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ABSTRACT

We study the early dynamical evolution of young dense star clusters by using Monte Carlo simulations for
systems with up to N ¼ 107 stars. Rapid mass segregation of massive main-sequence stars and the development
of the Spitzer instability can drive these systems to core collapse in a small fraction of the initial half-mass
relaxation time. If the core-collapse time is less than the lifetime of the massive stars, all stars in the collapsing
core may then undergo a runaway collision process leading to the formation of a massive black hole. Here we
study in detail the first step in this process, up to the occurrence of core collapse. We have performed about 100
simulations for clusters with a wide variety of initial conditions, varying systematically the cluster density profile,
stellar initial mass function (IMF), and number of stars. We also considered the effects of initial mass segregation
and stellar evolution mass loss. Our results show that, for clusters with a moderate initial central concentration
and any realistic IMF, the ratio of core-collapse time to initial half-mass relaxation time is typically �0.1, in
agreement with the value previously found by direct N-body simulations for much smaller systems. Models with
even higher central concentration initially, or with initial mass segregation (from star formation) have even
shorter core collapse times. Remarkably, we find that, for all realistic initial conditions, the mass of the collapsing
core is always close to �10�3 of the total cluster mass, very similar to the observed correlation between central
black hole mass and total cluster mass in a variety of environments. We discuss the implications of our results for
the formation of intermediate-mass black holes in globular clusters and super star clusters, ultraluminous X-ray
sources, and seed black holes in proto–galactic nuclei.

Subject headings: black hole physics — galaxies: nuclei — galaxies: starburst — galaxies: star clusters —
methods: n-body simulations — stellar dynamics

1. INTRODUCTION

1.1. Astrophysical Motivation

It is now well established that the centers of most galaxies
host supermassive black holes (BHs) with masses in the range
MBH �106–109 M� (Kormendy & Gebhardt 2001; Ferrarese
et al. 2001). The evidence is particularly compelling for a BH
of mass ’4� 106 M� at the center of our own Galaxy (Ghez
et al. 2000, 2003; Eckart et al. 2002; Schödel et al. 2002). Dy-
namical estimates indicate that, across a wide range, the central
BH mass is about 0.1% of the spheroidal component of the host
galaxy (Ho 1998). A related correlation may exist with the total
gravitational mass of the host galaxy (basically the mass of its
dark matter halo; Ferrarese 2002). An even tighter correlation is
observed between the central velocity dispersion and the central
BH mass (Ferrarese & Merritt 2000; Gebhardt et al. 2000;
Tremaine et al. 2002).

Theoretical arguments and recent observations suggest that
a central BH may also exist in some globular clusters (van
der Marel 2001, 2004). In particular, recent Hubble Space
Telescope observations and dynamical modeling of M15 by
Gerssen et al. (2002, 2003) yielded results that are consistent
with the presence of a central massive BH in this cluster.
Similarly, Gebhardt, Rich, & Ho (2002) have argued for the
existence of an even more massive BH at the center of the
globular cluster G1 in M31. However, N-body simulations

(Baumgardt et al. 2003a, 2003b) suggest that the observa-
tions of M15 and G1 could be explained equally well by the
presence of many compact objects near the center without a
massive BH (van der Marel 2001).
When the correlation between the mass of the central BH and

the spheroidal component in galaxies is extrapolated to smaller
stellar systems such as globular clusters, the inferred BH
masses are �103–104 M� , much larger than a �10 M� stellar-
mass BH but much smaller than the �106–109 M� of super-
massive BHs. Hence, these are called intermediate-mass black
holes (IMBHs). If some globular clusters do host a central
IMBH, the question arises of how these objects were formed
(for recent reviews see van der Marel 2004; Rasio, Freitag, &
Gürkan 2004). One natural path for their formation in any
young stellar system with a high enough density is through
runaway collisions and mergers of massive stars following core
collapse. These runaways could easily occur in a variety of
observed young star clusters such as the ‘‘young populous
clusters’’ like the Arches and Quintuplet clusters in our Galactic
center and the ‘‘super star clusters’’ observed in all starburst and
galactic merger environments (see, e.g., Figer et al. 1999a;
Gallagher & Smith 1999). The Pistol Star in the Quintuplet
cluster (Figer et al. 1998) may be the product of such a run-
away, as demonstrated recently by direct N-body simulations
(Portegies Zwart & McMillan 2002). A similar process may be
responsible for the formation of seed BHs in proto–galactic
nuclei, which could then grow by gas accretion or by merging
with other IMBHs formed in young star clusters (Ebisuzaki
et al. 2001; Hansen & Milosavljević 2003). Further obser-
vational evidence for IMBHs in dense star clusters comes
from recent Chandra and XMM-Newton observations of ultra-
luminous X-ray sources, which are often (although not always)
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associated with young star clusters and whose high X-ray lu-
minosities in many cases suggest a compact object mass of at
least�102M� (Kaaret et al. 2001; Ebisuzaki et al. 2001; Miller
et al. 2003), although beamed emission by an accreting stellar-
mass BH provides an alternative explanation (King et al. 2001;
Zezas & Fabbiano 2002).

When they are born, star clusters are expected to contain
many young stars with a wide range of masses, from �0.1 to
�100 M�, distributed according to a Salpeter-like initial mass
function (IMF; Clarke 2004). Inspired by an early version
from Rees (1984) for the formation of supermassive BHs, we
show in Figure 1 a diagram illustrating the two main scenarios
leading to the formation of an IMBH at the center of a dense
star cluster. The early stages of dynamical evolution are
dominated by the stars in the upper part of the mass spectrum.
Through dynamical friction, these heavy stars tend to con-
centrate toward the center and drive the system to core col-
lapse. Successive collisions and mergers of the massive stars
during core collapse can then lead to a runaway process and
the rapid formation of a very massive object containing the
entire mass of the collapsing cluster core. Although the fate
of such a massive merger remnant is rather uncertain, direct

‘‘monolithic’’ collapse to a BH with no or little mass loss is a
likely outcome, at least for sufficiently small metallicities
(Heger et al. 2003a). An essential condition for this runaway
to occur is that the core collapse must occur before the most
massive stars born in the cluster end their lives in supernova
explosions (Portegies Zwart & McMillan 2002; Rasio et al.
2004).

The accumulation at the center of a galaxy of many IMBHs
produced through this runaway process in nearby young star
clusters (like the Arches and Quintuplet clusters in our Galaxy)
provides an interesting new way of building up the mass of a
central supermassive BH (Portegies Zwart & McMillan 2002).
It is possible that this process of accumulation is still ongoing
in our own Galaxy (Hansen & Milosavljević 2003). These
ideas have potentially important implications for the study of
supermassive BHs by the Laser Interferometer Space Antenna
(LISA), since the inspiral of IMBHs into a supermassive BH
provides the best source of low-frequency gravitational waves
for direct study of strong field gravity (Cutler & Thorne 2002).

In the alternative scenario in which massive stars evolve
and produce supernovae before the cluster goes into core
collapse, a subsystem of stellar-mass BHs is formed (Fig. 1).

Fig. 1.—Various possible scenarios for the early dynamical evolution of a dense star cluster with a realistic IMF. The path for the formation of an IMBH through
core collapse and runaway collisions (studied in this paper) is indicated by a thicker line. An alternative scenario involves successive mergers of stellar-mass BH
binaries driven by a combination of dynamical interactions and gravitational radiation (left). For a runaway to occur, the core-collapse time tcc must be smaller than
the stellar lifetime t� of the most massive stars in the cluster. High-velocity disruptive collisions, the formation of a very extended and diffuse merger remnant, or the
accumulation in the cluster of gas released by stellar winds and supernova explosions could lead to the formation of a complex system containing stars embedded
in dense gas clouds. The final fate of such a system is highly uncertain.
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As demonstrated in x 4.5, the mass loss from supernovae pro-
vides significant indirect heating of the cluster core, delaying
the onset of core collapse until much later, after the stellar
remnants undergo mass segregation. The final fate of a cluster
with a component of stellar-mass BHs remains highly uncer-
tain. This is because realistic dynamical simulations for such
clusters (containing a large number of black holes and ordinary
stars with a realistic mass spectrum) have yet to be performed.
For old and relatively small systems (such as Galactic globular
clusters), complete evaporation is likely (with all the stellar-
mass BHs ejected from the cluster through three- and four-body
interactions in the dense core). This is expected theoretically on
the basis of simple qualitative arguments (Kulkarni, Hut, &
McMillan 1993; Sigurdsson & Hernquist 1993) and has been
demonstrated recently by direct N-body simulations for very
small systems containing only �10 BHs (Portegies Zwart &
McMillan 2000). However, for larger systems (more massive
globular clusters or proto–galactic nuclei), contraction of the
cluster to a highly relativistic state could again lead to succes-
sive mergers (driven by gravitational radiation) and the for-
mation of a single massive BH (Quinlan & Shapiro 1989; Lee
1995, 2001). Moreover, it has been recently suggested that if
stellar-mass BHs are formed with a broad mass spectrum (a
likely outcome for stars of very low metallicity; see Heger et al.
2003b), the most massive BHs could resist ejection, even in a
system with low escape velocity such as a globular cluster.
These more massive BHs could then grow by repeatedly
forming binaries (through exchange interactions) with other
BHs and merging with their companions (Miller & Hamilton
2002). However, as most interactions will probably result in
the ejection of one of the lighter BHs, it is unclear whether
any object could grow substantially through this mechanism
before running out of companions to merge with.

1.2. Core Collapse and the Spitzer Instability

The physics of gravothermal contraction and core collapse is
by now very well understood for single-component systems
(containing all equal-mass stars). In particular, the dynamical
evolution of an isolated single-component Plummer sphere
to core collapse has been studied extensively and has become a
test bed for all numerical codes used to compute the evolution
of dense star clusters (Aarseth, Hénon, & Wielen 1974;
Giersz & Spurzem 1994). This evolution can be visualized
easily using Lagrange radii enclosing a fixed fraction of the
total mass of the system (see, e.g., Fig. 3 of Joshi, Rasio, &
Portegies Zwart 2000 and Fig. 5 of Freitag & Benz 2001). As
the system evolves, the inner Lagrange radii contract, while the
outer ones expand. This so-called gravothermal contraction re-
sults from the negative heat capacity that is a common property
of all gravitationally bound systems (Elson, Tout, & Fitchett
1987). In the absence of an energy source in the cluster core and
in the point-mass limit (i.e., neglecting physical collisions be-
tween stars), the contraction of the cluster core becomes self-
similar and continues indefinitely. This phenomenon is known
as core collapse, and its universality is very well established
(see, e.g., Freitag & Benz 2001, Table 1 and references therein).

