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ABSTRACT

We study the dynamical evolution of globular clusters using our two-dimensional Monte Carlo code with
the inclusion of primordial binary interactions for equal-mass stars. We use approximate analytical cross
sections for energy generation from binary-binary and binary-single interactions. After a brief period of
slight contraction or expansion of the core over the first few relaxation times, all clusters enter a much longer
phase of stable ‘‘ binary burning ’’ lasting many tens of relaxation times. The structural parameters of our
models during this phase match well those of most observed globular clusters. At the end of this phase,
clusters that have survived tidal disruption undergo deep core collapse, followed by gravothermal
oscillations. Our results clearly show that the presence of even a small fraction of binaries in a cluster is
sufficient to support the core against collapse significantly beyond the normal core-collapse time predicted
without the presence of binaries. For tidally truncated systems, collapse is easily delayed sufficiently that the
cluster will undergo complete tidal disruption before core collapse. As a first step toward the eventual goal of
computing all interactions exactly using dynamical three- and four-body integration, we have incorporated
an exact treatment of binary-single interactions in our code. We show that results using analytical cross
sections are in good agreement with those using exact three-body integration, even for small binary fractions,
where binary-single interactions are energetically most important.

Subject headings: celestial mechanics — globular clusters: general — methods: numerical —
stellar dynamics

1. INTRODUCTION

The realization about 10 years ago that primordial
binaries are present in globular clusters in dynamically sig-
nificant numbers has completely changed our theoretical
perspective on these systems (see, e.g., the review by Hut
et al. 1992b). Most importantly, dynamical interactions
between hard primordial binaries and other single stars or
binaries are thought to be the primary energy generation
mechanism responsible for supporting a globular cluster
against core collapse (Goodman & Hut 1989; McMillan,
Hut, & Makino 1990, 1991; Gao et al. 1991). The term
‘‘ binary burning ’’ is now often used by analogy with
hydrogen burning for stars. In the same way that hydrogen
burning allows a star like the Sun to remain in thermal equi-
librium on the main sequence for a time much longer than
the Kelvin-Helmholtz timescale, primordial binary burning
allows a globular cluster to maintain itself in quasi–thermal
equilibrium and avoid core collapse for a time much longer
than the two-body relaxation timescale.

In addition, strong dynamical interactions involving
binaries can explain very naturally the large numbers of
exotic objects found in dense star clusters. Exchange inter-
actions between hard primordial binaries and neutron stars
inevitably produce large numbers of X-ray binaries and
recycled pulsars in globular clusters (Hut, Murphy, &

Verbunt 1991; Sigurdsson & Phinney 1995; Davies &
Hansen 1998; Rasio, Pfahl, & Rappaport 2000). Resonant
interactions of primordial binaries result in dramatically
increased collision rates for main-sequence stars in globular
clusters and even open clusters (Bacon, Sigurdsson, &
Davies 1996; Fregeau et al. 2003; Leonard 1989; Leonard &
Linnell 1992). Direct observational evidence for stellar colli-
sions and mergers of main-sequence stars in globular
clusters comes from the detection of large numbers of bright
blue stragglers concentrated in the dense cluster cores
(Bailyn 1995; Bellazzini et al. 2002; Ferraro et al. 2001). Pre-
viously, it was thought that primordial binaries were
essentially nonexistent in globular clusters, so other mecha-
nisms such as tidal capture and three-body encounters had
to be invoked in order to form binaries dynamically during
deep core collapse. However, these other mechanisms have
some serious problems and are much more likely to result in
mergers than in the formation of long-lived binaries
(Chernoff & Huang 1996; Kochanek 1992; Kumar &
Goodman 1996; Portegies Zwart & McMillan 2002; Kim &
Lee 1999; Kim, Lee, & Goodman 1998; Lee & Ostriker
1993). Multiple mergers of main-sequence stars and run-
away collisions in young star clusters could lead to the
formation of a massive central black hole in some systems
(Lee 1993; Gebhardt, Rich, & Ho 2002; Portegies Zwart &
McMillan 2002).

The primordial binary fraction is therefore a key input
parameter for any realistic study of dense star cluster
dynamics (Hut et al. 1992b). Early determinations of binary
fractions in globular clusters came from observations of
spectroscopic binaries with red giant primaries (Pryor,
Latham, & Hazen 1988; see, e.g., Côté et al. 1996 for a more
recent study) as well as eclipsing binaries (Mateo et al. 1990;
Yan & Mateo 1994). Hubble Space Telescope observations
have provided direct constraints on primordial binary
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fractions in the central regions of many globular clusters,
where binaries are expected to concentrate because of mass
segregation. Rubenstein & Bailyn (1997) used observations
of a broadened main sequence in NGC 6752 to derive a
binary fraction in the range of 15%–38% for the inner clus-
ter core. Their method has now been applied to many other
clusters. For example, Bellazzini et al. (2002) derive a similar
binary fraction, in the range of 0.08–0.38, in the central
region of NGC 288. Adding proper-motion information
can lead to much tighter constraints, as in the case of NGC
6397, where Cool & Bolton (2002) derive a binary fraction
d5%–7% near the center.

Despite the crucial role of primordial binaries in the
dynamical evolution of a dense star cluster, the overall evo-
lution of the binary population within a cluster, and its
direct implications for the formation rate of observable
systems such as recycled pulsars and blue stragglers,
remains poorly understood theoretically. One reason is that
the relative importance of binary interactions in a cluster,
like many other dynamical processes, depends in a complex
manner on the number of stars in the system. This makes it
difficult to extend results obtained from small directN-body
simulations to realistic globular cluster models. In particu-
lar, the rate at which binaries are ‘‘ burned ’’ and, ultimately,
destroyed or ejected from the cluster depends on the size of
the cluster. When the initial primordial binary fraction is
below a certain critical value, a globular cluster core can run
out of binaries before the end of its lifetime, i.e., before dis-
ruption in the tidal field of the Galaxy (McMillan & Hut
1994). Without the support of binaries, the cluster will then
undergo a much deeper core collapse, perhaps followed by
gravothermal oscillations (Sugimoto & Bettwieser 1983;
Breeden, Cohn, & Hut 1994; Makino 1996). At maximum
contraction, the core density may increase by many orders
of magnitude, leading to greatly enhanced interaction rates.

Detailed numerical studies of globular cluster evolution
with primordial binaries are still lacking, for several
reasons. First, the inclusion of even a modest fraction of pri-
mordial binaries adds a very significant computational over-
head to N-body simulations. This is mainly due to the extra
computations required to treat binary interactions but also
because the lifetime of a cluster can be significantly extended
(by up to many orders of magnitude) through binary burn-
ing. In addition, in directN-body simulations, the extremely
large ratio of the overall cluster dynamical time to the orbi-
tal period of close binaries (as large as �1010 in a globular
cluster!) introduces many computational difficulties. This
makesN-body simulations with primordial binaries prohib-
itively expensive forNe104 stars, although special-purpose
supercomputers such as the new GRAPE-6 may increase
this limit in the near future (Makino 2001). Orbit-averaged
calculations, like direct Fokker-Planck integrations and
Monte Carlo simulations, get around this problem by treat-
ing binaries just like single stars, except during brief periods
of strong interactions. Unfortunately, this requires that
cross sections for strong interactions involving binaries be
known accurately, for a wide range of binary parameters
(masses, semimajor axes, and eccentricities). These cross
sections are difficult to determine in general, and reliable
semianalytic fits to numerical scattering experiments are
available only for simple configurations such as those
involving equal-mass stars. For these reasons, most pre-
vious numerical studies of globular clusters with primordial
binaries have been limited either to clusters with equal-mass

stars (Gao et al. 1991; Spitzer & Mathieu 1980) or to very
small clusters with N � 103 104 stars (Heggie & Aarseth
1992; Hurley et al. 2001; McMillan et al. 1990, 1991;
McMillan & Hut 1994). Simplified treatments have also
been employed in which the dynamics of the binaries was
followed in a static cluster background (Hut, McMillan, &
Romani 1992a) or in a background cluster modeled as an
evolving gas sphere (Giersz & Spurzem 2000).

