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Mergers of irrotational neutron star binaries in conformally flat gravity

Joshua A. Faber, Philippe Grandcle´ment,* and Frederic A. Rasio
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

~Received 21 December 2003; revised manuscript received 12 April 2004; published 30 June 2004!

We present the first results from our new general relativistic, Lagrangian hydrodynamics code, which treats
gravity in the conformally flat~CF! limit. The evolution of fluid configurations is described using smoothed
particle hydrodynamics~SPH!, and the elliptic field equations of the CF formalism are solved using spectral
methods in spherical coordinates. The code was tested on models for which the CF limit is exact, finding good
agreement with the classical Oppenheimer-Volkov solution for a relativistic static spherical star as well as the
exact semianalytic solution for a collapsing spherical dust cloud. By computing the evolution of quasiequilib-
rium neutron star binary configurations in the absence of gravitational radiation back reaction, we have con-
firmed that these configurations can remain dynamically stable all the way to the development of a cusp. With
an approximate treatment of radiation reaction, we have calculated the complete merger of an irrotational
binary configuration from the innermost point on an equilibrium sequence through merger and remnant for-
mation and ringdown, finding good agreement with previous relativistic calculations. In particular, we find that
mass loss is highly suppressed by relativistic effects, but that, for a reasonably stiff neutron star equation of
state, the remnant is initially stable against gravitational collapse because of its strong differential rotation. The
gravity wave signal derived from our numerical calculation has an energy spectrum which matches extremely
well with estimates based solely on quasiequilibrium results, deviating from the Newtonian power-law form at
frequencies below 1 kHz, i.e., within the reach of advanced interferometric detectors.

DOI: 10.1103/PhysRevD.69.124036 PACS number~s!: 04.30.Db, 47.11.1j, 95.85.Sz, 97.60.Jd
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I. INTRODUCTION

Gravitational wave~GW! astronomy stands at a cruci
moment in its history, with the LIGO~Laser Interferometer
Gravitational Wave Observatory! Scientific Collaboration re-
porting results from their first scientific runs@1–3#, GEO600
having completed two scientific runs@4,5#, TAMA taking
data @6,7#, and VIRGO reporting its first lock acquisitio
@8–10#. As such, it is now more important than ever to ha
accurate theoretical predictions of the main candidate
nals, both to aid in their detection and to facilitate the int
pretation of any future detections.

It has long been recognized that coalescing relativi
binary systems containing compact objects, either neu
stars~NS! or black holes~BH!, are likely to be important
sources of detectable GWs. Recent population synthesis
culations indicate that an Advanced LIGO detector should
able to see at least tens of coalescences per year of NS
NS-BH, and BH-BH binaries@11#. Empirical rate estimates
based on three of the four observed binary pulsar syst
expected to merge within a Hubble time, PSR B1913116,
PSR B1534112, and PSR J0737-3039@12#, are in general
agreement, with the latter making the dominant contribut
to the probabilistic rate because of its short coalescence
of 85 Myr ~see @13,14# and references therein; the four
system is located in a globular cluster, rather than the ga
tic plane!. NS-NS binaries are the only known systems w
coalescence times shorter than a Hubble time to have b
conclusively observed, and it is the orbital decay
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PSR1913116 that currently provides our best indirect ev
dence for the existence of GWs@15–17#.

At large separations, the dynamics of compact object
naries can be well approximated by high-order po
Newtonian~PN! ~see@18# and references therein! and other
formalisms@19,20# which treat the compact objects as poin
masses, including the effects of spin-orbit and spin-spin
gular momentum couplings for systems containing a B
@21–23#. In general, these methods are more appropriate
describing a BH than a NS, since the finite-size effects
nored by point-mass formulas are of greater magnitude
systems containing NS.

