilibrium states
with decreasing binary separation as energy is radiated away in GW. From the binary equilibrium energy curve
Eeq(r), which gives the total system energy as a function of binary separation r, and the GW luminosity LGW,
one can derive the radial infall rate as vr = LGW(dEeq=dr)

�1. With vr = dr=dt known, this provides the time
evolution along the equilibrium sequence and the GW signal h(t). This approach should remain accurate as
long as the radial infall timescale r=vr is longer than the dynamical timescale of the system, i.e., until the point
where dynamical instability sets in, and the two stars plunge inward rapidly and merge.

Unfortunately, calculating the correct GW luminosity for a given matter con�guration in GR is an extremely
diÆcult task. Di�erent approaches have required either time integration of the full non-linear equations of GR,15

or the solution of a complicated wave equation for terms representing the spherical harmonic expansion of the
GW metric perturbation.16 The great complexity of these approaches is in stark contrast with the simplicity
of the quasi-equilibrium approximation. However, we have recently shown42 that the GW energy spectrum

dEGW=df can be calculated directly and very simply from the equilibrium energy curve, independent of any
knowledge about the GW luminosity. Indeed, by de�nition of the quasi-equilibrium approximation, the energy
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decrease �dEeq between two neighboring binary con�gurations along the sequence is equal to the energy dEGW

radiated away as the wave frequency sweeps up by df , where the GW frequency is twice the orbital frequency,
f = 2forb. Thus, one should simply compute the total energy Eeq as a function of frequency f along the
equilibrium sequence, and the GW energy spectrum is then given by the derivative dEGW=df = �dEeq=df . As
a trivial example, consider the inspiral of two point masses in the Newtonian limit, where we have Eeq / �r

�1

and f / r�3=2. It follows that Eeq / �f
2=3 and thus dEGW=df / f�1=3, a well-known result. In addition

to the assumptions underlying the quasi-equilibrium approximation, the validity of this simple approach relies
on the additional assumption that the GW emission during the later merger phase has no e�ect on the energy
spectrum at lower frequencies. Indeed, this has been demonstrated in numerical hydrodynamic calculations of
binary mergers,7, 8 which show a clear separation between the inspiral and merger components of the emission
in frequency space (see Sec. 3 below).

2. ENERGY SPECTRA IN THE QUASI-EQUILIBRIUM APPROXIMATION

We have investigated the properties of the GW emission during the �nal phase of binary NS inspiral using
new, highly accurate equilibrium sequences calculated with the Meudon code.17 The formalism is based on the
conformally at approximation, which is expected to yield accurate equilibrium matter con�gurations for this
phase.11{14 The resulting �ve non-linear, coupled elliptic equations are solved using a multi-domain spectral
method.18, 19 This approach has already been used successfully in various astrophysical applications.14, 20, 21

Typically, the computed �elds satisfy the constraints of full GR to within � 1%.22 The code has been improved
recently, especially with regard to the treatment of the external compacti�ed domain, and the numerical error
in computing equilibrium con�gurations, measured in terms of how well the virial theorem is satis�ed, is of
order one part in 105. The equilibrium sequences presented here are the natural extension of the work already
published in Refs. 14 and 23, and are discussed in more detail in Ref. 24. Here we only show the variation of
the ADM mass of the system (total binary mass-energyM� c�2Eeq) and the GW frequency (twice the orbital
frequency), which are suÆcient for our purposes to determine the GW energy spectrum.

The equilibrium con�gurations have been calculated for irrotational binaries, i.e., assuming that the uid
has zero vorticity in the inertial frame. Indeed, the NS should be spinning slowly at large separations and
the viscosity of NS matter is too small for tidal spin-up to become signi�cant on the coalescence timescale.5, 25

Based on the current set of well-measured NS masses in relativistic binary radio pulsars, it is expected that all
NS in coalescing binaries will have masses M ' 1:35M�.