The results of Gao et al. (1991, hereafter GGCM91),
based on direct Fokker-Planck integrations, were the first to
clearly illustrate the dominant effect of even a small fraction
of primordial binaries on the evolution of a globular cluster.
In this paper, we present the first study of globular cluster
evolution with primordial binaries based on self-consistent
Monte Carlo simulations with a realistically large number
of stars (Ne105). Partly in order to allow better compari-
son of our results with those of GGCM91, we use similar
initial conditions and cross sections for binary-binary and
binary-single interactions, even though our method for
implementing these cross sections in the Monte Carlo
scheme is completely different. In addition, the results of
GGCM91 were obtained using a one-dimensional Fokker-
Planck method (in which isotropy in velocity space is
enforced). More realistic two-dimensional (anisotropic)
Fokker-Planck calculations with primordial binaries have
never been reported in the literature, to the best of our
knowledge. Even for the one-dimensional calculations, and
with only a single parameter representing the internal struc-
ture of binaries (namely, their binding energy), the inclusion
of binary-binary interactions significantly increased the
overall computation time. Since the Fokker-Planck method
uses distribution functions to represent the system, every
new parameter adds a new dimension to the phase space,
making the Fokker-Planck equation more difficult to solve
numerically. It has also been shown recently that the one-
dimensional treatment is inadequate in dealing with some
aspects of the evolution, such as the escape rate from tidally
truncated clusters (Takahashi & Portegies Zwart 1998,
2000). Many difficulties in the direct Fokker-Planck
approach come from the basic representation of the system
in terms of smooth distribution functions. Neglecting the
discrete nature of the system makes it impossible to follow
the details of individual interactions, such as binary-single
or binary-binary interactions. The implicit assumption that
N ! 1 also makes it difficult to scale the results of direct
Fokker-Planck simulations to finite systems with different
numbers of stars.

Our Monte Carlo method provides an intermediate
approach, which combines many of the benefits of direct
N-body simulations (such as the description of the cluster
on a star-by-star basis and the possibility of treating each
individual interaction in detail) with the speed of an orbit-
averaged calculation. Our method is also two-dimensional
in velocity space by construction and hence properly
accounts for any velocity anisotropy in the system. Another
benefit of the method is that it allows one to use a wide range
of binary parameters without having to modify the underly-
ing orbit-averaged calculation of the relaxation processes.
In principle, one can treat individual interactions in as much
detail as in direct N-body simulations, by computing all
strong encounters exactly using three-body or four-body
integrators. As a first step, for this paper, we have incorpo-
rated a three-body dynamical integrator into our code,
which allows binary-single interactions to be computed
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exactly (without reference to approximate, precompiled
cross sections). This allows us to follow the outcomes of
interactions more precisely and, most importantly, will
allow us in the future to extend our code to multimass
systems, for which analytic cross sections are not available.

2. TREATMENT OF BINARY INTERACTIONS

We use the basic Hénon-type Monte Carlo method for
modeling the dynamical evolution of clusters as a sequence
of equilibrium models subject to regular velocity perturba-
tions (Hénon 1971a, 1971b); our code has been described in
detail by Joshi, Rasio, & Portegies Zwart (2000, hereafter
Paper I) and Joshi, Nave, & Rasio (2001, hereafter Paper
II). The regular velocity perturbations are calculated using
Hénon’s method to represent the average effect of many
long-range small-angle gravitational scattering encounters
using one suitably chosen encounter with a nearby star
(Hénon 1971b). At each time step, we calculate the Monte
Carlo realized radial position and velocity of each star
(assuming spherical symmetry), which we use to calculate
whether two objects (binary-single or binary-binary) will
interact strongly. These strong interactions are performed
using either simple recipes based on cross sections, or a
dynamical integrator. For most of the work reported here,
we use cross sections for the treatment of close binary-
binary and binary-single interactions. These cross sections
were compiled from analytic fits to the results of numerical
scattering experiments available in the literature. Given the
very large parameter space, reliable cross sections are avail-
able only for equal-mass encounters, so we study only
single-component clusters in this paper. All single stars are
assumed to have the same mass, and all binaries contain two
identical stars with the same mass as the background single
stars. All stars are treated as point masses; i.e., we neglect
physical collisions between stars during interactions (cf.
Bacon et al. 1996; Fregeau et al. 2003). Our implementation
follows closely that used in the Fokker-Planck study by
GGCM91, which will serve as the main comparison for our
work.

2.1. Units and Definitions

In our code we use the system of units defined by setting
G ¼ M0 ¼ �4E0 ¼ 1, where M0 is the initial cluster mass
and E0 is the initial cluster energy (excluding the binding
energy in binaries). The corresponding unit of time is then
tdynð0Þ ¼ GM

5=2
0 ð�4E0Þ�3=2. However, the natural time-

scale for cluster evolution is the relaxation time

trð0Þ �
N0

lnð�N0Þ
tdynð0Þ ; ð1Þ

where N0 is the total initial number of stars in the cluster
and � is a constant of order unity that must be determined
experimentally. This relaxation time is used as the time unit
in the Monte Carlo code. Therefore, the lnð�N0Þ depend-
ence factors out from all expressions used in simulating
two-body relaxation (see Hénon 1971b or Paper I). When
reporting results, however, we scale all times to the initial
half-mass relaxation time, which we calculate using the
standard definition given by Spitzer &Hart (1971),

trhð0Þ �
0:060N0

log10ð�N0Þ
r3hð0Þ
GM0

� �1=2
� 0:138N0

lnð�N0Þ
r3hð0Þ
GM0

� �1=2
; ð2Þ

where rhð0Þ is the initial half-mass radius of the cluster.
Since tdynð0Þ ’ ½r3hð0Þ=ðGM0Þ�1=2, we have trhð0Þ � 0:1trð0Þ,
where the numerical coefficient depends on the value of
rhð0Þ for the particular initial model.

When calculating rates for processes that do not occur on
the relaxation timescale, such as dynamical interactions,
one must adopt a specific value for � in the Coulomb loga-
rithm when converting between dynamical and relaxation
times. In all our simulations for this paper we use � ¼ 0:4,
the standard value adopted in most previous Fokker-Planck
simulations, including those of GGCM91 (cf. Paper I,
where we show that � ’ 0:1 provides the best agreement
with directN-body simulations for the evolution of a single-
component cluster to core collapse). In addition, in calculat-
ing the binary-binary and binary-single interaction rates,
GGCM91 use Nc, the current number of stars in the cluster
core, instead ofN0 in the denominator of equation (1) when
converting between dynamical and relaxation times.
Although there is no rigorous justification for this choice, it
appears reasonable, since the interactions occur mainly
inside the high-density core, and we adopt the same
prescription in our simulations.

To estimate core quantities, including the number of stars
in the core, we first sample over a small number of stars, typ-
ically 0.1%–1% of the total number of stars in the cluster, to
calculate the central density, �0, and velocity dispersion, �0.
Since the velocity dispersion varies so slowly away from the
center, we estimate the core velocity dispersion as �c ’ �0.
The core radius is then defined to be

rc ¼
3�2

c

4�G�0

� �1=2

; ð3Þ

and the number of stars in the core is calculated as

Nc ¼
4�r3c�c
3�mm

¼ 2�r3c�0
3�mm

; ð4Þ

where �mm is the average mass of a star in the cluster and
�c ’ 0:5�0 (Spitzer 1987).

2.2. Binary-Single Interactions

In a single time step, the probability that a binary will
strongly interact with another object (single or binary) is
given by

P ¼ �wnDt; ð5Þ

where � is the cross section for the interaction, w is the rela-
tive velocity at infinity, n is the local number density of stars
(single or binary), and Dt is the time step. For binary-single
interactions, � ¼ �bs, the binary-single interaction cross sec-
tion, and n ¼ ns, the local number density of single stars. In
our code we calculate ns using a local sampling procedure
and take w to be the relative velocity between the nearest
single star and the binary. The total cross section for close
binary-single interactions is computed as �bs ¼ �b2max. Here
bmax is the impact parameter that gives a distance of closest
approach between the binary and the single star of
rmin ¼ 3:5a, where a is the binary semimajor axis. For a
binary of massmb and single star of massmwe have

b2max ¼ r2min 1þ 2GðmþmbÞ
w2rmin

� �
: ð6Þ
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The coefficient of 3.5 is chosen such that all interactions with
a distance of closest approach greater than rmin result in only
negligible energy transfer from the binary to the passing star
in a flyby (see, e.g., Heggie 1975). As long as it is sufficiently
large, the precise value of the coefficient has very little
influence on the results.