For smaller binary separations,r &10RNS, whereRNS is
the radius of the NS, these finite-size corrections play
increasingly significant role in the evolution of NS-NS bin
ries. As long as the coalescence time scalet5r / ṙ remains
longer than the dynamical time scale, the evolution is q
siadiabatic, and the binary will sweep through a sequenc
configurations representing energy minima for given bin
separations. The infall rate will be given by

dr

dt
5S dE

dt D
GW

S dE~r !

dr D
eq

21

, ~1!

where (dE/dt)GW is the energy loss rate to gravitational r
diation, and (dE/dr)eq is the slope of the equilibrium energ
curve. Equilibrium energy sequences were first construc
in Newtonian and then PN gravity~see@24# and references
therein!. More recently, general relativistic~GR! sequences
have been calculated for binary NS systems in quasicirc
orbits @25–32#. An important result from these studies is th
the slope of the equilibrium energy curve is flatter wh
relativistic effects are included, compared to the Newton

,
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value. This becomes especially pronounced at small sep
tions, near the point where equilibrium sequences encou
an energy minimum~often associated with the ‘‘innermos
stable circular orbit,’’ or ISCO! or terminate when a cus
develops on the inner edge of the NS. Based on this ob
vation, it was noted that a flatter slope in the equilibriu
energy curve results in not only a faster infall rate b
also a decrease in the energy spectrum,dE/d f
'(dE/dr)/(d f /dr). In fact, based on the relativistic equ
librium sequences of Taniguchi and Gourgoulhon~@27#,
hereafter TG!, Faberet al. ~@33#, hereafter FGRT! concluded
that the dependence of finite-size corrections on the NS c
pactness~i.e., MNS/RNS) would leave an imprint in the GW
energy spectrum at frequenciesf '500–1000 Hz, within the
band accessible to Advanced LIGO. Hughes@34# proposed a
method using these results which would allow for a deter
nation of the NS compactness to within a few percent ba
on 10–50 observations with Advanced LIGO if it employs
narrow-band detector in addition to the current broadb
setup, with the required number of observations depend
upon both the true compactness and the particular setu
the detector.

Shortly before the ISCO or the end of the equilibriu
sequence~when it terminates at the formation of a cusp! the
binary will begin a transition toward a rapid plunge inwar
eventually leading to merger. Once the binary passes
point, the dynamical evolution becomes too complicated
describe using semianalytical methods, requiring instea
3D hydrodynamic treatment. Such calculations were p
formed first for Newtonian gravitation, using both Euleria
grid-based codes and Lagrangian smoothed particle hydr
namics ~SPH; for a review, see, e.g.,@35# and references
therein!. It was always recognized that any results would
at best qualitatively accurate, since the extreme compact
of the NS would induce a host of GR effects. Noting th
some attempts were made to calculate the evolution of bin
NS systems in lowest-order PN gravity@35–39#, using a for-
malism developed by@40#. Unfortunately, using realistic NS
equations of state~EOS! violated the basic assumption of th
PN approximation that the magnitude of the 1PN terms
small relative to Newtonian-order effects. As a result, all P
calculations were forced to make unphysical approximatio
either by evolving NS with a fraction of their proper physic
mass@38,39#, or by reducing the magnitude of all 1PN term
@@35–37#, hereafter denoted FR1-3, or collectively FR#.

While the ultimate goal of studying binary NS coale
cences should be a full GR treatment, only one group
been able to calculate the full evolution of a binary syst
from an equilibrium binary configuration through merger a
the formation of a remnant@41–43#. While these calculations
represent a breakthrough in our understanding of the hy
dynamics of coalescing NS binaries, they still leave a gr
deal of room for further research into a variety of questio
Currently, full GR calculations are extremely difficult, an
are vulnerable to several numerical instabilities. In order
guarantee the stability of calculation through coalesce
and the formation of either a stable merger remnant or a
binaries were started from the termination points of equi
rium sequences, from quasicircular configurations with z
12403
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infall velocity. The calculations of Shibata and Uryu@41,42#
used initial conditions generated by Uryu, Eriguchi, and c
laborators@31,32#, and the more recent work by Shibat
Taniguchi, and Uryu@43# used initial conditions generate
by TG. This restricts studying the behavior of the infall v
locity and GW signal when the stars begin their plunge, d
ing which time detected signals may yield important info
mation, as mentioned above. The lack of information ab
the dynamics of binaries before the plunge also hinders t
ing the validity of the initial matter and field configuration
used in full GR calculations. While the assumptions defin
the quasiequilibrium configuration are certainly reasonab
it is difficult to gauge how well such configurations agr
with those evolved dynamically from larger separations. A
unknown in detail is the effect that errors in the initial co
figuration will have on the system as they propagate in n
linear fashion during the calculation.