When the system contains stars with a variety of masses, the
evolution to core collapse is accelerated. This has been dem-
onstrated by the earliest N-body and Monte Carlo simulations
(Aarseth 1966; Hénon 1971a; Wielen 1975). To illustrate this
behavior and as a preview of the results presented later in x 4,
we show in Figure 2 the evolution of a cluster described ini-
tially by a simple Plummer model containing 1:25� 106 stars
with a broad Salpeter IMF between mmin ¼ 0:2 M� and

mmax ¼ 120 M�. Core collapse occurs after P0:1trhð0Þ, where
trhð0Þ is the initial half-mass relaxation time (see eq. [6] be-
low). In sharp contrast, core collapse in a single-component
Plummer model occurs after k10trhð0Þ (a well-known result).
Thus, the presence of a broad IMF can dramatically accelerate
the evolution of the cluster to core collapse.
This acceleration of the evolution to core collapse is due to

the changing nature of energy transfer in the presence of a wide
mass spectrum. Relaxation processes tend to establish energy
equipartition (see, e.g., Binney & Tremaine 1987, x 8.4). In a
cluster where the masses of the stars are nearly equal, this can be
(very nearly) achieved. The core collapse is then a result of
energy transfer from the inner to the outer parts of the cluster,
leading to gravothermal contraction (Lynden-Bell & Wood
1968; Larson 1970). A large difference between the masses of
the stars allows a more efficient mechanism for energy transfer.
In this case, energy equipartition would tend to bring the
heavier stars to lower speeds. However, as a result, the heavier
stars sink to the center, where they tend to gain kinetic energy,
while the lighter stars move to the outer halo. This process is
called ‘‘mass segregation.’’ As the mass segregation proceeds,
the core contracts and gets denser, leading to a shorter relaxa-
tion time, which in turn increases the rate of energy transfer
from heavier to lighter stars. In typical cases this evolution
eventually makes the heavier stars evolve away from equi-
partition (Spitzer 1969).
The fundamental inability of the heavier stars to establish

energy equipartition with the lighter stars in a system with

Fig. 2.—Evolution of single-component and Salpeter-IMF Plummer mod-
els to core collapse. Lagrange radii enclosing a constant mass fraction (left) are
shown as a function of time. The radii are in units of the initial half-mass
radius of the cluster, and time is in units of the initial half-mass relaxation
time. The solid lines are from our Monte Carlo simulation of a Plummer model
containing 1:25� 106 stars with a Salpeter IMF (within mmin ¼ 0:2 M� and
mmax ¼ 120 M�). The dotted lines show the result of a gaseous model sim-
ulation of the same cluster, with 50 discrete mass components approximating a
Salpeter IMF (within the same mass limits). See x 2 for more discussion of the
various methods. For comparison, the dashed lines show the evolution of a
single-component Plummer model (computed with our Monte Carlo code).
Note our key result: the core-collapse time is more than 2 orders of magnitude
shorter for a cluster with a realistic IMF.
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a continuous mass spectrum is similar to the Spitzer ‘‘mass-
segregation instability’’ in two-component clusters. Spitzer
(1969), using analytic methods and a number of simpli-
fying assumptions, determined a simple criterion for a two-
component system to achieve energy equipartition in equi-
librium. If the mass of the lighter (heavier) stars is m1 (m2)
and the total mass in the light (heavy) component is M1 (M2),
then Spitzer’s criterion can be written

S � M2

M1

m2

m1

� �3=2

< 0:16: ð1Þ

Watters, Joshi, & Rasio (2000), using numerical simulations,
obtained a more accurate empirical condition,

� � M2

M1

m2

m1

� �2:4

< 0:32: ð2Þ

When this stability criterion is not satisfied, energy equi-
partition cannot be established between heavy and light stars.
Spitzer (1969) noted that the equilibriumwould not be achieved
for realistic mass spectra, because there is always sufficient
mass in high-mass stars that, through mass segregation, they
can form a subsystem (near the center of the cluster) that
decouples dynamically from the lower mass stars. This was
later supported by more detailed theoretical studies (Saslaw &
De Young 1971; Vishniac 1978; Inagaki & Saslaw 1985).

Here we carry out a simple calculation to show that a typ-
ical system, with a Salpeter IMF (see x 3.2) extending from
0.2 to 120 M�, when viewed as a two-component cluster of
‘‘light stars’’ and ‘‘heavy stars,’’ does not satisfy any of the
simple stability criteria. Let us separate the stars into these two
components according to some arbitrary boundary: we group
all stars lighter than mb in the first component and all stars
heavier than mb in the second component. We use m1 and M1

to denote the values of the average and total mass in the first
component, and m2 and M2 similarly for the second compo-
nent. We obtain, with mb in solar mass,

M1

M2

¼ 0:2�0:35 � m�0:35
b

m�0:35
b � 120�0:35

; ð3Þ

m1

m2

¼M1

M2

N2

N1

¼ 0:2�0:35 � m�0:35
b

m�0:35
b � 120�0:35

m�1:35
b � 120�1:35

0:2�1:35 � m�1:35
b

: ð4Þ

When these values are used in equations (1) and (2), we see
(Fig. 3) that the stability criteria are almost never satisfied for
any value of mb, except when it is extremely close to the
maximum mass (as expected, since the model reduces artifi-
cially to a single-component system in this limit, with all stars
having the average mass).

Vishniac (1978), devised a criterion genuinely adapted to
clusters with a continuous mass spectrum, under the ad hoc
assumption that the shape of the density distribution does not
depend on the stellar mass. He derives the following necessary
condition for stability:

�
mb

m1

� �3=2
M2

M1 þM2

< 1; with � ’ 0:5 ð5Þ

for all mb (his eq. 17). Figure 3 shows that this condition
cannot be satisfied either.3 These results suggest that for any
Salpeter-like IMF, one can always find a collection of stars
that have large enough average and total mass that they will
dynamically decouple from the lighter stars in the cluster.
Once these decouple they form a subsystem with a much
shorter relaxation time and consequently evolve to core col-
lapse very rapidly.

The half-mass relaxation time (relaxation time at the half-
mass radius rh) for a cluster of N stars is given by

trhð0Þ ¼
0:138N

ln �cN

r3h
GM

� �1=2

/ N=ln �cN

�1=2
; ð6Þ

where � is the mass density and �c � 0:01 in the Coulomb
logarithm (Spitzer 1987, eq. [2.63]). Let us assume that a
collapsing subsystem is formed by stars that constitute 1% of
the total mass and that all of them come from the uppermost
part of the mass spectrum. For a Salpeter IMF with mmin ¼
0:2 M� and mmax ¼ 120 M� , the number of stars in this
subsystem is then NsubP 10�4N . At the time of dynamical
decoupling, the central density of the subsystem must be
comparable to the central density of the overall cluster.
Therefore, we conclude that the relaxation time is around 3
orders of magnitude smaller for the collapsing subsystem of
heavy stars at the onset of instability. So, essentially, the heavy

3 The applicability of Vishniac’s criterion appears somewhat questionable.
Through FP simulations, Inagaki & Saslaw 1985 have shown that an IMF
exponent � k6:0 (see x 3.2) is required for central equipartition to set in before
core collapse, while Vishniac’s criterion predicts that � k3:5 is sufficient.

Fig. 3.—Various criteria for the realization of equipartition in a cluster with
a Salpeter IMF. According to these, energy equipartition in dynamical equi-
librium can be achieved only if the corresponding curve lies entirely under the
dotted horizontal line. Conditions by Spitzer and Watters et al. were devised
for two-component models, so we divide the mass function into stars lighter
and heavier than some arbitrary boundary value mb, and we evaluate the
stability conditions for any value of mb. Vishniac’s analysis is genuinely
adapted to a continuous mass function. He derives a necessary condition for
stable equipartition that must be obeyed for any stellar mass mb in the range
covered by the mass spectrum. See text for details.
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stars will go into core collapse as soon as they start domi-
nating the mass density near the center.

If the cluster starts its evolution with heavy stars distributed
throughout, the timescale for core collapse will be determined
by their mass segregation timescale. The process of mass
segregation for the heaviest stars in the cluster is driven
by dynamical friction (Binney & Tremaine 1987, x 7.1). The
timescale for mass segregation and the onset of core collapse
therefore depends primarily on the mass ratio between the
dominant heavy stars and the lighter background stars (Spitzer
1969; Chernoff & Weinberg 1990). For simple dynamical
friction in an effective two-component model, one would then
expect the core-collapse time to be comparable to tdf �
ðmb= mh iÞtrh. Here mb (Tmmax, the upper mass limit of the
IMF) should be the mass above which the IMF contains a large
enough number of massive stars to define a ‘‘collapsing sub-
system.’’ If this number is �103 and the total number of stars
N � 106, we get mb ’ 20 M� for our standard Salpeter IMF,
and this simple analysis would then predict the correct order of
magnitude for the core-collapse time (tcc=trhð0Þ � 0:1; see
Fig. 2). Note, however, that this simple dynamical friction
picture corresponds to one or a few massive objects traveling
through a uniform background of much lighter particles, a
description that provides at best only a rough approximation of
the real situation under consideration here (see the Appendix).

1.3. Goals of This Study

In this paper, the first of a series, we consider a wide variety
of initial cluster models, and we investigate the evolution of all
systems until the onset of core collapse. Results from numerical
simulations that include stellar collisions and track the growth
of a massive object through successive mergers of massive stars
during core collapse will be presented in a subsequent paper.
This work is in progress and preliminary results have already
been reported elsewhere (Rasio et al. 2004). Here we determine
how the core-collapse time is related to various initial param-
eters including the IMF (xx 3.2 and 4.2) and the central con-
centration and tidal radius of the cluster (xx 3.1 and 4.3), and we
also include the possibility of initial mass segregation (xx 3.3
and 4.4). We then make a comparison with the stellar evolution
time and derive limits on cluster initial conditions to allow the
development of runaway collisions and the possible subsequent
formation of a central massive BH (x 5). We also derive from
our calculations an estimate of the total mass of the stars that
participate in the runaway collisions, which provides an upper
limit on the final BH mass.

We do not include stellar evolution in our calculations since
our aim here is to investigate dynamical processes taking place
before even the most massive main-sequence stars in the cluster
have evolved. We do, however, study the effects of mass loss
from stellar winds and their dependence on metallicity (x 4.5).
In a subsequent paper (M. A. Gürkan & F. A. Rasio 2004, in
preparation), we will study the evolution of ‘‘postcollapse’’ star
clusters in which a central IMBH is assumed to have formed
early on (through the runaway collision process). In particular,
we will study the possibility that mass loss from the stellar
evolution of the remaining massive stars (those that have es-
caped the central collapse and runaway) could disrupt the
cluster (see Joshi, Nave, & Rasio 2001), thereby producing a
‘‘naked’’ IMBH. This is motivated by observations of ultra-
luminous X-ray sources in regions of active star formation (e.g.,
in merging galaxies) containing many young star clusters but
with the X-ray sources found predominantly outside those
clusters (Zezas & Fabbiano 2002).

An important factor that could significantly affect the dy-
namics of core collapse in young star clusters is the presence
of primordial binaries (Fregeau et al. 2003) or the dynam-
ical formation of binaries through three-body interactions (Hut
1985; Giersz 1998). As pointed out by Inagaki (1985), the
formation rate of hard three-body binaries would be accelerated
in clusters with a mass spectrum (Heggie 1975). In this first
paper we do not take into account the presence of binaries in the
cluster. This is justified because we do not expect binaries to
play an important role until after the onset of core collapse,
when the central density increases suddenly. However, colli-
sions should become dominant immediately after the onset of
core collapse. Our expectation, based on several previous the-
oretical studies of physical collisions during interactions of hard
primordial binaries and for three-body binary formation, is that
the presence of binaries in the core will in fact increase colli-
sion rates, thereby helping to trigger the runaway (Chernoff &
Huang 1996; Bacon, Sigurdsson, & Davies 1996; Fregeau et al.
2004; J. M. Fregeau, Gürkan, & Rasio 2004, in preparation).
This is also supported by the results of direct N-body simu-
lations showing that, in smaller systems containing N k 104

single stars, collisions indeed occur predominantly through the
interactions of three-body binaries formed at core collapse
(Portegies Zwart & McMillan 2002).

2. NUMERICAL METHODS AND SUMMARY OF
PREVIOUS WORK

Numerical methods for investigating the dynamical evolu-
tion of star clusters include direct N-body integration, solutions
of the Fokker-Planck equation by direct (finite difference) or
Monte Carlo methods, and gaseous models (for a review, see
Heggie & Hut 2003). Here we refer to direct N-body integra-
tions simply as ‘‘N-body simulations,’’ direct integrations of the
Fokker-Planck equation as ‘‘Fokker-Planck (FP) simulations,’’
and Fokker-Planck simulations based on Monte Carlo tech-
niques as ‘‘Monte Carlo (MC) simulations.’’ Note, however,
that our MC simulations, in which the cluster is modeled on a
star-by-star basis, are in fact another type of N-body simulation.
Each approach offers different advantages and disadvantages
for understanding core collapse and massive black hole for-
mation in star clusters with a realistic mass spectrum.