26 Hence, for simplicity, we consider only equal-mass
binaries where M1 = M2 = 1:35M�. Also for simplicity, we model the NS EOS with a simple polytropic
form P = K��, where P is the pressure and � the rest-mass density. The constant K represents the overall
compressibility of the matter and largely sets the value of the stellar radius for a given mass, while the adiabatic
exponent � measures the sti�ness of the EOS and a�ects the degree of central concentration of the NS interior.
Based on our experience with hydrodynamic calculations,8, 9 we expect that the GW energy spectrum just
prior to merger is determined primarily by the NS radius through K, with relatively little sensitivity to �. For
this reason, in this initial study, we allow K, and therefore also the stellar radius R, to vary for di�erent NS
models, but we set � = 2 for all models, as this value �ts well most published NS EOS (see, e.g., Ref. 27 and
references therein). Speci�cally, we consider NS models with compactness ratios M=R =0.12, 0.14, 0.16, and
0.18 (setting G = c = 1), where M is the ADM (gravitational) mass measured by an observer at in�nity for a
single isolated NS, and R is the circumferential radius of the NS. For M = 1:35M�, the corresponding radii
are R =16.6, 14.2, 12.4, and 11.1 km, respectively, spanning the range of values for NS radii calculated from
various physical EOS. Note, however, that our results are unchanged under the rescaling given by R0 = �R,
M 0 = �M , f 0 = f=�, for any constant �.

For each NS model, about 12 binary equilibrium con�gurations have been computed with decreasing sep-
arations, until a cusp develops on the NS surface. Equilibrium con�gurations for smaller separations do not
exist. To each sequence we �t a curve of the form

M(f) = 2:7M� � kNf
2=3 + k1f + k2f

2 (1)
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to represent the variation of total mass-energy as a function of GW frequency. The �rst term gives the total
gravitational mass of the system at in�nite separation, while the second term represents the Newtonian point-
mass behavior, with kN = 2�4=3�2=3G2=3M5=3 = 4:056 � 10�4M�Hz�2=3. The term / f was introduced
heuristically to represent the lowest-order post-Newtonian and �nite-size corrections to the point-mass behavior
at intermediate frequencies. The term / f2 represents the tidal interaction energy, which causes the equilibrium
energy curve to atten at high frequencies.

Our best (least-squares) �t values of k1 and k2 for each sequence are listed in Table 1 and the results are
illustrated in Fig. 1. The asterisks show the data points along each sequence, with a typical error between the
data points and the �t of ÆM � 10�4M�. We �nd in all cases that k2 is positive, as we would expect: tidal
deformations and relativistic gravitational e�ects increase the equilibrium energy.28, 29 We note that none of
the equilibrium curves shows evidence of an energy minimum, which would have implied the onset of dynamical
instability.6, 23, 28, 30

Our choice of a heuristic �tting function, rather than one grounded in standard post-Newtonian (PN) theory,
represents the best �t to the data we could achieve, using as few free parameters as possible. As such, we �nd
it necessary to refrain from interpreting our �tting coeÆcients in terms of classical PN e�ects. It is possible to
switch to a 1PN+2PN �tting formula (i.e., using terms with frequency dependence f4=3 and f2, rather than f
and f2), but the results presented here would remain essentially unchanged. In any case, the strength of our
method is that it should work regardless of the �tting formula. All we require to create an energy spectrum
is the derivative of the equilibrium energy as a function of frequency. Ideally, the energy spectrum could be
computed by �nite di�erencing from an equilibrium sequence whose points were calculated at suÆciently small
spacing as to allow the required numerical accuracy.

Computing the GW energy spectrum for each model only requires di�erentiating the �tted curves with
respect to frequency. The results are shown in Fig. 2. In each case, we see a characteristic frequency range
where the spectrum plunges rapidly below the extrapolation of the point-mass (low-frequency) result. This
corresponds to the attening of the energy curves in response to the growing tidal deformation of each NS. Also
shown is the energy spectrum of a 3PN, irrotational, point-mass binary, computed according to the results found
in Ref. 31, which closely tracks our most compact model, indicating that the di�erences we see in the energy
spectra result from �nite-size e�ects associated with the NS radius. As the formula for the 3PN curve can be
calculated analytically, the energy spectrum was computed by �nite di�erencing, rather than �tting to a speci�ed
functional form. To quantify the deviations from the Newtonian case, seen in both the PN and conformally at
sequences, we de�ne a set of break frequencies, at which the energy spectrum has dropped by some factor below
the point-mass result. The values we �nd for f10; f25, and f50, where dEGW=df has dropped by 10%; 25%,
and 50%, respectively, are listed in the last three columns of Table 1. We see that all these characteristic
frequencies lie within the frequency range accessible by LIGO-type detectors, with perhaps the exception of f50
for the more compact sequences. Note that the calculation of f50 values requires extrapolating the equilibrium
energy curves slightly beyond the last equilibrium model (where a cusp develops), and may therefore be less
reliable. However, we �nd that f50 has a particularly steep, quasi-linear dependence on the NS compactness,
given by f50 ' [104(M=R)�460]Hz within the range of NS radii we considered. For comparison, f25 values can
be determined safely within the quasi-equilibrium approximation, and the sensitivity on compactness is only
slightly reduced, with f25 ' [5000(M=R)� 85]Hz.