A further technical difficulty with full GR calculations
results from computational limits, since numerical grids a
currently constrained to have their boundaries lie within a
proximately half of a GW wavelength, within the near zon
This can induce possibly significant errors into the GW e
traction process, which would ideally be performed by stud
ing the behavior of the metric in the wave zone.

A possible middle road, at least at present, is provided
the conformally flat~CF! approximation to GR, first de-
scribed by Isenberg@44# and developed in greater detail b
Wilson and collaborators@45# ~note that their original ver-
sion contained a mathematical error, pointed out by Flana
@46#, accounting for spurious results with regard to ‘‘crus
ing’’ effects on NS prior to merger!. This formalism includes
much of the nonlinearity inherent in GR, but yields a set
coupled, nonlinear, elliptic field equations, which can
evolved stably. The first dynamical 3D calculations to ma
use of the CF framework were performed by Shibata, Bau
garte, and Shapiro@47#, who created a PN variant by discard
ing some of the nonlinear source terms in the field equati
while retaining the vast majority of the nonlinearity in th
system. They found, among other things, that the maxim
density of the NS is smaller for binary configurations than
isolation, and that NS in binaries have a higher maxim
mass as well, strongly indicating that collapse to a BH pr
to merger is essentially impossible. The first calculations
use the full formalism were performed by Oechslinet al.
@48#, using a Lagrangian SPH code with a multigrid fie
solver. Using corotating initial configurations, which a
thought to be unphysical~since viscous effects are thought
be much too weak to tidally synchronize the NS@49,50#!,
they found that mass loss during the merger is suppresse
relativistic gravitational schemes, as had been previou
suggested based on calculations in PN gravity~FR3!.

While the CF formalism appears to be safer than full G
with regard to evolving the system stably, the grid-bas
approaches used so far suffer from many of the same p
lems faced by full GR calculations. Since the CF field equ
tions are nonlinear and lack compact support, approxim
boundary conditions for the fields must be applied at
boundary of the grid, which can lead to errors in the soluti
Additionally, very large grids are required to satisfy th
6-2
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tradeoff between large grid sizes, required to improve
accuracy of the boundary conditions, and small grid c
sizes, necessary to improve the resolution of the NS. Mu
grid techniques can be very valuable for such cases, but
refinement techniques can also act as a source of nume
errors. Noting this, we have taken an entirely new appro
to the dynamical evolution of binary NS systems with SP
which requires no use of rectangular 3D grids to solve for
metric fields. Instead, we use the LORENE numerical libr
ies, developed by the Meudon group, which are freely av
able online1 ~see@51#, hereafter BGM, and@52# for a thor-
ough description of the numerical techniques used
LORENE!. These routines, which use spectral methods
iterative techniques to solve systems of coupled nonlin
multidimensional PDEs, have been used widely to study q
siequilibrium sequences of binary NS systems in Newton
@53,54# and CF gravity~TG @26,55#!, as well as a number o
other fluid configurations. The CF quasiequilibrium solutio
of Gourgoulhonet al. @26# and TG have been used as t
initial configurations for the most recent full GR calculatio
of Shibata, Taniguchi, and Uryu,@43#, and will be used in
this work as well.

Our work here represents the first time that spherical
ordinates and spectral methods have been used to stud
dynamical evolution of binary NS systems in any gravi
tional formalism, including Newtonian gravity. It has lon
been known that these techniques are ideal for descri
both binary systems with large separations as well as
merger remnants formed during the coalescence, since
spherical coordinates correspond much more naturally to
metric fields than rectangular coordinates can. Traditiona
rectangular grids have been used anyway, both because
are more widespread throughout computational fluid dyna
ics, but also because they are viewed as more robust. It
often been assumed that spherical coordinate field sol
may fail to calculate fields properly during the merger, wh
the matter can be described neither as two spheroids no
one, but rather some combination of the two, with mass l
streams and other phenomena confusing the picture.
show here, however, that spectral methods can be used
cessfully in this regime, taking advantage of the mu
domain techniques of LORENE. This allows us to take a
vantage of the many advantages inherent to spec
methods: improved speed, vastly improved compu
memory efficiency, and a coordinate system which allows
a natural treatment of the exact boundary conditions.