2.1. Summary of Previous Numerical Work

Portegies Zwart & McMillan (2002) carried out N-body
simulations starting from a variety of initial conditions for
clusters containing up to �6� 104 stars. They found that run-
away collisions driven by the most massive stars can happen in
sufficiently dense clusters. Their results apply directly to small
star clusters containing �104–105 stars. However, in such a
small cluster, any realistic IMF typically contains only a
very small number of massive stars. For example, a Salpeter
IMF with minimum mass mmin ¼ 0:2 M� and maximum mass
mmax ¼ 120 M� contains a fraction �3� 10�4 of its stars
above 60 M�. The dynamical role played by massive stars can
therefore depend strongly on the total number of stars in the
cluster. In addition, in small systems the dynamical evolution
might be dominated by the random behavior or the initial
conditions of just a few very massive stars. Consequently, to
investigate runaway collisions in larger systems such as super
star clusters or proto–galactic nuclei, realistically large num-
bers of stars must be used in numerical simulations. The com-
putational time required for direct integration of an N-body
system over one crossing time tdyn scales as N 2 (N1:25 on
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parallel machines, if one can adjust the number of CPUs to
N optimally; see Spurzem & Baumgardt 2004).4 Since the
relaxation time is �ðN= ln NÞtdyn (see x 1.2), the scaling of
the total CPU time of N-body simulations is nearly as steep as
N 3. Currently, by using a state-of-the-art GRAPE-6 board to
accelerate the computations (Makino 2001, 2002), the evo-
lution of a cluster containing 105 stars with mmax=mmin ¼
1000 and no primordial binaries can be integrated up to core
collapse in about 1 day (H. Baumgardt 2003, private com-
munication). However, including primordial binaries or in-
creasing the number of stars would still lead to prohibitively
long computation times, especially for a parameter study in
which a large number of integrations are required.

A wide mass spectrum also leads to increased computation
times for FP simulations and gaseous models. In these methods,
a continuous mass spectrum is approximated by discrete mass
bins. In the gaseous model, the most time-consuming operation
of the algorithm is the inversion of a large matrix whose di-
mension is proportional to the number of equations, itself
proportional to Ncomp. Hence, the computing time increases5 as
TCPU / N3

comp. For FP codes, there is one diffusion term cou-
pling each component to all others, leading to TCPU / N2

comp.
These steep scalings limit Ncomp to at most �20 to avoid
computation times longer than a few days.

Even with a small number of mass bins, FP simulations have
yielded important qualitative results. Inagaki and collaborators
investigated two- and multicomponent systems (Inagaki &
Wiyanto 1984; Inagaki 1985; Inagaki & Saslaw 1985). They
found that the energy transfer within the core is an important
process for determining the onset of core collapse. FP simu-
lations by Inagaki (1985) and Chernoff & Weinberg (1990)
show that a mass function withmmax=mmin ’ 10–15 needs to be
discretized into about 15 components or more to obtain an ac-
curate value of the core-collapse time. A coarser discretization
leads to an artificially slow evolution. Chernoff & Weinberg
(1990) successfully tracked the energy transfer between dif-
ferent components and demonstrated the importance of this
process. Quinlan (1996) used FP simulations to follow the evo-
lution of single- and two-component systems. He used a unique
setting for his two-component clusters, with each component
having a different initial spatial distribution. His aim was to
study the interaction of a galactic nucleus containing mainly
dark (compact) objects with the bulge of the galaxy. In one
model he considered a structure with ‘‘inverse initial mass
segregation,’’ in which the central nucleus is made of objects
much lighter than the normal stars composing the bulge. He
showed that this situation also leads to highly accelerated
evolution as the more massive stars get trapped by the nucleus
through dynamical friction and undergo rapid core collapse.
Takahashi (1997) also investigated the evolution of clusters
with a mass spectrum by using FP simulations. His simulations
were two-dimensional (in phase space), and therefore, he was
able to study the development of velocity anisotropy.

Gaseous models have the advantage of being very fast (for
NcompP20), but they include the greatest number of simplify-
ing assumptions so require independent checking. The good
agreement shown with ourMC simulation for a Plummer model
with Salpeter IMF in Figure 2 is encouraging. Note, however,
that the gaseous model calculation shown in Figure 2 used 50

mass components. This number of components is exceptionally
high, leading to a total computation time in excess of 3 weeks,
much longer than most MC runs. It was chosen to be able to
follow core collapse to a very advanced stage, until the most
massive component dominates the collapsing core.We note that
the evolution of the gaseous model to core collapse is faster by
some 30% and exhibits a more gradual contraction of the inner
region. The reasons for these small discrepancies will be in-
vestigated in future work, in which additional comparisons
between Monte Carlo and gaseous-model calculations will
also be presented (M. Freitag, P. Amaro-Seoane, & R. Spurzem
2004, in preparation). For the time being, suffice it to mention
that for multimass clusters, there are basically two adjustable
(dimensionless) parameters in the gaseous model, one setting
the effective thermal conductivity, and the other, the time-
scale for energy exchange between components (k and keq; see
Louis & Spurzem 1991; Giersz & Spurzem 1994; Spurzem &
Takahashi 1995). For the model plotted in Figure 2, we used the
standard values of these parameters (k ¼ 0:4977 and keq ¼ 1),
which were established for clusters with a different struc-
ture and mass spectrum, and some adjustment (preferentially
through comparisons with N-body runs) may be required.

A direct comparison between FP and gaseous models was
also carried out by Spurzem & Takahashi (1995), for two-
component clusters, and also resulted in good agreement.
Recently, a hybrid code has been developed by Giersz &
Spurzem (2003), combining a gaseous model with MC tech-
niques. In this approach the single stars are represented by the
gaseous model, while primordial binaries are followed with a
Monte Carlo treatment. A similar hybrid treatment could be
applied to the problem we are studying here but with massive
(single and binary) stars included in the Monte Carlo com-
ponent and lower mass stars represented by a gaseous model.

2.2. Monte Carlo Code

The solution of the Fokker-Planck equation with an orbit-
averaged Monte Carlo method is an ideal compromise for the
problem at hand. It can handle a suitably large number of stars,
and a wide mass spectrum can be implemented with very little
additional difficulty. Most importantly, as in direct N-body
integrations, MC simulations can implement a star-by-star
description of the cluster. This allows the inclusion of many
important processes such as collisions, binary interactions
(including primordial binaries), and stellar evolution (and the
accompanying mass loss), as well as the effects of a massive
central object with relative ease and much higher realism
compared with direct FP simulations or gaseous models. We
will incorporate the effects of all these additional processes on
cluster evolution in the subsequent papers of this series.

The MC code we have used to obtain the main results of this
paper is described in detail by Joshi et al. (2000). It is based on
the ideas of Hénon (1971a, 1971b, 1973), and in many respects
it is very similar to MC codes developed by Stodóykiewicz
(1982, 1986), Giersz (1998, 2001), and Freitag & Benz (2001).
In the rest of this section, we give a brief summary of the
numerical method.

The main simplifying assumption is the Fokker-Planck
approximation, in which relaxation processes are assumed to
be dominated by small distant encounters rather than strong
encounters with large deflections (Spitzer 1987; Binney &
Tremaine 1987). The dynamical evolution can then be treated
as a diffusion process in phase space. Following the individual
interactions between the stars, as in direct N-body simula-
tions, is computationally expensive. However, the average

4 See ftp://ftp.ari.uni-heidelberg.de/pub/staff/spurzem/edinpaper.ps.gz.
5 Note that, in principle, one could split each step into separate ‘‘Poisson’’

and ‘‘Fokker-Planck’’ parts, in a way similar to what is done in FP codes, hence
reducing the cost to TCPU / N2

comp (R. Spurzem 2003, private communication).
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cumulative effect on a star in a given amount of time can
be characterized by diffusion coefficients in phase space. To
compute the relaxation, the time step for the numerical evolu-
tion has to be chosen smaller than the relaxation time. Since
the relaxation time is normally shortest at the center, we
choose our time step to be a fraction of the central relaxation
time. This ensures that the relaxation is followed accurately
throughout the cluster.

Another important simplification in the MC method is the
assumption of spherical symmetry. The position of the par-
ticles is represented by a single radial coordinate, r, and the
velocity is represented by radial, vr, and tangential, vt, com-
ponents. The specific angular momentum, A, and the specific
energy, E, of a star with index i, are given by

Ai ¼ vt;iri; Ei ¼ UðriÞ þ 1
2
ðv2r;i þ v2t;iÞ; ð7Þ

where UðrÞ is the gravitational potential at a given point. The
assumption of spherical symmetry implies that the potential
at all points can be computed in a time proportional to the
number of particles N, rather than N 2.

In Hénon’s algorithm, the evolution is simulated by repro-
ducing the effect of the cluster on each star by a single effective
encounter in each time step. At every iteration the two integrals
of the motion Ai and Ei characterizing the orbit of each star are
perturbed in a way that is consistent with the value of the dif-
fusion coefficients (Hénon 1973). To conserve energy, this
perturbation is realized by a single effective scattering between
two neighboring stars. The square of the scattering angle, �, is
proportional to the time step chosen. We choose our time step
such that sin2ð�=2ÞP 0:05 at the center of the cluster. Choosing
too large a time step will lead to a saturation effect, and the
relaxation will proceed artificially slowly. Using too small a
time step, on the other hand, not only increases the computation
time but also can lead to spurious relaxation (see the Appendix
for a discussion of spurious relaxation effects).

After the perturbation of Ai and Ei, the stars are placed at
random positions between their apocenters and pericenters by
using a probability distribution that is proportional to the time
spent at a given location on their new orbit. For a star with
index i, the apocenter and pericenter distances are calculated
by finding the roots of

2Ei � 2UðrÞ � A2
i

r2
¼ 0: ð8Þ

This random placement is justified by the assumption of dy-
namical equilibrium; i.e., the evolution of the system does not
take place on the crossing (or dynamical) timescale but rather
on the relaxation timescale. The only important point about
assigning a specific position to a particle on its orbit is that its
contribution to density, potential, interaction rates, etc. has
to be estimated correctly. After all stars have been placed at
their new positions, the potential is recalculated and the whole
cycle of perturbation is repeated.

This method can be modified so that the time step is a fraction
of the local relaxation time (Hénon 1973; Freitag & Benz
2001). Stodóykiewicz (1982, 1986) and Giersz (1998, 2001)
divided the system into zones, resulting in an approach inter-
mediate between a fixed and smoothly varying time step. Di-
viding the system into radial zones also allows the MC method
to be parallelized efficiently for use on multiprocessor machines
(Joshi et al. 2000). Another possible modification uses a scaling
of the units such that each particle in the simulation can

represent an entire spherical shell of many identical stars rather
than a single star (Hénon 1971a; Freitag & Benz 2001, 2002).
It should also be noted that, although the effects of strong
encounters between stars on relaxation are assumed to be
negligible compared with weak, more distant encounters, they
can be incorporated by estimating their rate of occurrence in a
way similar to physical collisions (Freitag & Benz 2002) or
interactions with binary stars (Fregeau et al. 2003).
Our MC code has been used previously to study many fun-

damental dynamical processes such as the Spitzer instability
(Watters et al. 2000) and mass segregation (Fregeau et al. 2002)
for simple two-component systems, as well as the evolution of
systems with a continuous but fairly narrow mass spectrum of
evolving stars (Joshi et al. 2001). A difficulty introduced by a
broad continuous IMF (with a large mmax=mmin ratio) is the
necessity of adjusting the time step to treat correctly encounters
between stars of very different masses. When pairs of stars are
selected to undergo an effective hyperbolic encounter as de-
scribed above, one has to make sure that the deflection angle
remains small for both stars. In situations in which the mass
ratio of the pair can be extreme, one has to decrease the time
step accordingly (Stodóykiewicz 1982). In practice, for the
simulations described here, we find that the time step has to be
reduced by a factor of up to�500 compared with what would be
appropriate for a cluster of equal-mass stars. We discuss further
the applicability of orbit-averagedMCmethods to systems with
a continuous mass spectrum and large mmax=mmin ratio in the
Appendix.