The binary-single interaction is performed only if a
uniform random number between 0 and 1 is less than the
computed probability. The interaction can in principle be
computed exactly using a three-body dynamical integrator;
this approach has many benefits, especially in providing an
accurate way of distinguishing between the various possible
outcomes (see below). However, it also requires significantly
more computational resources than using a simple analytic
prescription. Following GGCM91, in these equal-mass sim-
ulations, we assume that the only outcome is binary harden-
ing, and we use a semianalytic fit (Spitzer 1987, eq. [6-27]) to
numerical results (Hut 1984) to compute the translational
energy released. Let y ¼ D�=� be the fraction of the binding
energy of the binary that is released as translational energy.
The differential cross section for the interaction is given by
(GGCM91)

d�bs

dy
¼ 12:48�a2

w

vcr

� ��2

ð1þ yÞ�4y�0:5 ; ð7Þ

where the critical velocity is vcr ¼ ð3Gm=2aÞ1=2, the velocity
at infinity for which the total energy of the system is zero
and complete ionization is possible. The quantity y is drawn
randomly from equation (7) using the rejection technique.
With this recoil energy and a scattering angle drawn at ran-
dom in the center-of-mass frame, new velocities and orbital
energies in the cluster are calculated for the emerging binary
and single star.

As a first step toward the eventual goal of treating all
binary interactions exactly, we have incorporated into our
code a dynamical integrator to perform binary-single
interactions. Specifically, we use the three-body integrator
scatter3 from the STARLAB software environment (see
Appendix B of Portegies Zwart et al. 2001, and the
MANYBODY web site5). scatter3 uses a time-symmetrized
Hermite integrator and analytical continuation of unper-
turbed orbits to evolve the three-body system until an
unambiguous outcome is obtained. The main benefit of
using an exact treatment is the ability to study
nonequal-mass systems, although for comparison with
cross sections we restrict ourselves to the equal-mass case
here. The implementation of the three-body integrations
follows that of cross sections: first, the probability for an
encounter to occur is calculated according to equations (5)
and (6); next, with velocity at infinity w, the impact parame-
ter b is chosen randomly in area, i.e., with probability
dPðbÞ ¼ 2�b db=ð�b2maxÞ. The binary eccentricity is assumed
to follow a thermal distribution with dPðeÞ ¼ 2e de, and all
angles are chosen assuming random orientation and phase.
The dynamical interaction is then calculated, and its out-
come is used to determine the new binding energy of the
binary and the new orbits for the binary and single star in
the cluster. The current implementation properly handles
the outcomes of preservation and exchange but, for the sake
of comparison with cross sections, currently ignores ioniza-

tions. This is justified here since we consider only hard
primordial binaries in our simulations (see x 3.1).

2.3. Binary-Binary Interactions

To calculate the probability that a close binary-binary
interaction should occur in a time step, we use equation (5)
with � ¼ �bb, the binary-binary interaction cross section,
and n ¼ nb, the local number density of binaries. We calcu-
late nb using a local sampling procedure, and we take w to
be the relative velocity between the current binary and the
nearest binary. Following GGCM91, for the binary-binary
interaction cross section we use the results of Mikkola
(1983a, 1983b, 1984a, 1984b) for encounters between equal-
mass binaries. In the case where one binary has a much
higher binding energy than the other (�14�2), Mikkola
(1984a) provides a semianalytic fit to his numerical results,
giving a collision cross section

�bb � 16:6 ln
29j�2j

mw2 þ 0:04j�2j

� �� �2=3
Gma2
w2

; ð8Þ

where w is the relative velocity of the two binaries at infinity,
m is the mass of each star in the binaries, and a2 is the
semimajor axis of the softer binary.

An interaction between two binaries can result in many
possible outcomes. Since we consider only hard binaries in
this study, the most probable outcomes are (1) disruption of
the softer binary and hardening of the harder one and (2)
the formation of a stable hierarchical triple with a single star
ejected. As much as �1

3 of close binary-binary encounters
may result in the formation of such a triple. However, for a
triple system to remain long lived in the dense cluster envi-
ronment, its outer orbit must be sufficiently tight. The for-
mation of a long-lived hierarchical triple is expected to be
much less common in a dense cluster (see Ford et al. 2000).
Therefore, we assume for simplicity that all hierarchical
triples formed are disrupted immediately. The only outcome
of binary-binary encounters that we treat in our simulations
is then case (1) above. Mikkola finds that, on average,
approximately one-half of the combined binding energy
(�1 þ �2) of the two binaries is released in the form of trans-
lational energy, DEt ¼ yð�1 þ �2Þ. The semianalytic fit given
by Mikkola (1984a) for the distribution of translational
energies produced is rather complicated. Instead, we use a
simplified version of the distribution,

dPðyÞ
dy

¼ 49

4
y 1þ 7

2
y2

� ��11=4

; ð9Þ

proposed byGGCM91. The mean value of this distribution,
hyi ’ 0:47, is in good agreement with the results of Mikkola
for interactions resulting in a binary and two single stars.

We also adopt a simplified overall binary-binary
collision cross section by replacing the expression in
square brackets in equation (8) by its value at �2 ¼ 1

2mw2,
yielding

�bb ¼ 31:8
Gma2
w2

: ð10Þ

The energy required to disrupt the softer binary, as well
as the total translational energy released in the collision
DEt, are both generated at the expense of the surviving
binary. Thus, the binding energy of the surviving pair
increases by an amount �2 þ yð�1 þ �2Þ. According to5 See http://www.manybody.org.
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Mikkola (1983a), for collisions between binaries of equal
binding energies producing a binary and two single stars,
typically about 1

4 of the translational energy produced is
carried away by the binary, and the remaining is distrib-
uted randomly among the two single stars. For simplic-
ity, we assume that this prescription is applicable to
collisions between binaries of unequal binding energies as
well. We select the direction of the recoil velocity between
the binary and the single stars randomly in the center-
of-mass frame.

If a binary does not undergo a strong interaction with a
single star or another binary, it is then treated as a single star
in the usual two-body relaxation step (see Paper I), during
which its internal structure is left unchanged.

3. RESULTS

3.1. Initial Conditions and Summary ofModel Results

For our initial cluster models we use both the Plummer
model, assumed to be isolated (i.e., with no tidal boundary
enforced), and a variety of tidally truncated King models,
assumed to be on a circular orbit in the Galaxy (i.e., with a
fixed external tidal potential). Mass loss through the tidal
boundary is treated as in Paper II, using a criterion based on
the apocenter distance of each stellar orbit in the cluster,
and an iterative procedure to determine both the mass loss
and the new position of the tidal boundary after each relaxa-
tion time step. The initial binary fraction fb (defined as the
fraction of stars, by number, that are binaries) varies
between 0% and 30%. In a few cases, for calibration, we
have also performed simulations in which the binaries are
present but all interactions are turned off; these models are
equivalent to two-component models in which a small frac-
tion of (single) stars have twice the mass of the background
stars (see Watters, Joshi, & Rasio 2000 and Fregeau et al.
2002 for other studies of two-component clusters using our
code).