The best de�nition of the break frequency will be a tradeo� between higher signal-to-noise ratio at lower
frequencies,32 and greater ease of discrimination between di�erent EOS at the higher frequencies. In addition,
the quasi-equilibrium approximation is expected to be most accurate at lower frequencies, where the inspiral rate
is slower. However, we doubt that this could become a major issue: if we adopt, for simplicity, the point-mass
formula for the GW luminosity, and compute the corresponding radial infall velocity along our equilibrium
sequences, we �nd that vr never exceeds 5% of the orbital velocity, even at the point where we de�ne f50
(the corresponding fraction at the point where we de�ne f25 is about 2%).

33 Ultimately, the optimum choice
should be determined by experimenters, taking into account the accuracy with which the break frequencies
can be extracted using matched �ltering techniques.3, 34 De�ning a precise break frequency may not even be
necessary. Instead, we suggest that GW inspiral templates could be terminated at high frequency in a manner
that reproduces the energy spectrum given by a simple analytic form, such as our Eq. (1). The free parameters
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k1 and k2 could then be measured experimentally and compared directly to the predictions of various realistic
EOS used in computing binary equilibrium sequences. In future work, we plan to compute such sequences, and
the corresponding energy curves, for a wide variety of published, realistic NS EOS.

3. HYDRODYNAMIC CALCULATIONS OF BINARY MERGERS

Beyond the point where the quasi-equilibrium assumption breaks down, the GW energy spectrum can only be
computed from a full hydrodynamic calculation of the binary NS coalescence. Two very di�erent computational
schemes have been used in these calculations. Starting with the �rst hydrodynamic calculations of binary NS
mergers in Newtonian gravity,35 some groups have used grid-based, Eulerian �nite-di�erence codes to solve the
�eld equations of the chosen gravitational formalism. Most recently, these codes have been used to calculate
the evolution of merging binary NS in a completely consistent, fully GR formalism.36 Alternatively, several
groups have used the particle-based Lagrangian SPH technique,37 solving the �eld equations either on grids
or by tree-based methods. These calculations have been done most recently in PN gravity for a wide variety of
systems,8, 38 and in the conformally at approximation for initially synchronized binaries.10

The GW energy spectra predicted by full hydrodynamic calculations di�er in two important ways from those
computed from equilibrium sequences. First, they typically contain very sharp peaks of emission, represent-
ing the characteristic frequencies of GW emission during the merger itself as well as from the oscillations of
the merger remnant (\ringdown"). Second, the characteristic frequencies of emission extend to much higher
frequencies f > 1 kHz, outside of the current LIGO frequency window. To measure these signals, it will be
necessary to use specially designed narrow-band instruments, most likely using the \dual recycling" techniques
now being tested at GEO 600.39

The GW energy spectrum from a PN hydrodynamic merger calculation can be computed from the two
polarizations of the GW signal, h+(t) and h�(t), following the techniques developed in Ref. 7. We �rst take the
Fourier transforms of both polarizations of the GW signal,

~h+(f) =

Z
e2�ifth+(t) dt; (2)

~h�(f) =

Z
e2�ifth�(t) dt; (3)

and we insert them into the following expression giving the energy loss per unit frequency interval (see, e.g.,
Ref. 40),

dE

df
=

c3

G

�

2
(4�r2)f2

D
j~h+(f)j

2 + j~h�(f)j
2
E
; (4)

where the averages are taken over time as well as solid angle. In terms of the components of the quadrupole
tensor, we then �nd

dE

df
=

�2G

c5

�
8

15

�
j ~Q(2)

xx �
~Q(2)
yy j

2 + j ~Q(2)
xx �
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zz j

2 + j ~Q(2)
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~Q(2)
zz j

2
�
+

48

15

�
j ~Q(2)

xx j
2 + j ~Q(2)

yy j
2 + j ~Q(2)

zz j
2
��

; (5)

where ~Q
(2)
ij represents the Fourier transform of the second derivative of the traceless quadrupole tensor.