The code we have developed to perform 3D, relativis
numerical hydrodynamic evolutions is well-suited for t
study of a number of physical systems. While we focus h
on merging binary NS, our code is capable of evolving
sentially any binary or single-body relativistic fluid config
ration. These include collapsing stellar cores and superm
sive stars, and rapidly rotating fluid configurations. Modu
currently exist to handle a number of physically-motivat
EOS, including models with phase transitions and boso

1
http://www.lorene.obspm.fr
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condensates, and we plan to extend our studies to inc
appropriate treatments of these conditions in the future.

Our paper is structured as follows. In Sec. II, we summ
rize the theoretical basis for our new relativistic Lagrang
code, describing in turn the numerical methods used
implement both the dynamical equations of the CF form
ism in SPH and the details of our spectral methods fi
solver. In Sec. III, we turn to the computational aspects
the code relevant to coalescing binary systems. We detai
choices we have made with regard to SPH discretization,
techniques used to convert between particle-based and s
trally decomposed descriptions of various quantities, and
coordinate transformations implemented to describe bin
systems, merging systems, and the resulting remnants
Sec. IV, we report the results of several test calculatio
including two well-known exact CF solutions as well as t
evolution of quasiequilibrium configurations in the absen
of dissipative effects, producing circular orbits. In Sec. V, w
show our results from the calculation of a full NS bina
coalescence started from the innermost quasiequilibr
configuration, and followed through the merger and the f
mation of a merger remnant. We compare our results to p
vious work in the field, including full GR calculations usin
the same initial condition. Finally, in Sec. VI, we summari
our results and lay out some of the many classes
problems in relativistic hydrodynamics where our code m
prove useful.

II. NUMERICAL METHODS

The CF approximation assumes that the spatial part of
GR metric is equal to the flat-space form, multiplied by
conformal factor which varies with space and time. Sett
G5c51, as we will do throughout this paper, the CF met
takes the form

ds252~N22NiN
i !dt222Nidtdxi1A2f i j dxidxj , ~2!

whereN is the lapse function,Ni is the shift vector, andA
will be referred to here as the conformal factor~see Table I
for a comparison of our notation to those of@26,45,47,48#,
which are all based on the same exact assumptions!. The
flat-space three-metric is denoted byf i j . We follow the stan-
dard notation for relativistic tensors, denoting spatial thr
vectors with Latin indices, and relativistic four-vectors wi
Greek indices. While the CF approximation cannot rep
duce the exact GR solution for an arbitrary matter config
ration, it is exact for spherically symmetric systems, a
yields field solutions which agree with those calculated us
full GR to within a few percent for many systems of intere
@56#.

As is typical for any relativistic calculation utilizing a
polytropic EOS, there is a single physical scale which d
fines the units for the problem. We choose to define this sc
for single-body test calculations~Secs. IV A and IV B! by
dividing all mass, length, and time-based quantities by
gravitational~ADM ! massM0 of the object. For all binary
calculations, we scale our results by the ‘‘chirp mass’’ of t
system,M ch[m3/5Mt

2/5, whereMt is the total gravitational
mass of the system at large separation, andm[M1M2 /Mt is
the reduced~gravitational! mass. This quantity is expected t
be the most directly measurable physical parameter dedu
from any GW observation~see, e.g.,@57#!. For a binary sys-
6-3
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TABLE I. A comparison of our notation for various relativistic quantities to previous works using the
formalism: @26,45,47,48#. For those cases where no unique terminology was defined, we give the sim
equivalent algebraic form. We also list the equation in this paper where the quantity is defined.

Quantity Here Gourgoulhon Oechslin Shibata Wilson See Eq

Lapse N N a a a ~2!