The binaries are distributed initially in the cluster accord-
ing to the same density profile as for single stars. Hence, no
initial mass segregation is assumed for the binaries. The dis-
tribution of the internal binding energy of the binaries is
assumed to be uniform in log � between a minimum value
�min and a maximum value �max. Following GGCM91, we
consider only hard binaries, with the minimum binding
energy �min ¼ m�cð0Þ2, where �cð0Þ is the initial central
velocity dispersion. Soft binaries, if present, would be
assumed to be ionized (destroyed) as soon as they partici-
pate in a strong interaction. Therefore, they would not affect
the overall evolution of the cluster significantly. For the
maximum binding energy we take �max ¼ 133�min, which is
approximately the binding energy of a contact binary for
two solar-like stars if �cð0Þ ’ 10 km s�1. The precise value
of �max has little influence on our results, since very hard
binaries behave essentially as single more massive stars
(with very small interaction cross section).

Table 1 lists the parameters of the mainmodels we consid-
ered, as well as the main results of our simulations for each
cluster. The first column identifies the initial cluster model,
Plummer or King, and the value of the concentration
parameter W0 (dimensionless central potential) for King
models. The second column gives the initial binary fraction
fb. All simulations were performed with N ¼ 3� 105 stars
(including binaries) initially in the cluster. The following
columns summarize the main results of our dynamical simu-
lations. For each model we first give the time of core col-
lapse tcc, in units of the initial half-mass relaxation time
trhð0Þ, defined by equation (2). Here core collapse is defined
as the moment when the core density reaches its first maxi-
mum. This can be determined typically to within a statistical
error of at most a few percent in our simulations. We then
give the total mass of the cluster at the moment of core col-
lapse (in units of its initial total mass) and the fraction of
binaries that remain at that moment. For clusters that dis-
rupt completely before reaching core collapse, we list the
disruption time tdis instead of tcc.

TABLE 1

Model Parameters and Results

Model fb tcc ðor tdisÞ=trhð0Þ MðtccÞ=Mð0Þ MbðtccÞ=Mbð0Þ

Plummer ....................... 2% 22 0.94 0.20

Plummer ....................... 5% 39 0.90 0.14

Plummer ....................... 10% 72 0.83 0.17

Plummer ....................... 20% 120 0.75 0.28

Plummer ....................... 30% 180 0.70 0.35

King,W0 ¼ 3................ 2% 15 0.25 0.04

King,W0 ¼ 3................ 5% 17 0.00 0.00

King,W0 ¼ 3................ 10% 15 0.00 0.00

King,W0 ¼ 3................ 20% 14 0.00 0.00

King,W0 ¼ 5................ 2% 18 0.42 0.07

King,W0 ¼ 5................ 5% 22 0.22 0.02

King,W0 ¼ 5................ 10% 25 0.00 0.00

King,W0 ¼ 5................ 20% 23 0.00 0.00

King,W0 ¼ 7................ 2% 17 0.67 0.14

King,W0 ¼ 7................ 5% 30 0.41 0.04

King,W0 ¼ 7................ 10% 50 0.00 0.00

King,W0 ¼ 7................ 20% 42 0.00 0.00

King,W0 ¼ 11 .............. 2% 10 0.71 0.19

King,W0 ¼ 11 .............. 5% 20 0.43 0.05

King,W0 ¼ 11 .............. 10% 30 0.20 0.01

King,W0 ¼ 11 .............. 20% 38 0.00 0.00
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3.2. Comparison with Direct Three-Body Integration

As a simple test of our code and the approximate treat-
ment of interactions, we compare the use of cross sections
with dynamical integrations of binary-single encounters. In
future work, we will also implement dynamical integrations
of binary-binary interactions, and we will use more detailed
comparisons to recalibrate the various recipes based on
cross sections. Here our intent is merely to demonstrate that
these simple recipes are reasonably accurate. We have not
changed our prescriptions to try to better match the results
of the dynamical integrations, since a main goal in this first
study is to provide comparisons with the Fokker-Planck
simulations of GGCM91 that used the same simple pre-
scriptions. For this test binary-binary interactions were
turned off. In reality, they tend to dominate the energy pro-
duction (see x 3.3). Thus, this simple test also allows us to
study specifically the effects of three-body interactions on
the overall cluster evolution.

Figure 1 shows the evolution of an isolated cluster
described initially by a Plummer model with N ¼ 3� 105

stars and 20% binaries. Solid lines correspond to the simula-
tion using direct three-body integrations, while dashed lines
show the results using our simple cross sections. The top
panel shows the total mass in binaries in the cluster, decreas-
ing as binary burning proceeds. Since all binaries in the
model are hard, binary-single interactions (unlike binary-
binary interactions) cannot destroy a binary, and therefore
binaries can be lost only by ejection from the cluster

(typically following significant hardening through multiple
interactions; see Hut et al. 1992a and x 3.5). The rate of
binary ejection accelerates abruptly at t=trhð0Þ ’ 8 10 near
core collapse. The middle panel of Figure 1 shows the
energy generated in binary-single interactions, as a fraction
of the total initial binding energy of the cluster. By the time
of core collapse, this is only �0.1. This amount of energy is
not sufficient to delay core collapse significantly. In fact, the
binaries, through mass segregation, accelerate core collapse
in this (artificial) simulation [recall that the core-collapse
time of a single-component Plummer model without
binaries is given by tcc=trhð0Þ ’ 14]. The bottom panel of
Figure 1 shows various characteristic radii in the cluster:
from top to bottom, the half-mass radius of single stars, the
half-mass radius of binaries, and the core radius, all in units
of the initial half-mass radius.

The agreement between the two methods is strong,
although the total energy generated in binary-single interac-
tions is slightly smaller when calculated by direct dynamical
integrations. Consequently, the model using dynamical inte-
grations reaches core collapse sooner than the model using
cross sections because less energy is generated to support
the core against collapse. We believe that this difference
comes from the deterministic treatment of binary hardening
with cross sections, in which every binary-single interaction
results in a hardened binary. In reality the widest hard
binaries in the simulation, which are right around the hard/
soft boundary (and have the largest interaction cross sec-
tion), have roughly equal probabilities of hardening and
softening in an interaction (Heggie 1975). To partly restore
consistency between the two treatments, we ignore dynami-
cal integration outcomes that result in ionization of the
binary. Were these included, the total energy generated in
binary-single interactions would decrease further, by
roughly 50%. This would cause the binary population to
become more centrally concentrated. Thus, in a realistic
cluster simulation, we would expect the ratio of the energy
generated by binary-single interactions to binary-binary
interactions to decrease by more than 50% compared to
predictions of cross section–based recipes.

3.3. Isolated Clusters

We consider first the evolution of Plummer models con-
taining N ¼ 3� 105 stars with a range of binary fractions
fb. As a further test of our method, we show in Figure 2 the
evolution of the various energies and the virial ratio of a sys-
tem with fb ¼ 0:1. Since dynamical relaxation is not built
into our numerical method, the degree to which virial equili-
brium is maintained during a simulation is our most impor-
tant indicator of numerical accuracy. We monitor this, as
well as energy conservation, in all our runs and terminate a
calculation whenever these quantities deviate from their
expected values by more than a few percent (this typically
happens when the number of binaries has been reduced to a
very small value or, in tidally truncated clusters, when the
total number of stars remaining in the cluster becomes very
small; see x 3.4).

Figures 3, 4, and 5 show the evolution of models with
fb ¼ 0:02, 0.1, and 0.2, respectively. The main impact of
introducing binaries in the models is very clear: core col-
lapse is delayed considerably. Even for a cluster with only
2% binaries initially (Fig. 3), tcc increases by more than a
factor 2. Clusters with fb ’ 0:1 0:2 can avoid core collapse

Fig. 1.—Comparison between the use of direct three-body integrations
(solid lines) and cross sections (dashed lines) in calculating the evolution of a
Plummer model containing N ¼ 3� 105 stars with 20% binaries initially.
In both cases binary-binary interactions were turned off. The top panel shows
the total mass in binaries. The middle panel shows the energy generated in
binary-single interactions, as a fraction of the total initial binding energy of
the cluster. The bottom panel shows ( from top to bottom) the half-mass
radius of single stars, the half-mass radius of binaries, and the core radius,
in units of the initial half-mass radius. Time is given in units of the initial
half-mass relaxation time. The agreement between the two methods is
strong, although the energy production is slightly overestimated in the
treatment based on cross sections, leading to divergent evolutions near core
collapse (the model calculated with direct three-body integrations collapses
earlier).
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for�100trhð0Þ (Figs. 4 and 5). For the vast majority of glob-
ular clusters in our Galaxy, where trhð0Þ � 109 yr, this time-
scale exceeds a Hubble time. If all globular clusters in our
Galaxy were born with fbe0:1, only those with very short
initial relaxation times would have had a chance to reach
core collapse. However, for real clusters, tidal truncation
and mass loss (x 3.4) as well as stellar evolution (Paper II)
complicate this picture considerably.