Typical results, based on our own recent PN SPH calculations, are shown in Fig. 3. The initial binary in this
calculation contains two identical NS with an EOS taken to be a � = 3 polytrope. More details about this and
other similar calculations can be found in Ref. 9. In summary, relaxed initial SPH particle con�gurations for
isolated NS in PN gravity were constructed, and linearly rescaled in three dimensions to correspond to the axis
ratios determined by semi-analytical techniques for minimizing the energy of binary triaxial ellipsoids.29 The
evolution equations were evolved using a second-order leap-frog technique, with �eld equations (all of Poisson
type) solved on a grid by an FFT-based convolution algorithm. The hydrodynamic equations were solved by
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standard SPH techniques, involving interactions between particles determined by SPH smoothing kernels, whose
smoothing lengths were allowed to vary in time to adjust to the local density.

The three labeled frequencies in the �gure, fdyn, fpeak, and frem, correspond to the onset of dynamical insta-
bility, the emission during the merger itself, and the ringdown of the merger remnant, respectively. The dashed
curve shows the energy spectrum derived exclusively from the signal taken from the dynamical calculation. The
dotted curve represents a point-mass Newtonian inspiral, which is attached onto the beginning of the computed
curve to minimize aliasing of the signal during the Fourier transform. As can be seen from the combined signal,
shown as a solid curve, the two components tend to represent entirely di�erent frequency regimes, with only
minimal overlap in frequency space, corresponding to the initial GW frequency of the dynamical calculation.
The characteristic frequencies highlighted in the �gure are all important, and we turn our attention to each in
turn.

At the highest frequencies, there is a very clear peak in the emission at frem ' 2000Hz, which results from
GW emission by the merger remnant. This feature has been seen in all PN and conformally at calculations,
as well as those fully GR calculations which produce a central NS, rather than immediate collapse to a black
hole.41 The frequency this peak can tell us a great deal about the moment of inertia I of the merger remnant,
and thus the NS EOS, as long as we make a few simplifying assumptions. If we assume that fGW = 
=� = J=I ,
where J is the total angular momentum of the merger remnant and 
 its angular velocity, we can use our
information about the system prior to merger to determine the values of the same parameters afterwards. The
total angular momentum of the system immediately prior to merger decreases during the merger itself, with
losses attributable to two completely di�erent e�ects. First, we know that GW carry angular momentum from
a system as well as energy. Typically, 5� 10% of the system angular momentum is carried o� from the moment
where the binary becomes dynamically unstable until the formation of the merger remnant signifying the end
of the merger process. Second, the ejection of even a small amount of matter during the merger can carry
o� a great deal of angular momentum. However, hydrodynamic calculations have found that the amount of
mass shed during the merger is extremely small whenever the NS are similar in mass. Calculations using all
three gravitational schemes discussed previously typically �nd that less than 0:1% of the total system mass is
ejected to in�nity and that no more than a few percent of the total system mass is deposited in a low-density
halo around the merger remnant. Using this information, as well as a measurement of the system mass from
the inspiral component of the signal, we can estimate the total angular momentum of the merger remnant,
and use the frequency of the merger remnant GW emission to derive a characteristic radius for the remnant
and constrain the NS EOS. Unfortunately, as simple as this approach would be, it is limited by the incredibly
diÆcult practical challenge of detecting a signal at these frequencies. The detectors which could measure this
e�ect are at least a decade away, even according to the most optimistic estimates. It is more likely that the
initial constraints on the NS radius and EOS will be drawn from features found at lower frequencies (as we
discussed in Sec. 2 above).