Shift Ni Ni 2b i 2b i 2b i ~2!

Conf. Fact. A A c2 c2 f2 ~2!

Rest dens. r* GnA3r r* r* Df6 ~5!

Lorentz Fact. gn Gn au0 au0 W ~6!

Velocity v i NUi1Ni v i v i Vi ~7!

Spec. Momentum ũi
wi ũi ũi

Si /(Df6) ~10!

Enthalpy h h w 11Ge h ~11!
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tem consisting of twoM051.4 M ( NS, the chirp mass is
Mch51.22 M ( , which yields characteristic distance an
time scalesR51.80 km andT56.0031026 sec, respec-
tively. To compare our results with the equivalent relativis
model ~run M1414! of @43#, who use the total gravitationa
mass of the binary at large separation as their unit, one
divide our quoted masses and radii by a factor of 21.2

52.30. To convert our time evolution results into the tim
units used in@43#, which are defined in terms of the initia
binary orbital period, divide our time units by a factor of 44
~their unit Pt5052.66 ms for two NS each withM0
51.4 M ().

A. CF smoothed particle hydrodynamics

In what follows, we will assume that the stress-ene
tensor of the fluid is that of a perfect fluid, with

Tmn5~r1re1P!umun1Pgmn , ~3!

where r is the rest-mass density,e is the specific interna
energy,P the fluid pressure, andum the four-velocity of the
fluid. For our initial data, we assume a polytropic EOSP
5krG, with constant values fork and the adiabatic indexG,
and throughout the calculation we assume that the evolu
is adiabatic, such thatP5(G21)re. The maximum infall
velocity of the two stars relative to each other during o
dynamical calculations was found to bev in50.06c, whereas
the sound speed at the center of the NS is initiallycs
50.85c. Since the sound speed for our EOS depends
density such thatcs}r1/2, we expect that the only superson
fluid flows will occur in the very tenuous outer regions of t
NS. During the merger, we do expect that low-density ma
from the inner edge of each NS will cross over to the bin
companion at high relative velocity (dv'0.3c), but the ve-
locity field is dominated by the circular motion, rather than
converging flow. All motion within the cores of the N
should remain strongly subsonic throughout the merger p
cess.

Using our CF metric and stress-energy tensor, Eqs.~2!
and ~3!, the Lagrangian continuity equation is given by

dr*
dt

1r* ¹iv
i50, ~4!
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where the rest mass density is defined by

r* [Nu0A3r5gnA3r, ~5!

the Lorentz factor of the fluid is defined as

gn[Nu0, ~6!

and the physical velocity is given by

v i[ui /u05Ni1
ui

A2u0
. ~7!

Note that u0 is the timelike element of the covarian
4-velocity; all other numerical superscripts refer to exp
nents. Following the SPH prescription, this conservat
form of the continuity equation allows us to define a set
particles, each of which has a fixed massma and a well
defined velocity given bydxi /dt5v i . For each particle ‘‘a,’’
we also define a ‘‘smoothing length,’’ha , which represents
the physical size of the particle. SPH particles do not ha
delta-function density profiles; rather, each particle rep
sents a spherically symmetric density distribution centere
the particle’s positionxWa with compact support. This densit
distribution, determined by our chosen form of the smoo
ing kernel function, is second-order differentiable, and dro
to zero at a radius equal to two smoothing lengths from
particle’s position. For each particle, we define a set
neighboring particles by the condition that all particl
whose centers fall within a given particle’s compactly su
ported density distribution are its neighbors. To determ
the proper smoothing length for each particle, we define
ideal number of neighbors for each particle,NN , and we use
a relaxation technique to adjustha after every time step~as
described in detail in, e.g., FR1 and@58#!. We note in passing
that ‘‘neighborhood’’ is not a reflexive property; we hand
this through the use of a ‘‘gather-scatter’’ algorithm~see@59#
for details!.