In Figure 3, we also show for comparison the evolution of
the core radius for a model in which binaries are present but
all interactions are turned off (short-dashed line in the bot-
tom panel). Even with a binary fraction as small as fb ¼ 0:02
in this case, core collapse occurs significantly earlier than in
a single-component Plummer model [at tcc=trhð0Þ ’ 10
instead of 14]. This shows the expected tendency for the
heavier component of binaries to accelerate the evolution to
core collapse, and the result is in good agreement with pre-
vious studies of core collapse in two-component clusters
(see, e.g., Watters et al. 2000). Note that for sufficiently large
binary fractions, these two-component models become
‘‘ Spitzer unstable,’’ i.e., the core collapse is driven entirely
by the heavier component. Using the stability criterion
derived by Watters et al., � � ðM2=M1Þðm2=m1Þ2:4 < 0:32,
here with an individual mass ratio m2=m1 ¼ 2 and a total
component mass ratio M2=M1 ¼ 2fb=ð1� fbÞ we expect the
Spitzer instability to appear whenever the binary fraction
fbe0:03. Thus, all our models with binary fractions above a
few percent should evolve on a relaxation timescale to a
state where the dynamics of the cluster core is largely domi-

nated by the binaries. Indeed, looking at the middle panels
of Figures 4 and 5, we see that with fb ¼ 0:1 0:2, the energy
generation is largely dominated by binary-binary interac-
tions. In contrast, for fb ¼ 0:02 (middle panel of Fig. 3),
binary-binary and binary-single interactions contribute
roughly equally.

To quantify the effect of primordial binary burning on the
core-collapse time, we have repeated calculations with
binaries present but all interactions turned off for six differ-
ent models with varying fb. For each model, we can then
properly calculate the ratio of core-collapse times with and
without binary interactions (but with mass segregation
effects present in both cases). The results are shown in
Figure 6, where this ratio is plotted as a function of the
binary fraction. A simple linear fit gives

tcc ’ tccð fb ¼ 0Þð75fb þ 1Þ

and reproduces the numerical results to within �30% in the
range fb ¼ 0 0:3. The notation we use here, ‘‘ tccð fb ¼ 0Þ,’’
means the core-collapse time of a cluster with the same frac-
tion of ‘‘ inactive ’’ binaries rather than with no binaries.

Also shown in Figure 3 for comparison is the result of a
simulation in which all interactions are included but binary-
single interactions are calculated by direct three-body inte-
grations as in x 3.2 (long-dashed line in the bottom panel).

Fig. 2.—Evolution of the kinetic energy T, potential energyW, and total
conserved energyE, as well as the virial ratio 2T=jW j, for a Plummer model
with N ¼ 3� 105 stars and 10% binaries initially. The cluster remains very
close to virial equilibrium throughout the integration, and energy conserva-
tion is maintained to within a few percent. Note that E is corrected for both
the energy lost through evaporation and the energy gained through binary-
binary and binary-single interactions, so that E 6¼ T þW (except at t ¼ 0).
The true total energy of the cluster,T þW , increases significantly over time
as a result of these interactions. Here we show the quantity that should be
conserved, which we monitor (in addition to the virial ratio) for quality
control purposes in all our calculations.

Fig. 3.—Evolution of an isolated Plummermodel withN ¼ 3� 105 stars
and 2% primordial binaries initially. The top panel shows the total cluster
mass M and the total mass Mb in binaries. The middle panel shows the
energy released through binary-binary and binary-single interactions, in
units of the initial binding energy of the cluster. The lower panel shows the
core radius rc of the cluster, the half-mass radius rh;s of single stars, and the
half-mass radius rh;b of binaries (solid lines). For comparison, the core
radius of an equivalent Plummer model with 2% primordial binaries but
with all interactions turned off is also shown (short-dashed line). We see that
even a primordial binary fraction as small as 2% can significantly delay core
collapse, with tcc increasing by more than a factor of 2 in this case. Also
shown for comparison and testing is the core radius of an equivalent model
where the binary-single interactions were computed with direct three-body
integrations instead of cross sections (long-dashed line). Here again we note
that the model based on direct integrations collapses slightly earlier.
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This comparison is useful again as a test of the simple treat-
ment based on cross sections, since binary-single interactions
play an important role as a source of energy in this model
with fb ¼ 0:02. Our conclusion is the same as in x 3.2: the
agreement is very good until t=trhð0Þ ’ 15, but then the two
simulations diverge and the model computed with direct
three-body integrations collapses slightly earlier [tcc=trhð0Þ ’
19 instead of 22]. In spite of this slight offset, after core col-
lapse the core reexpansion and gravothermal oscillations also
look very similar in the two simulations.

The top panels in Figures 3, 4, and 5 show the evolution
of the total cluster mass, as a fraction of the initial mass,
and the remaining mass in binaries, as a fraction of the ini-
tial mass in binaries (this is also the remaining fraction by
number since all binaries have the same mass). Binary-
binary interactions are the main process responsible for the
destruction of binaries in these simulations (since the softer
binary is assumed to be disrupted in each interaction). In
the absence of evaporation through a tidal boundary, mass
loss from the cluster comes almost entirely from stars and
binaries ejected through recoil following an interaction. The
mass-loss rate therefore increases with increasing binary
fraction. At core collapse, the total mass-loss fraction is
about 5%, 15%, and 25% for fb ¼ 0:02, 0.1, and 0.2, respec-
tively. However, while the total number of binaries in the
cluster continuously decreases, the remaining fraction of
binaries at core collapse appears to be roughly constant,
around 0.2, independent of fb. This is sufficient to power
many cycles of gravothermal oscillations after the initial
core collapse, even for initial binary fractions as small as a
few percent. For fb ¼ 0:2 (Fig. 5), we were able to extend
our numerical integration all the way to almost �103trhð0Þ,
at which point several thousand binaries are still present in
the central region of the cluster (this timescale would of
course vastly exceed a Hubble time for most Galactic
globular clusters!).

The bottom panels in Figures 3, 4, and 5 show the evolu-
tion of several characteristic radii. The most important is
the core radius rc (recall that, by our definition, eq. [3], the
central density scales approximately as �0 / r�2

c since the
central velocity dispersion is approximately constant). Even
in deep core collapse, the core radius of our models never

Fig. 4.—Same as Fig. 3 but for a model with a 10% primordial binary
fraction. Here the energy generated from binary-binary interactions clearly
dominates that from binary-single interactions. We see that an isolated
cluster with 10% binaries can be supported against collapse for about 70trh.
Several cycles of gravothermal oscillations powered by primordial binaries
are seen after the initial collapse. The oscillations in this case appear
quasi-periodic with a period of roughly 50trhð0Þ.

Fig. 5.—Same as Fig. 3 but for a model with a 20% primordial binary
fraction. Here the energy generated from binary-binary interactions is even
more clearly dominant. The cluster is initially supported against collapse
for about 125trh. After the first core collapse, gravothermal oscillations
powered by primordial binaries continue up to �103trh. By that time the
total number of binaries has been reduced by a factor of �10, but the
primordial binary reservoir is still not exhausted.