The emission peak seen in Fig. 3 at fpeak ' 1500Hz is closer to the frequency range where LIGO has
good sensitivity, but the detection of such a feature presents several problems as well. First, there is a great
uncertainty as to the width of such a feature, to the point where some results9 show it as a peak in the
energy spectrum, whereas others show either a plateau or even a slight drop.10 Given these uncertainties, it is
extremely diÆcult to devise a test which could pick these frequencies out of the data.

A more likely candidate for detection is the frequency at which dynamical stability sets in, labeled fdyn. As
discussed in Sec. 2, we expect to see a drop in the energy spectrum corresponding to the growing dynamical
instability of the binary system (even if such a system does not actually reach an energy minimum, as found in
Newtonian and PN systems). The drop in the energy spectrum representing the onset of instability was seen in
the original Newtonian work on the subject7 as well as PN calculations.9 It was not seen in calculations using
a conformally at gravitational formalism, but this may result from the use of a point-mass curve which does
not replicate the correct Newtonian limit.10

This dip in the energy spectrum, which can be seen in dynamical calculations as well as those based on
equilibrium sequences, is essentially the only feature which lies within the frequency range accessible to LIGO
and other broad-band detectors. In fact, by comparing a dynamical calculation to an equilibrium sequence
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calculation, it should be possible to determine the upper frequency limit below which the quasi-equilibrium
approximation remains valid, as well as the behavior of the energy spectrum at frequencies just above this
point.
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Table 1. Properties of the quasi-equilibrium sequences. Here M=R (with G = c = 1) is the compactness of an isolated
NS seen by an observer at in�nity, R is the circumferential radius for an ADM mass of M = 1:35M�, fc is the GW
frequency at the �nal point of each sequence (cusp), k1 and k2 are the best �t parameters in Eq. 1, and f10, f25, and f50
are the break frequencies at which the GW energy spectrum has dropped, respectively, by 10%, 25%, and 50% below
the point-mass energy spectrum.

M=R R (km) fc (Hz) k1 k2 f10 (Hz) f25 (Hz) f50 (Hz)
0.12 16.6 641 -4.939E-6 1.290E-8 342 518 764
0.14 14.2 807 -3.363E-6 9.244E-9 383 612 931
0.16 12.4 1002 -1.806E-6 6.490E-9 418 720 1137
0.18 11.1 1187 -5.834E-7 4.835E-9 431 810 1331
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Figure 1. ADM mass (total mass-energy) of a binary NS system as a function of GW frequency (twice the orbital
frequency), computed along each of our 4 irrotational equilibrium sequences. From bottom to top, the sequences corre-
spond to NS with compactness M=R = 0:12; 0:14; 0:16, and 0:18. All models assume a polytropic EOS with � = 2 and
a NS mass of 1:35M� for both components. The asterisks indicate the individual equilibrium con�gurations calculated
along each sequence, while the lines show our best �t using Eq. (1) and the values of Table 1.
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Figure 2. Energy spectrum dEGW=df of GW emission emitted along each of the 4 sequences of Fig. 1 in the quasi-
equilibrium approximation, as well as that for an irrotational 3PN point mass binary from Ref. 31, which closely tracks
our most compact model. Asterisks indicate the terminal point along each sequence, where a cusp develops. The slanted
straight lines show, from top to bottom, the point-mass Newtonian energy spectrum (/ f�1=3) multiplied by 1.0, 0.9,
0.75, and 0.5. The last three values are used to de�ne characteristic break frequencies f10, f25, and f50, where the
energy spectrum has dropped by the corresponding fraction. The units on the right and top axes show the corresponding
dimensionless quantities, with the mass dependence scaled away. Note that the 3PN curve, which can be calculated in
a semi-analytic fashion, was computed by �nite-di�erencing, rather than �tting a parameterized function.
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Figure 3. Energy spectrum from a typical PN SPH calculation of a NS binary merger with binary mass ratio q = 1:0,
and assuming a simple polytropic NS EOS with � = 3 (from Ref. 31). We show the inspiral (dotted line) and merger
(dashed line) subcomponents of the spectrum, as well as the total combined spectrum (heavy solid line). The labeled
frequencies represent the characteristic GW frequency at the onset of dynamical instability (fdyn), during the merger
itself when the GW luminosity peaks (fpeak), and during the phase of merger remnant oscillations (frem). The frequencies
are given for a NS mass M = 1:35M�.
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