3. INITIAL CONDITIONS AND UNITS

The characteristics of core collapse and the subsequent
runaway collisions depend on the initial conditions for the
cluster. These initial conditions include the total number of
stars, the IMF, the initial spatial distribution of the stars (density
profile, and possibly initial mass segregation), and the position
of the cluster in the galaxy, which determines the tidal bound-
ary. As we shall see, the most important initial parameters are
the slope of the IMF, the maximum stellar mass, and the initial
degree of central concentration of the cluster density profile.We
have used a wide variety of initial conditions, both to test the
robustness of our findings and to establish the dependence of
our results on these parameters. As a typical reference model we
use an isolated Plummer sphere with a Salpeter IMF and stellar
masses ranging from mmin ¼ 0:2 M� to mmax ¼ 120 M�. We
then explore variations on this model by changing the initial
cluster structure, the IMF, or the number of stars.

3.1. Density Profile

We have examined three families of models: Plummer and
King models (Binney & Tremaine 1987, x 2.2 and 4.4), which
have a core-halo structure, and �-models (Dehnen 1993;
Tremaine et al. 1994), which have a cusp near the center. All
these models have a characteristic radius given by

aP ¼ ð22=3 � 1Þ1=2rh ’ 0:766rh; ð9Þ

aK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�2

4�G�0

s
; ð10Þ

a� ¼ ð21=ð3��Þ � 1Þrh ð11Þ

for the Plummer, King, and �-models, respectively. In these
formulae, rh is the half-mass radius, �0 is the central density,
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and � is a King model parameter. We show the density profiles
corresponding to these various models in Figure 4. Here W0 is
the dimensionless central potential, related to the concentra-
tion parameter (Binney & Tremaine 1987, Fig. 4-10). Other
useful quantities characterizing the various density profiles
are given in Table 1. The initial model used for each of our
MC simulations is listed in Table 2, column (2). A general
procedure for producing these models is given by Freitag &
Benz (2002); a less general but simpler procedure for the
Plummer model is given by Aarseth et al. (1974).

3.2. Initial Mass Function

Since we expect the conditions leading to core collapse to
depend sensitively on the IMF, we have carried out simu-
lations with a wide range of IMF parameters. However, it is
generally established that, at least for the high-mass end of the
spectrum, a universal IMF very close to the simple Salpeter-
like power law is obeyed. This is indicated both by observa-
tions and by theoretical calculations (Kroupa 2002; Clarke
2004, and references therein).

In our simulations we assign the masses of individual stars
by using a sampling procedure. We first choose a random
number, X, from a uniform distribution between 0 and 1. For
a simple power-law IMF with dN / m�� dm between mmin

and mmax, we calculate the corresponding mass by using

mðX Þ ¼ mmin 1þ X
mmax

mmin

� �1��

�1

" #( )1=ð1�� Þ

; ð12Þ

where the value � ¼ 2:35 would correspond to a Salpeter IMF.
In addition to simple power laws, for two models we have

used the Miller-Scalo (1979) and Kroupa (Kroupa, Tout, &
Gilmore 1993) IMFs, which are steeper at the high-mass end
of the spectrum and shallower at the low-mass end. Both of
these IMFs can be represented by broken power laws. For the
Miller-Scalo IMF

dN

dm
/

m�1:4 for 0:1 � m � 1:0;

m�2:5 for 1:0 � m � 10:0;

m�3:3 for 10:0 � m; ð13Þ

8><
>:

and for the Kroupa IMF

dN

dm
/

m�1:3 for 0:08 � m � 0:5;

m�2:2 for 0:5 � m � 1:0;

m�2:7 for 1:0 � m; ð14Þ

8><
>:

where all numerical values are in solar masses.

Fig. 4.—Density profiles for various initial models used in our simulations,
showing the Plummer model (solid line), �-models corresponding to � ¼ 1, 1.5,
and 2 (dotted lines), and King models withW0 ¼ 3, 6, 9, and 12 (dashed lines).
The radius is in units of the characteristic length scale parameter of each model,
and the density profiles are normalized to unity at that radius. King models with
lower W0 values have steeper profiles outside r ¼ aK, while �-models with
higher �-values have higher �=�ðaÞ near the center.

TABLE 1

Properties of Clusters

Cluster �0 �0 a rt rh rc Mc trh trc

Plummer model.................. 1.167 0.532 0.589 1 0.769 0.417 0.192 0.093 0.0437

King model, values of W0:

1...................................... 0.454 0.534 1.517 2.568 0.858 0.670 0.321 0.110 0.1134

2...................................... 0.530 0.526 1.003 2.800 0.849 0.612 0.281 0.108 0.0930

3...................................... 0.652 0.518 0.749 3.134 0.839 0.543 0.238 0.106 0.0722

4...................................... 0.860 0.510 0.576 3.625 0.827 0.465 0.195 0.104 0.0523

5...................................... 1.252 0.504 0.438 4.362 0.814 0.382 0.1546 0.101 0.0348

6...................................... 2.112 0.503 0.320 5.471 0.804 0.293 0.1171 0.100 0.0205

7...................................... 4.526 0.511 0.2146 6.987 0.812 0.2032 0.0830 0.101 0.00997

8...................................... 13.742 0.530 0.1253 8.344 0.872 0.1211 0.0531 0.112 0.00368

9...................................... 55.671 0.558 0.0649 8.374 0.980 0.0633 0.0307 0.134 0.00106

�-models:

1.0................................... 1 0 1=3 1 0.805 0 0 0.100 0

1.5................................... 1 0 1=2 1 0.851 0 0 0.108 0

Note.—Definitions of quantities listed in this table: �0 is the central mass density; �0 is the central one-dimensional velocity dispersion; a is the
characteristic radius (see eqs. [9]–[11]); rt is the tidal radius; rh is the half-mass radius; rc ’ 9�20=ð4�G�0Þ

� �1=2
is the core radius; Mc is the mass

enclosed by rc; trh is the half-mass relaxation time (eq. 6); and trc is the central relaxation time (eq. 18). All quantities are given in N-body units, except
that trh and trc are given in Fokker-Planck units (see x 3.4).
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However, for the sake of computational convenience, we
prefer to implement a somewhat different parameterization of
these distributions. To generate the mass spectra corresponding
to these IMFs, we use the functions

mðX Þ ¼ 0:19X

ð1� X Þ0:75 þ 0:032ð1� X Þ0:25
; ð15Þ

mðX Þ ¼ 0:08þ 0:19X 1:55 þ 0:05X 0:6

ð1� X Þ0:58
ð16Þ

for the Miller-Scalo and Kroupa mass functions, respectively
(Eggleton, Tout, & Fitchett 1989; Kroupa et al. 1993). In both
cases, if mðX Þ < mmin or mðX Þ > mmax the result is discarded
and a new random number is generated. The values in equa-
tion (16) correspond to the choice of �1 ¼ 1:3 in Table 10 of
Kroupa et al. (1993).
In most of our simulations we have used N ¼ 1:25� 106

stars. For all mass functions, this implies the presence of
many massive stars, allowing us to resolve fully the higher
end of the mass spectrum. For example, for mmin ¼ 0:2M� and

TABLE 2

Initial Conditions and Main Results

Model

(1)

Initial Structure

(2)

IMF

(3)

mmin–mmax

(M�)

(4)

mh i
(M�)

(5)

tcc=trhð0Þ
(6)

Mcc=Mtot

(7)

55............................ Plummer PL, � ¼ �1:4 0.2–120 6.57 0.287 a

50............................ Plummer PL, � ¼ �1:7 0.2–120 2.74 0.131 0.0024

1.............................. Plummer PL, � ¼ �2:0 0.2–120 1.28 0.0899 0.0018

51............................ Plummer PL, � ¼ �2:2 0.2–120 0.87 0.0700 0.0020

2r ............................ Plummer PL, � ¼ �2:35 0.2–120 0.69 0.0716b a

2s ............................ Plummer PL, � ¼ �2:35 0.2–120 0.69 0.0702b a

2.............................. Plummer PL, � ¼ �2:35 0.2–120 0.69 0.0700c 0.0020c

2b............................ Plummer PL, � ¼ �2:35 0.2–120 0.69 0.0700c 0.0019c

2c............................ Plummer PL, � ¼ �2:35 0.2–120 0.69 0.0706 0.0020

2d............................ Plummer PL, � ¼ �2:35 0.2–120 0.69 0.0720 0.0018

52............................ Plummer PL, � ¼ �2:5 0.2–120 0.58 0.0719 0.0022

3.............................. Plummer PL, � ¼ �2:7 0.2–120 0.48 0.0696 0.0018

53............................ Plummer PL, � ¼ �3:0 0.2–120 0.40 0.0834 0.0012

4.............................. Plummer Kroupa 0.2–120 0.96 0.0858 0.0014

5.............................. Plummer Miller-Scalo 0.2–120 0.71 0.0723 0.0022

28............................ Plummer PL, � ¼ �2:35 0.2–360 0.72 0.0795 0.0020

27............................ Plummer PL, � ¼ �2:35 0.2–240 0.71 0.0760 0.0020

24............................ Plummer PL, � ¼ �2:35 0.2–90 0.68 0.0664 0.0014

20............................ Plummer PL, � ¼ �2:35 0.2–60 0.67 0.0786 0.0024

21............................ Plummer PL, � ¼ �2:35 0.2–20 0.62 0.156 0.0028

22............................ Plummer PL, � ¼ �2:35 0.2–8 0.56 0.478 0.0010

25............................ Plummer PL, � ¼ �2:35 0.2–5 0.53 0.805 0.0016

23............................ Plummer PL, � ¼ �2:35 0.2–2 0.45 2.20 a

26............................ Plummer PL, � ¼ �2:35 0.2–1 0.37 4.29 a

30............................ King, W0 ¼ 1d PL, � ¼ �2:35 0.2–120 0.69 0.152 0.0020

36............................ King, W0 ¼ 1 PL, � ¼ �2:35 0.2–120 0.69 0.151 0.0014

35............................ King, W0 ¼ 2d PL, � ¼ �2:35 0.2–120 0.69 0.134 0.0020

37............................ King, W0 ¼ 2 PL, � ¼ �2:35 0.2–120 0.69 0.129 0.0014

11............................ King, W0 ¼ 3d PL, � ¼ �2:35 0.2–120 0.69 0.107 0.0022

10............................ King, W0 ¼ 3 PL, � ¼ �2:35 0.2–120 0.69 0.110 0.0016

31............................ King, W0 ¼ 4d PL, � ¼ �2:35 0.2–120 0.69 0.0779 0.0022

38............................ King, W0 ¼ 4 PL, � ¼ �2:35 0.2–120 0.69 0.0778 0.0022

32............................ King, W0 ¼ 5d PL, � ¼ �2:35 0.2–120 0.69 0.0561 0.0024

39............................ King, W0 ¼ 5 PL, � ¼ �2:35 0.2–120 0.69 0.0526 0.0020

12............................ King, W0 ¼ 6d PL, � ¼ �2:35 0.2–120 0.69 0.0336 0.0014