The primary advantage of the SPH method over tra
tional grid-based codes is that fluid advection is handled
natural way, such that one can define the edge of a fl
distribution without recourse to artificial ‘‘atmospheres’’ o
other tricks necessary to prevent matter from bleeding i
the vacuum. Particles simply follow their trajectories in t
6-4
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fluid flow. As such, SPH is extremely computationally ef
cient, since all numerical resources are focused automatic
on those regions containing matter. Because of this, SPH
allows for high spatial resolution. The primary disadvanta
of SPH compared to shock-capturing grid-based codes i
the lower resolution of shock fronts, which, as we discu
below, is unimportant here.

All hydrodynamic quantities can be defined using sta
dard SPH summation techniques over each particle’s ne
bor list ~see, e.g.,@58,60,61# for a thorough discussion!, with
the rest mass densityr* taking the place of the standar
Newtonian density. Thus the rest-mass density for part
‘‘a’’ can be defined via SPH summation over a set of neig
boring particles denoted by ‘‘b’’ as

~r* !a5(
b

mbWab , ~8!

whereWab is theW4 smoothing kernel function for a pair o
particles first introduced by Monaghan and Lattanzio@62#,
used in FR,@58# and many other implementations. The m
mentum equation is given by

dũi

dt
52

NA3

r*
¹i P2Nhu0¹iN2ũ j¹iN

j1
ũkũk

A3hu0
¹iA, ~9!

where the specific momentum is defined by

ũi[hui , ~10!

and the specific enthalpy is defined as

h[~11e1P/r!511Ge. ~11!

In this expression and throughout this paper, covariant
rivatives are associated with the flat-space metric. In the
sence of nonadiabatic artificial viscosity terms, the ene
equation merely implies that the value ofk in the EOS re-
mains constant. In our calculation, we user* and ũi as the
basic hydrodynamic variables~in addition to our uniform
value of k). To find u0, which enters into the momentum
equation, we take the normalization condition for t
4-velocity,umum521, and find

gn
25~Nu0!2511

uiui

A2
511

ũi ũi

A2 F11
Gkr

*
G21

~gnA3!G21G22

,

~12!

which can be solved implicitly in terms of the density a
the field values.

To solve the field equations of GR, we need to fix t
slicing condition for timelike hypersurfaces. Following th
standard approach to the CF formalism, we find that the
trinsic curvature tensor is given in terms of the shift vector

Ki j [
1

2NA2 S ¹ iNj1¹ jNi2
2

3
f i j ¹kN

kD , ~13!
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when we assume the maximal slicing condition (TrK50).
To lower the indices of the extrinsic curvature tensor a
other spatially-defined quantities, we use the conformal fl
space metric~i.e.,Ki j 5A4d ikd j l K

kl in Cartesian coordinates
whered i j is the Cartesian flat-space metric!. Combining the
maximal slicing assumption with the Hamiltonian constra
yields a pair of elliptic equations forn[ ln(N) and b
[ ln(AN) ~GGTMB!, in the form

¹k¹
kn54pGA2~E1S!1A2Ki j K

i j 2¹in¹ ib, ~14!

¹k¹
kb54pGA2S1

3

4
A2Ki j K

i j 2
1

2
~¹in¹ in1¹ib¹ ib!,

~15!

where the matter energy density and the trace of the st
energy tensor are given by

E[gn
2~rh!2P, ~16!

S[
gn

221

gn
2 ~E1P!13P. ~17!

Note that Eqs.~14! and ~15! are algebraically equivalent to
the field equations found in other papers on the CF form
ism, although most groups have typically solved the cor
sponding Poisson-type equations forc[AA and Nc. Fi-
nally, the momentum constraint gives us the equation for
shift vector,

¹ j¹jN
i1

1

3
¹ i¹jN

j5216pG
N

hgn
~E1P!ũi

12NA2Ki j ¹j~3b24n!. ~18!

Since the CF formalism is time-symmetric, we can defi
several conserved quantities. The total baryonic mass,

Mb5E r* d3x, ~19!

is automatically conserved in our SPH scheme, since we
the rest mass density to define particle masses. The
angular momentum of the system can be defined as

Ji5« i jkE r* xj ũkd
3x. ~20!