Fig. 6.—Ratio of core-collapse times with and without binary inter-
actions as a function of the initial binary fraction fb for the Plummer
models. The solid line shows a simple linear fit.
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decreases by more than a factor of �100 (corresponding to
an increase in the central density by �104). Models with
higher binary fractions contract very little (see Fig. 5: the
first and deepest core collapse corresponds to a decrease in
rc by less than a factor of 10). Also shown are the half-mass
radii of the binaries rh;b and of the single stars rh;s. The half-
mass radius of the single stars always increases monotoni-
cally for these isolated clusters. In contrast, the half-mass
radius of the binaries tends to increase on average but shows
a much more complex behavior that depends strongly on
the binary fraction and on the particular dynamical phase in
the evolution of the cluster. The trend is for rh;b to decrease
during normal cluster evolution, as the binaries mass segre-
gate to the cluster core, and to increase dramatically during
core collapse, as the density of binaries in the core grows
and the rate of binary-binary interactions grows more
quickly than the rate of binary-single interactions. This
causes many softer binaries in the core to be disrupted and
many harder binaries to be ejected out of the core through
recoil. For sufficiently low binary fractions (Figs. 3 and 4),
rh;b eventually becomes larger than rh;s after core collapse.
For high binary fractions (Fig. 5), the binaries remain
always much closer to the center of the cluster.

We now turn to a more detailed discussion of the
Plummer model with 10% binaries (Fig. 4), including a com-
parison with the Fokker-Planck results of GGCM91 (see
their Figs. 1, 2, and 3), who consider this their ‘‘ standard
model.’’ Qualitatively, our results are in very good agree-
ment up to core collapse. After an initial phase of contrac-
tion lasting �10trh, the core radius becomes nearly constant
and the cluster enters a long phase of quasi–thermal equili-
brium. This is the stable ‘‘ binary burning ’’ phase, analo-
gous to the main sequence for a star. During this phase, the
rate of energy production through interactions in the core is
balanced by the rate at which energy flows out in the outer
halo, which continuously expands (in the absence of a tidal
boundary). Core collapse occurs rather suddenly at the end
of this phase. GGCM91 find tcc=trhð0Þ ’ 50 for this model,
while we find tcc=trhð0Þ ’ 70. This initial core collapse is fol-
lowed by gravothermal oscillations, which are clearly still
powered by primordial binary burning. We were able to fol-
low these oscillations accurately until t=trhð0Þe200, while
GGCM91 terminate their calculation at t=trhð0Þ ’ 90.

Upon closer examination and quantitative comparisons,
some more significant differences become apparent. First,
we see that the initial contraction phase appears much
deeper in the model of GGCM91, with rc decreasing by
almost an order of magnitude, while in our model the core
contracts by a factor of about 3. During the stable binary
burning phase, the cluster also appears somewhat more cen-
trally concentrated in the model of GGCM91. Just before
core collapse, they find rc=rhðsÞ ’ 0:01, while our value is
’0.04. On the other hand, the rate of binary burning and
destruction is nearly the same in the two models. Compare,
for example, the evolution of Mb=Mbð0Þ in Figure 4 to the
same quantity plotted in Figure 2a of GGCM91. Although
there are slight differences in the shapes of the two curves,
the reduction to 0.8 occurs after about 10trhð0Þ in both
cases, and the reduction to 0.5 after about 28trhð0Þ. By
t=trhð0Þ ’ 70 the number of binaries has been reduced to 0.2
of its initial value in both models. This agreement is espe-
cially surprising since in our model this is still (just) before
core collapse, while in GGCM91’s model several cycles of
gravothermal oscillations have already occurred.

There are several reasons to expect differences between our
results and those of GGCM91’s Fokker-Planck simulations,
even though our treatments of individual binary-single and
binary-binary interactions are essentially identical.

First, GGCM91’s representation of binaries is in terms of
a separable continuous distribution function in E, the orbi-
tal energy in the cluster, and �, the internal energy of the
binary. In fact, there is a strong and complex correlation
between a binary’s binding energy and its position in the
cluster (or equivalently its energy in the cluster), with harder
binaries concentrated near the cluster core (see Hut et al.
1992a and x 3.5). We suspect that GGCM91’s choice of a
separable distribution function has the effect of reducing the
energy generation rate, since then proportionately more soft
binaries will be chosen for binary interactions—interactions
that predominantly liberate a constant fraction of the total
binding energy available (see x 2 and Heggie 1975).

Second, one-dimensional Fokker-Planck results are
known to differ from two-dimensional results in general
(most notably in the prediction of the rate of tidal stripping;
see Paper II). Enforcing isotropy in the stellar velocity dis-
tribution is likely to affect the dynamics of the core around
the time of collapse, when this distribution may be changing
rapidly and the increased interaction rate may be causing
anisotropy. Indeed, Baumgardt et al. (2003) have recently
found with N-body simulations that anisotropy near the
cluster center becomes significant during core collapse.

Third, the only explicit dependence on N in the Fokker-
Planck approach is through the Coulomb logarithm, so,
even though GGCM91 set N ¼ 3� 105 for their treatment
of interactions, it is not clear in what sense their results,
which assume a smooth, continuous distribution function,
correspond to this particular value ofN.

Finally, we point out that our results for the initial con-
traction and core size during the binary-burning phase are
in much better agreement with those of direct N-body simu-
lations including primordial binaries. Indeed, both Heggie
& Aarseth (1992; see their Figs. 5 and 18) and McMillan
et al. (1990; see their Fig. 1) find, as we do, that the cluster
core contracts typically by a factor of about 3 from its initial
size. GGCM91, on the other hand, find core contraction by
an order of magnitude, a direct indication that their method
underestimates the energy generation rate.

Perhaps a more significant difference between our results
and those of GGCM91 is in the postcollapse evolution.
GGCM91 find much more frequent, erratic, and deeper
gravothermal oscillation cycles. Our model shows almost
quasi-periodic oscillations with period �40trh and peak-
to-peak amplitude rc;max=rc;min � 100. Instead, GGCM91
find seven oscillations of widely varying periods between
t=trhð0Þ ¼ 50 and 90, and rc;max=rc;min � 103. We believe this
may possibly be due to differences in the numerical method
of calculating Nc (for use in eq. [1]—see discussion in x 2.1),
although it is not clear from their paper what method they
actually use. To check the validity of our results near core
collapse, we have examined more carefully the dynamics
governing core reexpansion after collapse. In Figure 7, we
show the evolution of the temperature profile in the cluster
as the system undergoes a core collapse and rebound. The
temperature in the cluster normally decreases outward
everywhere, as in a star in thermal equilibrium. However,
during deep core collapse, a ‘‘ temperature inversion ’’ devel-
ops for a short time. This temperature inversion is respon-
sible for driving the rapid reexpansion of the core, as energy
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is now flowing inward. This mechanism has been predicted
theoretically for a long time (Sugimoto & Bettwieser 1983;
Heggie & Ramamani 1989) and has been observed directly
in recent N-body simulations (Makino 1996). However, to
our knowledge, ours is the first numerical demonstration of
this effect for a cluster containing primordial binaries. In all
previous studies, the binaries were assumed to form dynami-
cally via three-body interactions or two-body tidal captures
during deep core collapse. As noted in the introduction,
these mechanisms are now considered unrealistic because
they most likely lead to stellar mergers (which were not
taken into account in the previous studies).

3.4. Tidally Truncated Clusters

We now present our results for more realistic, tidally
truncated clusters. Figures 8–11 show the evolution of King
models with W0 ¼ 7 and initial binary fractions fb ¼ 0:02,
0.05, 0.1, and 0.2, respectively. Several striking differences
with isolated clusters are immediately apparent. First, we
see that the initial core contraction phase is absent. For
fb � 0:1, the core radius decreases slowly andmonotonically
all the way to collapse. For higher binary fractions (Fig. 11),
the core radius increases slightly at first. This is simply
because the initial binary burning rate in this model is close
to the rate needed to reach thermal equilibrium. The higher
the initial binary fraction and central density (see below),
the stronger the tendency for the core to expand initially
instead of contracting. Second, core collapse6 or complete

disruption always occurs in less than about 45trhð0Þ. For
fb � 0:1, the disruption time tdis decreases with increasing
binary fraction, and complete disruption occurs before any
deep core collapse. This is in contrast to the models with
lower binary fractions (Figs. 8 and 9), where core collapse
followed by gravothermal oscillations (similar to those
observed for isolated clusters in the previous section) occur

Fig. 7.—Evolution of the temperature profile near core collapse at t ’ 125trh for an isolated Plummer model with N ¼ 3� 105 stars and 20% primordial
binaries initially (same model shown in Fig. 5). The temperature is defined by 3kT ¼ m�2c . A temperature inversion is clearly associated with reexpansion after
core collapse. The profiles are truncated very near the center where the number of stars is small and the statistical noise becomes too large. The profiles during
contraction (a), evolving from top to bottom, are separated by about 0:1trhð0Þ, and the profiles during reexpansion (b), from bottom to top, are roughly
0:05trhð0Þ apart. The profiles shown by dotted lines in (b) are about 4trhð0Þ and 5trhð0Þ after core collapse, indicating that the temperature inversion quickly
disappears after reexpansion.