40............................ King, W0 ¼ 6 PL, � ¼ �2:35 0.2–120 0.69 0.0322 0.0020

33............................ King, W0 ¼ 7d PL, � ¼ �2:35 0.2–120 0.69 0.0163 0.0014

41............................ King, W0 ¼ 7 PL, � ¼ �2:35 0.2–120 0.69 0.0150 0.0018

34............................ King, W0 ¼ 8d PL, � ¼ �2:35 0.2–120 0.69 0.00545 0.0010

42............................ King, W0 ¼ 8 PL, � ¼ �2:35 0.2–120 0.69 0.00577 0.0012

13............................ King, W0 ¼ 9d PL, � ¼ �2:35 0.2–120 0.69 0.00135 0.0010

43............................ King, W0 ¼ 9 PL, � ¼ �2:35 0.2–120 0.69 0.00138 0.0012

6.............................. � ¼ 1, Hernquist PL, � ¼ �2:35 0.2–120 0.69 <10�4 a

7.............................. � ¼ 1:5 PL, � ¼ �2:35 0.2–120 0.69 <2�10�6 a

Note.—All models have N ¼ 1:25� 106 stars except for model 2r (N ¼ 3� 105), model 2s (N ¼ 6� 105), model 2b
(N ¼ 2:5� 106), model 2c (N ¼ 5� 106), and model 2d (N ¼ 107).

a We were not able to determine Mcc reliably for that model.
b These results are obtained by averaging over 20 runs.
c These results are obtained by averaging over 10 runs.
d Isolated King models.
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mmax ¼ 120M�, with N ¼ 1:25� 106, we havek60 stars with
m > 100 M� for a Salpeter IMF. The results from our simu-
lations are therefore not much affected by random fluctuations
in a small number of very massive stars. Note, however, that in
much smaller systems, containing perhaps only �104 stars (as
in the Arches and Quintuplet clusters near our Galactic center),
these small number effects and random fluctuations may indeed
play a dominant role in determining the dynamical fate of the
few most massive stars in the system.

3.3. Initial Mass Segregation

Initial mass segregation in star clusters (i.e., the tendency for
more massive stars to be formed preferentially near the cluster
center) is expected to result from star formation feedback in
dense gas clouds (Murray & Lin 1996) or from competitive gas
accretion onto protostars and mergers between them (Bonnell
et al. 2001; Bonnell & Bate 2002). There is also some obser-
vational evidence for initial mass segregation in both open
and globular clusters (Bonnell & Davies 1998; Raboud &
Mermilliod 1998; de Grijs, Gilmore, & Johnson 2004).

We have considered the possibility of initial mass segrega-
tion in a few of our MC simulations. We adopt a simple pre-
scription whereby we increase the average stellar mass within a
certain radius rms. For r < rms, rather than sampling from an
IMF with fixed mmin, we randomly choose between two values
of mmin, one that is used for the outer part of the cluster and
another one that is larger. For r > rms, we follow a similar
procedure, this time changing mmax. The average mass within
rms is larger by a factorCms and outside rms is smaller by a factor
C 0
ms, with respect to a cluster without initial mass segregation.

We choose Cms and C 0
ms such that the overall average stellar

mass in the cluster does not change with these modifications.
Changing the average stellar mass within any region of the
cluster would of course in general leave the system out of dy-
namical equilibrium. To maintain virial equilibrium, the mass
density profile must also be preserved. We achieve this by
modifying the number density of stars appropriately.

Our initial conditions for models with initial mass segrega-
tion are summarized in Table 3. Here q is the initial cluster mass

fraction within rms. This implies C 0
ms ¼ ð1� qÞ=ð1� qCmsÞ.

Increasing q or Cms represents more extended or more pro-
nounced initial mass segregation.

Our prescription for initial mass segregation allows the
formation of massive stars in the outer parts of the cluster, as
well as the formation of lighter stars in the inner parts, but the
more massive stars are more likely to be found near the center.
This makes our approach different from that of Bonnell &
Davies (1998), who put all massive stars closer to center.

3.4. Units

For all our numerical calculations, we adopt the standard
N-body units (Hénon 1971a): we set the initial total cluster
mass M ¼ 1, the gravitational constant G ¼ 1, and the initial
total energy E0 ¼ �1=4. In the tabulation of the results we
also use the initial half-mass relaxation time trhð0Þ, given by
equation (6), as the unit of time for comparison with other
work in the literature.

The conversion to physical units is done by evaluating the
initial half-mass relaxation time in years. For example, for the
Plummer model, we can write

trhð0Þ ’ 330 Myrð Þ N=106

ln �cN= ln 104
aP

1 pc

� �3=2
M

106 M�

� ��1=2

:

ð17Þ

Similar expressions can also be obtained for King models and
�-models by use of the quantities in Table 1. For a single-
component model (containing equal-mass stars) the value of
�c in the Coulomb logarithm can be calculated theoretically
(Farouki & Salpeter 1994), but for a system with a wide mass
spectrum it must be determined by comparing with direct
N-body integrations. Giersz & Heggie (1996, 1997) carried
out such comparisons and found �c ’ 0:015. Our own com-
parison with a recent N-body result for k105 stars with a
wide mass spectrum led us to adopt the value �c ¼ 0:01
(H. Baumgardt 2003, private communication).

TABLE 3

Initial Conditions and Results of Simulations with Initial Mass Segregation

Model q rms=rrhð0Þ Cms C 0
ms tcc=trhð0Þ Mcc=Mtot

m01 ................. 0.3 0.69 1.2 1.094 0.0588 0.0018

m17 ................. 0.3 0.69 1.5 1.273 0.0490 0.0020

m02 ................. 0.3 0.69 1.8 1.522 0.0443 0.0022

m18 ................. 0.3 0.69 2.1 1.892 0.0366 0.0022

m04 ................. 0.2 0.55 1.2 1.053 0.0637 0.0030

m15 ................. 0.2 0.55 1.5 1.143 0.0512 0.0026

m05 ................. 0.2 0.55 1.8 1.250 0.0498 0.0020

m16 ................. 0.2 0.55 2.1 1.379 0.0439 0.0022

m06 ................. 0.2 0.55 2.4 1.538 0.0399 0.0022

m08 ................. 0.1 0.40 1.2 1.023 0.0664 0.0016

m13 ................. 0.1 0.40 1.5 1.059 0.0588 0.0018

m09 ................. 0.1 0.40 1.8 1.098 0.0558 0.0016

m14 ................. 0.1 0.40 2.1 1.139 0.0560 0.0020

m10 ................. 0.1 0.40 2.4 1.184 0.0519 0.0018

m11.................. 0.1 0.40 3.0 1.286 0.0506 0.0022

m12 ................. 0.1 0.40 3.6 1.406 0.0471 0.0016

Note.—All initial models are isolated Plummer spheres containing 1:25� 106 stars. Here q is the
mass fraction initially contained within rms. Inside this radius, the average stellar mass is larger by a
factor Cms compared with model 2. Outside this radius the average stellar mass is smaller by a factor
C 0
ms. See x 3.3 for details.
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For processes occurring in the central parts of the cluster,
the central relaxation time is a more relevant quantity,

trcð0Þ �
�3
3D

4:88�G2ðln �cNÞnhmi2
; ð18Þ

where �3D, n, and hmi are the three-dimensional velocity
dispersion, number density, and average stellar mass at the
cluster center (Spitzer 1987, eq. 3.37). The N-body unit sys-
tem only specifies unambiguously dynamical times, which are
independent of N. In this system, relaxation times are pro-
portional to N= ln �cN . It is therefore also useful to define the
so-called Fokker-Planck time unit, which is the N-body time
unit [tdyn � GM 5=2ð�4E0Þ�3=2

] multiplied by N= ln �cN. The
most important physical properties of all our initial cluster
models, including trhð0Þ and trcð0Þ, are given in Table 1
(in N-body and FP units).

4. RESULTS

The initial conditions and main results of all our MC simu-
lations are summarized in Tables 2 and 3. All models have
initially N ¼ 1:25� 106 stars, except for models 2r, 2s, 2b, 2c,
and 2d, which have varying N between 3� 105 and 8� 107.
The maximum value of N is set in practice by the available
computer memory, and N � 107 corresponds to 2 Gbytes of
available memory for our code. The run for model 2d took about
2 weeks of CPU time to complete on a 2.8 GHz Pentium 4
Linux workstation. More typical runs for N ¼ 1:25� 106 took
around 20–30 CPU hr. The close agreement between the out-
comes of models 2r–2d confirm the expectation that our results
should be independent of the number of stars in the system, at
least for sufficiently large N to avoid small number effects in the
cluster core.

4.1. Mass Segregation and Core Collapse

As expected, all models with a Salpeter-like IMF and a wide
mass spectrum undergo core collapse considerably faster than
any single-component cluster (see x 1.2). In Figure 5, we show
the evolution of various Lagrange radii, as well as the average
stellar mass inside these radii, for our reference model (model 2,
same as shown in Fig. 2). In contrast to the evolution of a
single-component model, the inner Lagrange radii remain al-
most constant until the very abrupt onset of core collapse at
t=trhð0Þ ’ 0:07. A more detailed view of core collapse is
shown in Figure 6. Here the time axis has been replaced by the
central potential depth, which increases monotonically in time
and provides a natural stretch near core collapse. Note that the
core-collapse time for a particular run can be determined very
accurately, to within �0.01%. However, random fluctuations
in the realization of each initial condition for a particular model
lead to a much larger physical error bar on tcc (see below).

The rapid increase of the average stellar mass inside the in-
nermost Lagrange radii seen in Figures 5 and 6 is an indication
of significant mass segregation. In fact, very significant mass
segregation takes place throughout the evolution of the system.
This can be seen in Figure 7 (top), which shows the evolution of
half-mass radii for stars in various mass bins (compare with
Fig. 1 of Spitzer & Shull 1975). It is clear that the rate of mass
segregation in each mass bin, measured by the slope �ms of the
corresponding half-mass radius rðtÞ in that bin, is very nearly
constant from t ¼ 0 all the way to core collapse [the least-
square straight-line fits, constrained to r=rhð0Þ ¼ 1 at t ¼ 0, are
shown in the figure]. This rate can be positive or negative. For

model 2 we find that stars more massive than about 5 M� drift
inward on average, while less massive stars drift outward. Even
for the most massive stars, we do not find that the mass seg-
regation rate is proportional to the average mass in the bin (in
contrast to what would be expected for a tracer population of

Fig. 5.—Evolution of the Lagrange radii (bottom) and the average mass
within Lagrange radii (top) for model 2. The Lagrange radii are given in units of
the initial half-mass radius and time in units of the initial half-mass relaxation
time. A more detailed view concentrating on core collapse is given in Fig. 6.

Fig. 6.—Same as Fig. 5, but concentrating on the evolution of the cluster near
core collapse. The horizontal axis now gives the value of the central potential,
normalized to its initial value. The vertical dashed line marks the core-collapse
time, tcc=trhð0Þ ¼ 0:068. Vertical dotted lines on both sides indicate a�0.01%
change in this quantity, illustrating how precisely the onset of core collapse can
be determined for a particular run. The corresponding mass fraction in the
collapsing core is Mcc=Mtot ¼ 0:0018 for this run.
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massive stars driven by simple dynamical friction; see x 1.2;
Fregeau et al. 2002). Instead, the following simple expression
provides a good fit (to within a few percent) to the observed
mass dependence for model 2:

�mstrhð0Þ ¼ �0 exp ð�m=mf Þ þ �2; ð19Þ

where m is the average stellar mass and the best-fit parameters
are �0 ¼ 9:45, mf ¼ 21:9 M�, and �2 ¼ �8:07. Note that the
mass segregation rate actually approaches a constant for large
m (but of course it is unphysical to extrapolate beyond mmax).
In Figure 7 (bottom) we show the average mass within rh, rh/2,
and rh/4. The steady increase of the average mass in each
region is further indication that the mass segregation not only
starts immediately but also continues until core collapse. For
a smaller number of stars, the average mass within a given
radius can reach saturation (see Fig. 2 of Bonnell & Davies
1998). Our results for larger N do not show this saturation.