Finally, the ADM mass is given by

M05E rADMd3x; rADM[A5/2S E1
1

16pG
Ki j K

i j D .

~21!

It is important for numerical reasons to note that the t
terms that make up the ADM mass densityrADM have dif-
ferent behaviors: the contribution from the matter ene
density,

r1[A5/2E, ~22!
6-5
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FABER, GRANDCLÉMENT, AND RASIO PHYSICAL REVIEW D69, 124036 ~2004!
has compact support, and is nonzero only in the presenc
matter, whereas the term involving the extrinsic curvatur

r2[
1

16pG
A5/2Ki j Ki j , ~23!

extends throughout all space with power-law fall-off at lar
radii.

B. The spectral methods field solver

The spectral methods techniques we use to solve the
field equations, Eqs.~14!, ~15! and ~18!, discussed in grea
detail in @52#, provide a number of important advantages n
present in traditional grid-based approaches. First and f
most is their speed and computational efficiency. Finite d
ferencing schemes typically require 3D grid sizes of*106

elements@43,48#. In contrast, GGTMB show that spectr
method field solvers can be used to construct field soluti
yielding ADM masses and angular momenta convergen
within 1024 and satisfying the virial theorem to the sam
level using only 3 grids of size 17313312. These grids,
extremely small compared to those used in Cartesian m
grid solvers, result in a great increase in speed. Additiona
the use of spherical coordinates allows for a more nat
treatment of boundary conditions. In the approach we u
taken from GGTMB and summarized here, space is
scribed using spherical coordinates, split into a set of ne
‘‘computational domains.’’ The outermost domain can
compactified by rewriting the field equations in terms of 1r ,
allowing us to impose the exact boundary conditions at
finity, rather than ‘‘fall-off’’ boundary conditions which ap
proximate the behavior of the fields at the edges of a rec
gular grid. As such, we avoid the classic tradeoff betwee
grid with large grid spacing, which yields accurate bound
conditions but poor spatial resolution of the matter sour
and a grid with small spacing, and the opposite concern

Combining the LORENE methods with particle-bas
SPH requires some small but significant changes from
previous approach described in detail in Sec. IV A
GGTMB. As in that work, we construct a set of three co
putational domains around each star to evaluate the
equations. The innermost domain has a spheroidal topol
with a boundary roughly corresponding to the SPH parti
configuration’s surface, as described in Sec. III A. The ot
two domains cover successively larger regions in radii, w
the outermost domain extending out to spatial infinity,
shown in Fig. 1. The field equations are solved in each
main and the global solution is obtained by matching
function and its first radial derivative at each boundary. A
propriate boundary conditions at radial infinity are also i
posed. All fields can be described in one of two complem
tary representations, either in terms of their coefficients
the spectral decomposition, or by means of their values
set of ‘‘collocation points.’’ The coordinate representatio
for these points are defined such that the origin of the sys
describing each NS is located at the position of the st
maximum density, The collocation points are spaced equ
in both sinu andf, as required by the angular component
12403
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the spectral decomposition. The radii of the points are de
mined from the collocation points of the Chebyshev polyn
mial expansion used for the radial coordinate, as describe
BGM and GGTMB. For all calculations described in th
paper, these domains consisted of a 17313312 grid, in
terms of radial, latitudinal, and longitudinal directions, r
spectively, an acceptable trade-off between speed and a
racy, based on the description above.

A key feature of the LORENE libraries is their handlin
of binary systems in a straightforward and natural way. T
involves ‘‘splitting’’ the source terms of the field equation
into two distinct components, each of which is centered
one of the stars in the binary. Since the field equations in
case are nonlinear the split cannot be performed uniqu
the fields present around one star cannot be determined
its source terms only. Rather, this method seeks to minim
the contribution of one star to the fields around the other
practice, both field variables and hydrodynamic source te
can be broken down, as shown in Eqs.~79!–~87! of
GGTMB, such that

n5n^1&1n^2&5n^1&1n^2→1&5n^1→2&1n^2& , etc. ~24!

where quantities labeled̂1& and ^2→1& are defined at the
collocation points of star 1, and̂2& and ^1→2& at those of
star 2. The autopotentials of each star,n^1& and n^2& , are
primarily generated by matter from the star itself, while t
‘‘comp-potentials,’’n^2→1& and n^1→2& are primarily gener-
ated by the other star. It is this conversion of fields betwe
the two sets of coordinates which represents the grea
amount of numerical effort during a calculation. In practic
we attempt to minimize the magnitude of the com
potentials since they are centered around the other star
not as well described by spherical coordinates. The deta
description of how these quantities are defined and ca
lated can be found in Sec. IV C of GGTMB.