6 It should be noted that, in much of the literature on globular cluster
dynamics, the term ‘‘ core collapse ’’ is used to refer to the initial core con-
traction phase (which we see here can actually be expansion instead), and
what we call the binary burning phase is then called the ‘‘ postcollapse ’’
phase. Clearly, this terminology no longer makes sense and should be
abandoned. What we call ‘‘ core collapse ’’ in this paper refers to the brief
episodes of deep core collapse at the onset of and during gravothermal
oscillations.

Fig. 8.—Evolution of a tidally truncated W0 ¼ 7 King model with
N ¼ 3� 105 stars and 2% primordial binaries. Conventions are as in Fig. 3.
Compared to an isolated Plummer model with the same number of stars
and binaries, the evolution of this tidally truncated cluster to core collapse
is only slightly faster.
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before disruption. The possibility for a cluster to suffer com-
plete disruption before core collapse is a qualitatively new
behavior introduced by primordial binaries. Indeed, all
King models without binaries (and without stellar evolu-
tion) reach core collapse before disrupting (see Paper II and
Quinlan 1996).

Figures 12 and 13 show the evolution of King models
with 10% binaries but different values of W0. For the very

centrally concentrated cluster with W0 ¼ 11 (Fig. 12), sig-
nificant core expansion occurs in the first few relaxation
times (with rc increasing by about an order of magnitude).
This is a more extreme example of the behavior already

Fig. 9.—Same as Fig. 8 but for a model with a 5% primordial binary
fraction initially.

Fig. 10.—Same as Fig. 8 but for a model with a 10% primordial binary
fraction initially. Here complete disruption occurs before core collapse.
Note also the absence of any core contraction initially.

Fig. 11.—Same as Fig. 8 but for a model with a 20% primordial binary
fraction initially. Note the initial expansion of the core. Here also complete
disruption occurs before core collapse. The apparent reexpansion of the
core radius after t=trhð0Þ ’ 42 is a numerical artifact caused by the very
small number of stars left in the cluster (our method of calculating rc picks
up stars well outside the true core).

Fig. 12.—Same as Fig. 10 but for aW0 ¼ 11Kingmodel (with a 10% pri-
mordial binary fraction). This initially much more centrally concentrated
model undergoes deep core collapse as it runs out of binaries before
complete disruption. Note also the significant initial expansion of the core
needed to reach quasi-equilibrium in a few trhð0Þ.
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noted in Figure 11. The final evolution of this cluster is also
peculiar: this is one of few examples (see Table 1) we
encountered where the binaries are completely exhausted
before the cluster disrupts. At t=trhð0Þ ’ 30, about 20% of
the initial cluster mass remains in single stars, and the clus-
ter undergoes deep core collapse. Since there are no binaries
left and our simulations include no other source of energy,
no reexpansion can occur, and we must terminate the
calculation.

For a model withW0 ¼ 3, which has a much more nearly
uniform density profile initially, complete disruption occurs
before core collapse even with much lower binary fractions
(see Table 1). For the model with fb ¼ 0:1 shown in Figure
13, disruption occurs at t=trhð0Þ ’ 15. For comparison, a
single-component W0 ¼ 3 King model undergoes core col-
lapse at t=trhð0Þ ’ 12 (Paper II). Also note how the core
contracts throughout the evolution at a nearly constant rate
much faster than in models with higher values of W0 (com-
pare, e.g., Fig. 10). Just before final disruption, the core
radius has decreased by about an order of magnitude from
its initial value.

Only a few small N-body simulations of tidally truncated
clusters with primordial binaries have been reported
previously (Heggie & Aarseth 1992; McMillan &Hut 1994).
Detailed comparisons are not possible because these studies
assumed rather different initial models and the N-body
results (forN � 1000 2000) are very noisy. However, we do
see good qualitative agreement, with mass-loss rates �10
times larger than for isolated clusters, and complete
disruption also observed after a few tens of initial half-mass
relaxation times in all N-body simulations. We are not
aware of any previous Fokker-Planck simulations of tidally

truncated clusters with primordial binaries (GGCM91
considered only isolated Plummer models).

3.5. Evolution of the Binary Population

In addition to affecting the global cluster evolution,
binary interactions also strongly affect the properties of the
binaries themselves. The study of the evolution of a primor-
dial binary population dates back to the seminal work of
Heggie (1975), but it is only recently that detailed numerical
simulations of large binary populations in globular clusters
have been performed (Hut et al. 1992a; Giersz & Spurzem
2000). We can use the results of our Monte Carlo
simulations to study the dynamical evolution of the binary
population.

Figure 14 shows the evolution of the binary fraction, fb,
in different regions of our evolving King models. There is a
clear trend for fb to increase in the core and decrease in the
halo with time, as well as a trend for fb to grow more with
smaller W0. In spite of mass segregation and the tendency
for binaries to dominate the central region of a cluster (fol-
lowing the development of the Spitzer instability; see x 3.3),
core binary fractions rarely exceed 0.5 in our models. Thus,
the range of initial binary fractions we consider are at least
in rough agreement with the measurements of core binary
fractions in globular clusters today (�0.1–0.4; see x 1). Note,
however, that the present-day binary fraction in the core of
a cluster cannot be related simply to the cluster’s initial
binary fraction because it may depend in a complicated way
on several initial parameters. For example, we see that an
initial W0 ¼ 11 model with fb ¼ 0:1 has, during most of its

Fig. 13.—Same as Fig. 10 but for a W0 ¼ 3 King model (with a 10%
primordial binary fraction). This cluster is much less centrally concentrated
initially, and therefore, as expected, it is disrupted before undergoing deep
core collapse. Note, however, that significant core contraction occurs
throughout the evolution.

Fig. 14.—Evolution of the binary fraction fb in different regions for vari-
ous King models. The thin solid line is for a W0 ¼ 11 model with 10%
binaries, and the thin dotted line is for a W0 ¼ 3 model with 10% binaries.
The other lines are forW0 ¼ 7models with increasing binary fractions from
bottom to top as in Figs. 8–11. Binary fractions as high as 0.5–0.8 (but more
typically ’0.1–0.2) can be expected in cluster cores, while in the outer halo
one has typically fbd0:1.
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evolution, about the same core binary fraction (’0.15) as an
initial W0 ¼ 7 model with fb ¼ 0:05. In addition, recall that
our definition of fb in these simulations includes only the
hard binaries. For reasonable distributions of primordial
binary separations, including several more decades on the
soft side, the true initial binary fraction in the cluster might
have been �2–3 times larger than our quoted value of fb
(this is the reason why we did not consider values of fbe0:3,
which could not be realistic, unless dynamics already plays
an important role during the process of star formation; see
Clarke, Bonnell, &Hillenbrand 2000).

Figure 15 shows the evolution of the primordial binary
population in a W0 ¼ 7 King model with fb ¼ 0:2. Each
two-dimensional histogram shows the distribution of bind-
ing energies (initially flat in log �) and radial positions in the
cluster. In addition to the clear tendency for mass segrega-
tion and hardening of the binaries, we note the development
of a strong correlation between hardness and radial distri-
bution: harder binaries tend to concentrate in the cluster
core much more than softer binaries, in spite of having all
the same mass (and in contrast to the fundamental assump-
tion made in the Fokker-Planck calculations of GGCM91).