Initially and throughout the evolution until core collapse,
the cluster maintains a core-halo structure. However, when the
heaviest stars start dominating the core and the Spitzer insta-
bility occurs, this initial structure is lost. We demonstrate this
behavior in Figure 8, where the evolution of the gravitational
potential profile is shown. We have checked that the final
structure and, in particular, the formation of a cusp are not
dominated by small number effects but are instead the result of
many massive stars participating in the core collapse. We il-
lustrate this in Figure 8, where close to 200 innermost stars,
which constitute 0.2% of the total mass, are shown explicitly.

Another important point, which can be deduced from the
evolution of the Lagrange radii, as well as from Figure 8 (see
the lower two curves), is that the outer parts of the cluster are
not much affected by mass segregation and core collapse,
except for the disappearance of the most massive stars.

As expected, the stars in the collapsing core have a mass
distribution much richer in heavy stars than the IMF. We
compare the mass function at core collapse with the IMF for
m 	 1 M� in Figure 9. The mass function shown in this
figure is obtained by choosing the innermost 200 stars at three

Fig. 7.—Mass segregation in model 2. Top: Evolution of the half-mass radii
of stars in various mass bins. From top to bottom, the limits of the mass bins
are 0.2, 0.32, 0.55, 0.94, 1.62, 2.77, 4.7, 8.1, 14, 30, 50, and 120 M�. Bottom,
Average stellar mass within, from top to bottom, rh=4, rh=2, and rh.

Fig. 8.—Evolution of the gravitational potential for model 2. The potentialU
is given in units of the absolute value of the initial central potential. The initial
profile is shown by the dashed line. The profiles just before core collapse and
right after core collapse are shown by dotted and solid lines, respectively. The
positions of the stars in the collapsing core are marked individually. For this
particular run, the core collapse took place at t ¼ 0:069trhð0Þ.

Fig. 9.—Comparison between the mass spectrum of stars in the collapsing
core (solid line) and the Salpeter IMF (dashed line) for model 2. Numbers for
the core mass function are obtained by averaging over three successive
snapshots. The Salpeter IMF is normalized so that both curves account for the
same total number of stars.
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different times all before and within 5� 10�6trhð0Þ of core-
collapse time.

Mass segregation continues until the core is dominated by
massive stars. At this point, the massive stars near the center
dynamically decouple from the rest of the cluster and go into
collapse as a separate subsystem. The stars outside this sub-
system act as an energy sink, and, as a result of their energy
gain, expand away from the center of the cluster. In a single-
component system, as the collapse proceeds, the subset of
stars that participate in the collapse becomes smaller and
smaller. Here instead the stars that participate in the collapse at
the edge of the core are heavier than the surrounding stars so
they can more efficiently give their energy away and remain
together. As a result, in systems with a wide mass spectrum
and a steep enough IMF, there is a clear separation between
stars in the collapsing core and stars outside the collapsing
core, almost suggesting a real condensation process. The total
mass in the collapsing stars is a crucial property of these
systems, clearly representing an upper limit on the mass of
any BH that could form eventually through the gravitational
collapse of a runaway merger remnant.

To estimate the total mass in the collapsing core, Mcc, we
proceed as follows. At every time step we calculate and re-
cord the Lagrange radii for various mass fractions. For each
Lagrange radius, this provides typically a few thousand data
points per run. The innermost radii exhibit a great amount of
noise for the lowest mass fractions. We remove this noise in two
steps. First, we take arithmetic averages over 60 points and
reduce the total number of points to �50–100. Then for each
point, using the closest six points, we fit a cubic polynomial by
using least squares and we evaluate this polynomial at the
corresponding time. This way we both smooth the Lagrange
radii further and estimate their derivatives. When the system is
going into core collapse, a decrease in the collapse rate is an
indication that the results provided by our code are beginning to
be dominated by numerical errors. We stop the simulation when
this happens and define the core-collapse time as the last point
before this behavior is observed. We then find the innermost
Lagrange radius that has a positive derivative at the time of core
collapse and estimate the mass of the stars that participate in
core collapse as the mass enclosed by this radius. An investi-
gation of Figure 6 by eye verifies that this method produces
reasonable results. In practice, we track many more Lagrange
radii than shown in this figure, at intervals of 0.02% between
0.08% and 0.36%.

Because of small number fluctuations (and, in particular,
the intrinsic noise in the innermost Lagrange radii) there is a
statistical uncertainty in all the numbers quoted in Table 2.
This uncertainty is not unphysical, as real systems are affected
similarly by fluctuations in the number and specific properties
of a relatively small number of massive stars. To test the ro-
bustness of our results and estimate this uncertainty, we have
repeated 10–20 simulations with different random seeds for
model 2 and some of its variants with different numbers of
stars (models 2r, 2s, and 2b). For these models the numbers in
Table 2 are obtained by averaging the results of the various
(physically equivalent) runs. The standard deviations obtained
for the values of tcc=trhð0Þ and Mcc=Mtot for our typical model
2 are about 5% and 20%, respectively. The larger uncertainty
in Mcc=Mtot is a result of the high sensitivity of this quantity to
noise in the innermost Lagrange radii.

We cannot study the evolution of the cluster past core
collapse without treating in detail the dynamics of the central
stars during collapse, which is beyond the scope of this paper.

In future work we will include a detailed treatment of stellar
collisions in the core (M. Freitag, M. A. Gürkan, & F. A.
Rasio 2004, in preparation, hereafter Paper II). Alternatively,
one could use a hybrid method and treat the central part of the
cluster with a direct N-body approach (Lightman & McMillan
1985). However, the simplest approximation may be to in-
troduce an effective boundary condition at some very small
radius. Stodóykiewicz (1982), in his model B2, took this ap-
proach, but his implementation was not conserving energy.

4.2. Dependence on the IMF

The sharp onset of core collapse for our reference model,
shown in Figure 5, is a result of the Spitzer instability. This
instability is driven by the segregation of the heaviest stars
toward the center and their dynamical decoupling from the rest
of the system. As indicated by the results of x 4.1, the ratio of
maximum to average stellar mass in the IMF, mmax= mh i, is an
important parameter setting the timescale for the onset of
instability. There are various ways to study the dependence of
our results on this parameter. One can use an IMF different
from Salpeter, e.g., Miller-Scalo or Kroupa. In addition, when
a power-law IMF is used, changing the slope � or the maxi-
mum mass mmax will obviously alter the value of the ratio
mmax= mh i.
Our results from simulations for a large number of models

exploring these various alternative IMFs are presented in
Figure 10. Note that for mmax= mh i < 40, our results suggest a
relation tcc /

�
mmax= mh i

�
�1:3, also obeyed by all Fokker-

Planck models from Inagaki (1985) and Takahashi (1997)
with � < 3:5 and a number of mass components sufficient to
ensure proper sampling of the IMFs. However, our computa-
tions extend to much higher values of mmax=hmi than those
works. Beyond mmax=hmi ’ 50, a domain reached by any
realistic IMF, the core-collapse time approaches a constant
’0:15trcð0Þ. Therefore, our main conclusions appear to be inde-
pendent of the details of the IMF as long as the number of
massive stars in the system is large enough.
For small values of mmax=hmi, not only the timescale but

also the very nature of the collapse changes. In these systems
the evolution timescale, i.e., the relaxation time, of the sub-
system that can decouple from the rest of the cluster is no
longer small enough that the evolution of lighter stars can be
neglected. The Lagrange radii for these models behave simi-
larly to the single-component case, i.e., there is no clear sep-
aration between collapsing and expanding Lagrange radii.
Consequently, we do not give values of Mcc=Mtot for these
models in Table 2. Quinlan (1996), using FP simulations, also
found that, for a clear decoupling, the relaxation time of the
subsystem has to be short compared with that of the other stars.

4.3. Dependence on Initial Cluster Concentration

One expects the core-collapse time to depend strongly on the
initial density profile of the cluster, and, in particular, on the
central concentration. A simple and systematic way to examine
this dependence is to use different King models with varying
concentration parameter or W0 (Binney & Tremaine 1987,
Fig. 4-10). For single-component clusters this has been done
using a variety of methods (Quinlan 1996; Einsel 1996; Kim
et al. 2002; Joshi et al. 2001).
We have carried out a number of simulations using King

models with W0 ¼ 1–9 as initial structure. Our simulations
include both isolated clusters (with no tidal boundary enforced,
even though the initial models are truncated) and clusters with a
tidal boundary (assuming a circular orbit in a spherical galactic
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potential). This tidal boundary is initially chosen to be at
the tidal radius of the King model and then adjusted as the
cluster loses mass (Chernoff & Weinberg 1990; Joshi et al.
2001). In Figure 11a we plot the ratio of core-collapse time
to initial half-mass relaxation time for our simulations, along
with results for single-component clusters. The ratio tcc=trhð0Þ
is much smaller for systems with a mass spectrum, as would
be expected. We also see that the core-collapse time for these
systems is independent of the presence of a tidal boundary,
as expected when core collapse is driven by local processes
within the core rather than by global energy transfer. This idea
is strongly supported by the results in Figure 11b, which shows
the comparison of the ratio of core-collapse time to central
relaxation time for our simulations and single-component
models. With respect to single-component models, the ratio
tcc=trcð0Þ for systems with a broad mass spectrum shows very
little variation.

We have also run two simulations for �-models, using � ¼
1:0 (Hernquist model) and � ¼ 1:5. Initially, models with � < 2
have vanishing central velocity dispersion, and for � � 2 they
exhibit a central ‘‘temperature inversion’’ (Tremaine et al.
1994). For single-component clusters, the central region at first
undergoes rapid gravothermal expansion until it becomes iso-
thermal and ‘‘normal’’ core collapse can start (Quinlan 1996).

Models with � � 2 also have zero initial central relaxation
time.6 Our results for King models would then suggest that core
collapse induced by central mass segregation should be ex-
tremely fast, if it were not for the opposite effect of the tem-
perature inversion. For � ¼ 2, mass segregation seems to have
the upper hand in the competition, and it proves impossible to
resolve core collapse because extreme mass segregation
appears nearly instantaneously during the MC runs. Models
with � ¼ 1 and 1.5 expand at first and then evolve to core
collapse very rapidly. The core-collapse time and collapsing
core mass are very hard to determine numerically for these
models. In Table 2, we give only an upper limit on their core-
collapse times. Obviously, these values are so short that their
physical relevance is unclear. It is hard to imagine through
which process such a cluster could be created if one wants it to
be virialized but without initial mass segregation because these
conditions impose constraints on the formation timescale un-
likely to be satisfied in real systems. In addition, note that the
local dynamical time in a � ¼ 1 model approaches a constant
nonzero value near the center, while, formally, the relaxation
time goes to zero there. This suggests that such models can
provide only an approximate description of real clusters, in
which finite number effects play a key role near the center, so
that the question of determining the evolution in the limit of
very large N is not well posed.

4.4. Initial Mass Segregation

Naturally we expect that any initial mass segregation in a
cluster should lead to an even shorter core-collapse time as the
heavier stars are starting their life closer to the center on av-
erage and therefore do not need as much time to concentrate
there through mass segregation. Our results from MC simu-
lations with initial mass segregation (x 3.3) are presented in
Table 3 and Figure 12. As expected, we find that tcc=trhð0Þ
decreases with increasing Cms (i.e., when stars become more
and more massive on average in the inner region) and with
increasing q (i.e., when the increase in average stellar mass
takes place over a larger central region). However, the values
of Mcc=Mtot do not appear to be affected significantly (within
expected random fluctuations from run to run). The implica-
tion for BH formation through runaway collisions is that the
final BH mass may not be affected by initial mass segregation,
while the condition for runaway growth to occur (see x 5) will
be relaxed as the core collapse takes place even earlier.

4.5. Effects of Stellar Evolution

The simulations described so far consider only the dy-
namical evolution of the cluster, neglecting the stellar evolu-
tion entirely. We have also carried out a number of simulations
to understand how stellar evolution and the accompanying
mass loss can modify the dynamical evolution. The stellar
evolution treatment we have adopted is that of Belczynski,
Kalogera, & Bulik (2002), based on the approximations of
Hurley, Pols, & Tout (2000).

Stellar evolution introduces a new physical clock in the
system, independent of relaxation. Therefore it is necessary to
specify the physical scale of an initial cluster model (e.g., the
half-mass radius in parsecs) before starting a simulation so
that the relaxation time trhð0Þ can be calculated in years and
related to the stellar evolution timescale. The only other

Fig. 10.—Dependence of the core-collapse time on the shape and width of
the IMF. Initial Plummer models were assumed in all cases. The horizontal
axis shows the ratio mmax= mh i of maximum to mean stellar mass in the IMF.
The square is for our standard model with a Salpeter IMF, mmin ¼ 0:2 M�,
and mmax ¼ 120 M�. The cross and the plus sign are for the Kroupa and
Miller-Scalo IMFs, respectively, with the same limits. The triangles are for
power-law IMFs with various exponents (�1.4, �1.7, �2.0, �2.2, �2.5,
�2.7, and �3.0) and the same limits. The circles are for Salpeter-like IMFs
with varying upper limits (mmax ¼ 1, 2, 5, 8, 20, 60, 90, 240, and 360 M�).
For comparison, FP results from Inagaki (1985, his Table 2) are plotted with
small filled dots. Models with the same IMF slope (� ) and Ncomp ¼ 5 (number
of discrete mass components in the FP simulations) are linked together with
dashed lines. For each value of � , a model with a relatively large mass
contrast (mmax=mmin ¼ 10) was computed with Ncomp ¼ 15. Its core collapse
time is shorter than a corresponding model with Ncomp ¼ 5 because the mass
function is better represented. These models are linked to the other points with
dotted lines. The three multimass models (Ncomp ¼ 10) from Takahashi (1997)
are also plotted with rhombi ( joined with a dash-dotted line). They correspond
to � ¼ 3:5, 2.5, and 1.5 (in order of increasing mmax=hmi).

6 Models with 2:0 < � < 3:0 have infinite trcð0Þ because their velocity
dispersion rises as 1=r near the center (Tremaine et al. 1994).
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parameter to be specified is the metallicity Z, which plays an
important role in the calculation of stellar evolution mass loss.
In our treatment of stellar evolution, all wind mass-loss rates
are proportional to Z1=2. Since stellar evolution introduces two
new parameters in our initial models, a full exploration of the

initial parameter space is clearly impossible. Fortunately, we
will see that the effects of mass loss on the evolution to core
collapse are rather unimportant, so a systematic study is un-
necessary at this point.
We first illustrate how post–main-sequence evolution of

massive stars can prevent core collapse. In Figure 13 we show
the evolution of a system similar to model 2 with trhð0Þ ¼
60 Myr and Z ¼ 10�4. At such low metallicity, there is little
mass loss on the main sequence, so one expects tcc ’ 0:07�
60 Myr ¼ 4:2 Myr without evolution beyond the main se-
quence. However, massive stars evolve off the main sequence
after about 3 Myr, before core collapse has occurred. Once
they evolve off the main sequence, they typically lose up to 2

3
of

their mass rapidly. At the end of their life, which extends about
10% beyond their main-sequence lifetime, these stars undergo
supernova explosions, and their cores collapse to BHs. In
Figure 13 (top) we plot the number of these BHs in the cluster.
The significant mass loss during the late stages of stellar evo-
lution causes the cluster core to expand so that collapse is
prevented and the system then goes into long-term dynamical
evolution.
Varying Z from 10�4 to 0.02 (the solar value), we found that

this reversal of core contraction occurs for any metallicity
when massive stars are allowed to evolve off the main se-
quence. Higher metallicities of course lead to increased mass
loss and an even stronger tendency for the cluster core to
expand. We have not considered the case of Z ¼ 0, i.e., a
cluster of Population III stars. These stars may collapse to BHs
that incorporate essentially the entire initial stellar mass
(Heger et al. 2003b). The dynamical evolution of the cluster
would then be unaffected by mass loss. Whenever a runaway
is avoided, a dense cluster of relatively massive primordial

Fig. 11.—Comparison of core-collapse times for various King models with a broad IMF and with single-mass stars. (a) Ratio of core-collapse time to half-mass
relaxation time. For the single-component models (top curves), we include results obtained with Fokker-Planck codes (Quinlan 1996; Einsel 1996; Kim et al. 2002),
Monte Carlo codes (Joshi, Nave, & Rasio 2001; M. Freitag 2003, unpublished), and one W0 ¼ 3 N-body simulation by Baumgardt (2001). Solid and open symbols
indicate models with and without tidal truncation, respectively. (b) Ratio of core-collapse time to central relaxation time. For the sake of clarity, only data from Joshi
et al. (2001) are plotted for single-component clusters.

Fig. 12.—Dependence of the core-collapse time tcc=trhð0Þ on initial mass
segregation parameters Cms and q (see Table 3).
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BHs would then form near the center. This is an intriguing
possibility to keep in mind for future consideration, although
the IMF of Population III stars is essentially unknown (but
see, e.g., Nakamura & Umemura 2001; Abia et al. 2001), and
recent hydrodynamic simulations suggest that the first stars
may actually form in isolation rather than in clusters (Abel,
Bryan, & Norman 2002).

We have also examined the possibility that mass loss on the
main sequence may already be a source of indirect heating
strong enough to reverse core collapse or at least delay it sig-
nificantly. Our results indicate that wind mass loss from main-
sequence stars alone can never prevent core collapse and that
the delay introduced remains very small, even for high metal-
licities. It is of course always possible to fine-tune the relaxation
time so that the mass loss slows down the evolution just enough
to allow a fewmassive stars to evolve off the main sequence and
stop contraction. But such models can represent only a very
small domain in the parameter space of initial conditions. For
example, in a system such as model 2 with trhð0Þ ¼ 40 Myr,
the core-collapse time increases by only about 5% for Z ¼ 0:02.
For trhð0Þ ¼ 50 Myr, the evolution is delayed just long enough
to prevent core collapse for Z ¼ 0:02 but not for Z ¼ 0:001.
One has to increase the relaxation time to trhð0Þ ¼ 60 Myr for
stellar evolution to prevent core collapse for all metallicities.

In conclusion, we find that post–main-sequence mass loss
can be strong enough to prevent early core collapse but that it
does not significantly tighten the condition [on trhð0Þ] for core
collapse to occur. Mass loss from main-sequence stars always
plays a negligible role.

5. SUMMARY AND DISCUSSION

It has long been realized that a mass spectrum accelerates the
dynamical evolution of dense star clusters through the process
of mass segregation (Aarseth 1966; Hénon 1971a; Wielen

1975). This is a consequence of the statistical tendency of two-
body gravitational encounters to establish energy equipartition
between stars of different masses. For any realistic IMF, equi-
partition can never be achieved because the massive stars
quickly form a separate self-gravitating subcluster (a system
with negative effective heat capacity) as they segregate near the
center by transferring kinetic energy to lighter stars (Spitzer
1969; Vishniac 1978; Inagaki & Wiyanto 1984; Inagaki &
Saslaw 1985). This instability leads to a rapid core collapse:
after a finite time tcc, the central density of stars would actu-
ally become infinite in the absence of finite size effects (both
physical collisions between stars and the finite number of
stars in the core).

With the exception of a few recent N-body simulations
(Portegies Zwart et al. 1999; Portegies Zwart & McMillan
2002), all previous investigations of core collapse in clusters
with a mass spectrum have considered a relatively narrow
range of stellar masses (mmax=mminT100). This restriction is
appropriate for old globular clusters in which stellar evolution
probably had time to remove all massive stars before signifi-
cant relaxation took place. In contrast, in the present study, we
ignored stellar evolution to concentrate on systems in which,
by assumption, core collapse occurs before even the most
massive stars (with m � 100 M�) leave the MS.

Through a set of high-resolution Monte Carlo simulations
of clusters with a variety of IMFs and structural parameters
(concentration and presence or absence of tidal truncation or
initial mass segregation), we established two important results.
The first concerns the time needed to go deep into core col-
lapse (tcc). As the evolution to core collapse is driven by re-
laxation processes, tcc can always be written as proportional
to the initial half-mass or central relaxation time [trhð0Þ or
trcð0Þ]. The proportionality constant does not depend on the
size of the cluster or the number of stars, as long as they are
numerous enough to avoid small number effects. For isolated
clusters with an IMF of realistic slope (� ’ 2:5 in the high-
mass range), we find

tcc=trhð0Þ / ��� with � ¼ mmax

hmi and � ’ 1:3; ð20Þ

as � increases from 1 (single mass) to �50. This result extends
and agrees nicely with previous work based on FP simulations
(Inagaki 1985; Takahashi 1997). From simple arguments about
dynamical friction, one would naively expect a linear relation
with � ¼ 1 (Binney & Tremaine 1987). The steeper dependence
found in our numerical results may be related to the fact that
the instability causing the core collapse is triggered only after
some critical number, Ncr, of sufficiently massive stars have
drifted to the core by dynamical friction. If one has to go out
to radius Rcr to find this number of heavy stars, the required
timescale will be of order ��1trelðRcrÞ. For systems with in-
creasing �, it is reasonable to expect Ncr and, consequently,
Rcr and trelðRcrÞ to decrease. While this provides a plausible
explanation, further investigations will be needed to confirm
it, in particular studies making use of the gaseous model of
cluster dynamics (M. Freitag et al. 2004, in preparation).

For � > 50, the core-collapse time saturates to

tcc � 0:15trhð0Þ; ð21Þ

a key result given that any realistic IMF is likely to have
� > 100. This value of tcc is at least 2 orders of magnitude
shorter than the core-collapse time for single-component

Fig. 13.—Prevention of core collapse due to stellar evolution mass loss.
Bottom, Evolution of the Lagrange radii; top, Number of black holes in the
cluster (formed by evolving massive stars). The time is given in units of trhð0Þ
for the bottom and middle axes, and in millions of years along the top axis.
The first massive stars leave the main sequence around 3 Myr.
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clusters. Moreover, we find this tcc=trcð0Þ ratio to hold for all
the models we have considered that have a finite trcð0Þ. This
includes King models (with or without tidal truncation) with
W0 ranging from 1 to 9, a sequence along which tcc=trhð0Þ
decreases by more than �100. Our result that the core-collapse
time is set fundamentally by trcð0Þ rather than trhð0Þ reflects an
important difference between single-component clusters and
systems with a broad mass spectrum: in systems with a mass
spectrum, core collapse is driven ultimately by energy transfer
occurring locally in the core; in contrast, relaxation in a single-
component system is a global process taking place on all scales,
resulting in a timescale comparable to trh (Inagaki 1985). For
Plummer models or King models with moderate concentration
(W0 � 4), we find tcc ’ 0:07 0:15trhð0Þ, in good agreement
with the results of N-body simulations by Portegies Zwart &
McMillan (2002).7

The main-sequence lifetime t� of very massive stars
approaches a constant value, of about 3–4 Myr, with only weak
dependence on metallicity, rotation, or the mass m of the star,
as long as mk 50 M� (Schaller et al. 1992; Meynet & Maeder
2000; Maeder & Meynet 2001). It exhibits little variation with
m because such massive stars are nearly Eddington limited,
hence L / m, where L is the luminosity, and t� / fcm=L ’
const if the fractional mass of the convective core, fc, does
not depend too strongly on the stellar mass.8 Therefore, the
necessary condition for core collapse not being stopped by
stellar evolution can be written

trhð0ÞP 30 Myr: ð22Þ

Interestingly, we also find that core collapse cannot be pre-
vented by mass loss through stellar winds on the MS. Such
mass loss can delay the evolution to core collapse only very
slightly. Even for high metallicities and hence strong winds,
only clusters for which the core-collapse time would otherwise
be very close to the critical value (i.e., just below t�) can see
their fate changed through wind mass loss if tcc increases to
become slightly longer than t�. These clusters must represent a
very small domain in the parameter space of initial conditions.