Fig. 15.—Evolution of the binary hardness and radial distributions for a W0 ¼ 7 King model with 20% binaries. Binaries undergo clear mass segregation
and harden on average by about 2 orders of magnitude before cluster disruption.

784 FREGEAU ET AL. Vol. 593



The general trends observed here are in good qualitative
agreement with the results of previous studies using more
idealized models (Hut et al. 1992a; Giersz & Spurzem 2000;
see, e.g., their Fig. 25).

Near the end of the evolution shown in Figure 15 [but
already �10trhð0Þ before complete disruption, when the
cluster still retains about 40% of its initial mass], a particu-
larly striking situation develops where all the surviving
binaries in the cluster core are extremely hard. Recall that
our initial upper limit on the binding energy of a binary
(�102kT , where ‘‘ kT ’’ is the average kinetic energy of stars
in the core) roughly corresponds to contact for two solar-
like stars. Therefore, most of the binaries remaining after
�30trhð0Þ, with binding energies now in the range �102–
103kT, would have merged if they contained solar-like stars
(perhaps forming blue stragglers). Of course, in a real clus-
ter, many of these binaries could contain compact objects
(most likely heavy white dwarfs and neutron stars) and
would then have survived. We cannot address any of these
issues here, since our simulations are clearly too idealized,
but we point out that globular cluster cores are indeed
observed to contain large populations of blue stragglers,
WUMa binaries (eclipsing systems containing two main-
sequence stars in a contact configuration; see, e.g., Albrow
et al. 2001), and a variety of ‘‘ ultracompact ’’ binaries con-
taining neutron stars and white dwarfs (the most extreme
example being perhaps the ‘‘ 11 minute ’’ X-ray binary in
NGC 6624; see, e.g., Deutsch,Margon, &Anderson 2000).

4. SUMMARY AND COMPARISON
WITH OBSERVATIONS

We have performed, for the first time, discrete simula-
tions of globular clusters with realistic numbers of stars and
primordial binaries, using our two-dimensional Monte
Carlo code with approximate analytical cross sections for
primordial binary interactions.

We have compared the use of cross sections with exact,
dynamical integrations of binary-single encounters and find
that the agreement between the two methods is strong,
although our current implementation of the cross sections,
based on the Fokker-Planck study by Gao et al. (1991),
tends to overestimate slightly the energy generation rate.
Consequently, models that use cross sections tend to over-
estimate core-collapse times for clusters in which binary-
single interactions dominate. However, we find that
binary-binary interactions dominate the energy generation
for fbe0:03, a result that is in quantitative agreement with a
simple Spitzer-type stability criterion applied to the
component of binaries.

We have studied the evolution of isolated clusters with
varying binary fractions and have found that the presence
of even a small fraction of binaries is sufficient to delay sig-
nificantly the onset of core collapse. Isolated clusters with a
binary fraction greater than about 0.1–0.2 can avoid core
collapse for as much as �102 103trhð0Þ. We find a simple
linear relation between the core-collapse time of a cluster,
tcc, and the core-collapse time of the same cluster with
binary interactions turned off (but mass segregation still
present), denoted tccð fb ¼ 0Þ, given by tcc ’ tccð fb ¼
0Þð75fb þ 1Þ. We have compared our results with those of
Gao et al. (1991) and find reasonable agreement, with nearly
identical rates of binary burning and destruction. Gao et al.
(1991), however, find a shorter core-collapse time, a deeper

initial core contraction, and significantly more erratic
behavior during the gravothermal oscillation phase. We
attribute the differences primarily to their neglect of the
strong correlation between binary hardness and spatial dis-
tribution in the cluster, as well as fundamental differences
between their one-dimensional Fokker-Planck method and
our two-dimensional Monte Carlo method. Our results for
the initial core contraction are in much better agreement
with those of direct N-body simulations. In addition, we
have presented the first numerical demonstration of the the-
oretically predicted temperature inversion powering re-
expansion after core collapse and gravothermal oscillations
for a cluster with primordial binaries.

We have also considered more realistic, tidally truncated
King models. We have found that the initial core contrac-
tion phase is absent in these systems, or replaced by an ini-
tial expansion of the core, and that core collapse or
complete tidal disruption always occurs in less than
�50trhð0Þ. For a binary fraction e0.1, the disruption time
decreases with increasing binary fraction, and complete dis-
ruption occurs before any deep core collapse. The possibil-
ity for a cluster to suffer complete disruption before core
collapse is a qualitatively new behavior introduced by
primordial binaries. Our results are in good qualitative
agreement with previous studies of tidally truncated clusters
containing primordial binaries.

We have already argued in x 3.5 that our results are in
general agreement with current determinations of binary
fractions in globular cluster cores, typically �0.1–0.4. We
now briefly consider our basic predictions for the structural
parameters of clusters during the binary burning phase and
compare them to the observed structural parameters of
globular clusters. While our models are clearly far too ideal-
ized for any detailed comparison, it is useful to examine at
least the most fundamental structural parameters: the core
radius rc, the half-mass radius rh, and, for tidally truncated
clusters, the tidal radius rt. Since the overall scale is largely
irrelevant (although it could in principle be set by relating
the maximum binding energy of the binaries to a stellar
radius), we consider only the two ratios rh=rc and rt=rc [or,
equivalently, the concentration parameter c � logðrt=rcÞ
often derived by observers using King model fits to
photometric data].

Figure 16 shows the evolution of rh=rc and the concentra-
tion parameter c for several King models (see x 3.4).
Figure 17 shows distributions of rh=rc and c for Galactic
globular clusters, with data taken from the compilation of
Harris (1996). The top panel shows a histogram of rh=rc val-
ues for all Galactic globular clusters, including those classi-
fied observationally as ‘‘ core collapsed.’’7 The middle and
bottom panels show the distributions of observed values for
rh=rc and c, respectively, with the core-collapsed clusters
excluded. First, in Figure 16, note the tendency for the con-
centration parameter in clusters with reasonable binary frac-
tions ( fbe0:05) to remain around, or even converge to,
c ’ 1:5. This is in reasonable agreement with the bottom
panel of Figure 17, which shows the observed distribution
also centered around c ’ 1:5. The top panel in Figure 16

7 It is unclear what the relation is, if any, between this observational
classification—based on the absence of a well-fitting King model—and the
various theoretical definitions of core collapse used in the literature on
dynamical modeling.
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shows most clusters in the binary burning phase with
rh=rcd10, also in quite reasonable agreement with the
observed distribution (Fig. 17b), although the observed peak
around rh=rc ’ 2 would require that most initial
models be less centrally concentrated than our W0 ¼ 7 King
models. We also note that both c and rh=rc increase signifi-
cantly, and sometimes dramatically, for clusters approaching
tidal disruption. Thus, the suggestion from our results might
be that clusters classified observationally as ‘‘ core collapsed ’’
are those in the last few relaxation times before destruction in
the Galactic tidal field. Most of our King models appear to
spend roughly the last 10%–20% of their lives with rh=rce10,
or ce2, again not too different from the observed fraction of
core-collapsed clusters in our Galaxy (see Fig. 17a). Of
course, a more serious comparison should take into account
real cluster ages and the distribution of initial values for
trhð0Þ, which is rather uncertain.

We are currently in the process of implementing exact
dynamical integrations to handle binary-binary interactions
more accurately in our simulations, using FEWBODY, a
new small-N integrator we have written. This integrator
performs automatic classification of outcomes, automatic
stability analysis of arbitrarily large hierarchies, autonomous
integration termination, and stellar collisions.

We are very grateful to Douglas Heggie, Steve McMillan,
Simon Portegies Zwart, and Saul Rappaport for many help-
ful discussions. The three-body integrator used in this work
is part of the STARLAB software package developed by
Piet Hut, Steve McMillan, and Simon Portegies Zwart. This
work was supported by NASA ATP grant NAG5-12044
and NSF grant AST 02-06276. Some of our numerical
simulations were performed on parallel supercomputers
at Boston University and NCSA under National
Computational Science Alliance grant AST 98-0014N.
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