Our second important finding is that, as the collapse pro-
ceeds, the mass contained in the ever-shrinking core con-
verges to a nonzero value,

Mcc ’ 0:001 0:002 Mtot; ð23Þ

which depends only weakly on the properties of the initial
cluster. This contrasts again with single-component clusters
which, exhibiting self-similar collapse, have Mcc ! 0 as
t ! tcc.

This value of Mcc=Mtot is in remarkable agreement with the
fractional mass of a dark object, presumably a massive BH,
discovered at the center of galaxies (in which case, Mtot stands
for the mass in the spheroidal component) and possibly globular
clusters such as M15 and G1. This suggests that the collapsing
core may well be the progenitor of a central IMBH. However,
for a galactic nucleus, the requirement that tcc ’ 0:15trcð0Þ <
3 4 Myr would imply either that it evolved from a cluster with
short (central) relaxation time to its present-day state with

trh 	 108yr (Lauer et al. 1998) or that the growth of the central
BH was predominantly from accretion of smaller star clusters
with short relaxation times (each one carrying an IMBH at its
center; Ebisuzaki et al. 2001; Hansen & Milosavljević 2003).
M15 and G1 also have long half-mass relaxation times (�1 Gyr
for M15; Dull et al. 1997 and 30–50 Gyr for G1; Meylan et al.
2001; Baumgardt et al. 2003b), indicating that the process we
envision could have taken place only if these clusters were born
with much more centrally concentrated density profiles than
observed today9 (for M15, an initial value of W0k 8 seems
required; see Fig. 11). However, there is no doubt that young
star clusters with half-mass relaxation times shorter than the
critical value of 30 Myr do exist. The Arches cluster near the
center of our Galaxy is the best established example, with trh
probably shorter than 10 Myr (Figer et al. 1999a), while the
Quintuplet cluster appears to lie very close to the critical value
(Figer, McLean, & Morris 1999b). It is also possible that some
super star clusters, the birthplaces of most stars in starburst
environments, have sufficiently short relaxation times (e.g.,
Ho & Filippenko 1996).
Although the final fate of the stars that participate in core

collapse is not completely certain, very high rates of physical
collisions are expected in the core. Primordial binaries are
probably unable to stop the collapse and prevent these colli-
sions. In smaller systems such as globular clusters, inter-
actions with hard binaries may in fact increase the collision
rate. In more extreme environments such as (proto–) galactic
nuclei, the velocity dispersion is so high (�102–103 km s�1)
that most primordial binaries are soft and will have been
disrupted before they can play a role in the collapse. The main
uncertainty is then whether these collisions, occurring at rel-
atively high velocity, allow a massive star to gain mass in
a runaway fashion, as suggested by analytical models (based
on the dependence of the cross section on the mass and
neglecting collisional mass loss; Malyshkin & Goodman 2001
and references therein), or, on the contrary, grind it down
progressively. Our preliminary results from MC simulations
including a realistic treatment of stellar collisions (Rasio et al.
2004) indicate that the formation of a very massive star
through runaway collisions is a likely outcome. More exten-
sive calculations, as well as a detailed discussion of the likely
fate of the merger remnant, will be presented in Paper II.
Note added in proof.—We have been informed (H. Cohn &

B. Murphy 2004, private communication) that the latest iso-
tropic FP codes require only a few seconds of computation to
reach core collapse for as many as 20 mass components.
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APPENDIX A

APPLICABILITY OF THE MONTE CARLO METHOD

The Monte Carlo method has been applied previously to two-component systems (see, e.g., Watters et al. 2000) and to systems
with a continuous mass function covering a relatively narrow range (with mmax=mminP 30; see the references in x 2). However, one
may question the applicability of the method to systems with a much broader mass spectrum. In particular, the nature of the energy
transfer in these systems is different than in systems with small mmax=mmin ratio (See the discussion in x 1.2). In addition, the
gravitational potential is assumed to change smoothly within the cluster in the MC method. However, in a system containing a
broad IMF, a relatively small number of very massive stars could introduce significant discrete changes in the slope of the potential.
As the positions of these steps change randomly from one iteration to the next, one may worry that this could introduce a
significant amount of spurious relaxation in the system. In this Appendix, we provide numerical tests and theoretical arguments
showing that the MC method is indeed applicable to systems with a very broad mass spectrum, such as those under consideration in
this paper.

A1. SPURIOUS RELAXATION

In MC simulations, the orbits of the stars are calculated using a potential assumed to be spherical and smooth. This potential is
constructed numerically from a radial distribution of point masses and therefore includes random fluctuations that can lead to
spurious relaxation effects (Hénon 1971a). To test the importance of these effects, we carried out simulations in which we turned
off physical relaxation (by skipping the perturbation of stars). Ideally, in this case the cluster should maintain a constant state
indefinitely, and none of its properties should change over time. In practice, however, it is sufficient to make sure that the changes
are not significant compared with changes occurring in the presence of physical relaxation.

In one of our tests, we let an MC simulation, for our typical model 2, run for 3600 iteration steps, which is twice the number of
steps normally required for this model to reach core collapse. We plot various relevant quantities showing the evolution of the
system in Figure 14. It is clear that the deviations in these quantities are much smaller than the changes due to physical relaxation,
so we conclude that the effect of spurious relaxation is not significant.

A2. RELAXATION AND DYNAMICAL FRICTION

The energy transfer from massive to lighter stars and the segregation of massive stars to the center of the cluster are processes
similar to simple dynamical friction for a heavy test particle embedded in a background of lighter stars (Binney & Tremaine 1987,
x 7.1). Some of the processes that govern the dynamics of dense stellar systems cannot be treated simply as part of two-body
relaxation. Well-known examples include collisions, binary interactions, and three-body formation of binaries. A natural question
to ask is whether dynamical friction is a process that can be modeled correctly by our implementation of two-body relaxation in the
MC method. The answer is central to the applicability of the MC method to our problem.

Fig. 14.—Test of spurious relaxation in model 2. Here we show the evolution of the 10%, 50%, and 90% Lagrange radii, the central potential, the average mass
within Lagrange radii, and the central density. All quantities are divided by the average of their first 10 values in the run.
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The frictional drag on a massive object is proportional to the mass density of light background stars and is independent of the
masses of individual stars (see Binney & Tremaine 1987, eq. [7-18]). So the effect of dynamical friction would be unaltered, for
example, if every light star were replaced by two stars of half the mass. However, the treatment of relaxation in the MC method
(x 2.1) does depend on the mass ratio of the two particles considered and would be altered by such a replacement. The ratio of
relaxation to crossing time is given by

tr

tdyn
/ N

ln N
; ðA1Þ

which would evidently change if the stars in a system were replaced by many more stars with smaller masses. This might suggest
that the MC method cannot follow dynamical friction correctly. However, note that the relaxation time can be written

tr /
v3

nm2
; ðA2Þ

(Spitzer 1987, eq. [3-37]), and the timescale for dynamical friction is proportional to

tdf /
v3M

nmM
: ðA3Þ

(Binney & Tremaine 1987, eq. [7-18]). Here v is the average velocity of background stars, of mass m and number density n, and
vM is the velocity of the massive test particle, of mass M. When vM is comparable to v (which is true, for example, if the
massive particle is on a circular orbit; see below), we conclude that

tdf /
m

M
tr /

v3

�M
: ðA4Þ

The first proportionality implies that dynamical friction can be treated as a relaxation process. In the second, we show explicitly the
dependence on the total mass density � of the background stars. This result is also established by several numerical calculations
(Spitzer & Shull 1975; Bonnell & Davies 1998; Fregeau et al. 2002).

To demonstrate that the MC algorithm is indeed able to handle simple dynamical friction, we have simulated a system consisting
of a single massive object (mass m2) in a cluster of much lighter particles (of mass m1 and number N1). The initial conditions are
identical to those used for the N1 ¼ 400,000 model of Spinnato, Fellhauer, & Portegies Zwart (2003), with m2=m1 ¼ 211; hence
the total number of particles used for this test is 400,001. Spinnato et al. were interested in the spiral-in of an IMBH in a galactic
nucleus. The massive particle is initially on a circular orbit at a relatively large distance from the center, rð0Þ. For the power-law
density profile used to represent the cluster, �ðrÞ / r�� , one can predict analytically the decay RðtÞ by using Chandrasekhar’s
formula for dynamical friction (Spinnato et al. 2003, eq. 5). In Figure 15, we compare the spiral-in of the massive particle with the
analytical solution. In the formula, we have set � ¼ 2:3 to fit (visually) the density profile of the cluster. The initial N-body setup
was provided by Spinnato et al. and converted directly into MC particles. The agreement between the MC run and the analytical
formula is very satisfactory, especially considering that the density profile does not follow the exact power law and in fact evolves
slightly during the simulation as a result of relaxation between light particles. Note that this good agreement does not validate the
assumptions used in deriving Chandrasekhar’s formula (e.g., neglecting large-angle scatterings, correlations between light par-
ticles, and gradients in the properties of the cluster) because the MC method relies basically on the same set of assumptions. In
particular, �c is a free parameter in both approaches. What this result demonstrates is that these assumptions are correctly
implemented in our MC code.

Fig. 15.—Orbital decay of a massive particle through dynamical friction. We plot the distance from the center, in N-body units, as a function of time in Fokker-
Planck units (x 3.4). In these units, the evolution does not depend on the value of �c. We use our MC code to follow the decay of one massive object in a cluster of
much lighter stars. The initial conditions are identical to those used by Spinnato, Fellhauer, & Portegies Zwart (2003). The solid line shows the MC simulation result,
while the dashed line is the analytic solution from the standard Chandrasekhar theory of dynamical friction. See text for details.
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Stodóykiewicz, J. S. 1982, Acta Astron., 32, 63
———. 1986, Acta Astron., 36, 19
Takahashi, K. 1997, PASJ, 49, 547
Tremaine, S., Richstone, D. O., Byun, Y., Dressler, A., Faber, S. M., Grillmair,
C., Kormendy, J., & Lauer, T. R. 1994, AJ, 107, 634

Tremaine, S., et al. 2002, ApJ, 574, 740
van der Marel, R. P. 2001, in Black Holes in Binaries and Galactic Nuclei,
ed. L. Kaper, E. P. J. van den Heuvel, & P. A. Woudt (Berlin: Springer),
246

van der Marel, R. P. 2004, in Coevolution of Black Holes and Galaxies, ed.
L. C. Ho (Cambridge: Cambridge Univ. Press), in press

Vishniac, E. T. 1978, ApJ, 223, 986
Watters, W. A., Joshi, K. J., & Rasio, F. A. 2000, ApJ, 539, 331
Wielen, R. 1975, in IAU Symp. 69, Dynamics of the Solar Systems, ed.
A. Hayli (Dordrecht: Reidel), 119

Zezas, A., & Fabbiano, G. 2002, ApJ, 577, 726
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