III. NUMERICAL TECHNIQUES FOR COALESCING
BINARIES

Integrating the LORENE library routines into an SPH
based Lagrangian code introduces a number of rather su
numerical issues. The simplest of these is deciding the sh

FIG. 1. Radial domains used to evaluate the field equation
the CF method. The boundaries of the inner two domains are sh
as lattices, with all collocation points within these domains sho
as well. The outermost domain, which extends to spatial infinity
not shown.
6-6
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MERGERS OF IRROTATIONAL NEUTRON STAR . . . PHYSICAL REVIEW D 69, 124036 ~2004!
of the innermost computational domain’s surface. The clo
the boundary of the innermost domain lies to the surface
the fluid, the more Gibbs effect errors are minimized, so lo
as the surface is sufficiently smooth and convex everywh
Gibbs effects, which are common to all spectral decomp
tion techniques, result from the attempt to describe a non
ferentiable density distribution as a weighted sum of smo
functions; they are relevant here when we attempt a spe
decomposition of a region of space where the density dr
to zero within the boundary~see BGM for more details!.
Unfortunately, the smoothness and convexity conditions
not necessarily apply to the region in space where the S
density is nonzero, since a single SPH particle being s
from the star can greatly affect the nonzero density bound
even though it may represent an insignificant amount
mass. As a result, we have implemented an algorithm
attempts to take the middle ground, defining a boundary
the innermost domain which encloses as much of the mas
possible, in such a way that smoothness and convexity
guaranteed. The second domain is bounded by a sphe
radius twice that of the outermost point of the first doma
and a third domain extends to spatial infinity.

Once the configuration of the computational domains
determined, there are several choices which need to be m
with regard to the most accurate and efficient way to cal
late various terms in the evolution equations. Some hydro
namic quantities, such as the rest mass densityr* , need to
be defined for each of the SPH particles. Here, we usN
;100 000 SPH particles for each run, which was found to
sufficient for achieving numerical convergence of the G
signal to the ;1 –2 % level in our studies with post
Newtonian SPH@35#. Other quantities, such as those appe
ing in the source terms for the field equations, need to
defined at every point among the 17313312 spheroidal
grids of collocation points for each of the three domai
Compared to solutions computed using larger grid sizes,
find that these agree with significantly larger grids to with
;0.1% for the value of the shift vector, and even better
the values of the lapse function and conformal factor.

In general, however, many quantities do not need to
defined both ways, so long as a full set of thermodynam
variables is known in both representations. Details ab
which quantities are used in each representation are g
below. Briefly, it is most efficient to perform the majority o
our algebraic operations on quantities defined at colloca
points, reading in and exporting back as small a set of
rameters as possible to the full set of SPH particles. W
reading quantities from SPH particles to collocation points
relatively quick, requiring an SPH summation at every c
location point position, the reverse process is much m
involved. To calculate the value of a quantity known in t
spectral representation at SPH particle positions requires
forming a sum over all spectral coefficients with the weig
appropriate to each particle position, consuming a great
of time.

A. Binary systems

To construct the initial SPH particle configuration for
binary NS evolution, we use the quasiequilibrium irrotation
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models of TG, which are publicly available.2 These models
describe the complete 3-dimensional structure of both
field values and hydrodynamic quantities at every point
space, in terms of a spectral decomposition. Specifically,
take the results of their irrotational run for stars of equ
mass and equal compactnessGM/Rc250.14 with aG52
polytropic EOS. Each star has a baryonic mass in isola
given byGMB /Rc250.1461.

To convert these models, which are stored in the coe
cient basis, into spatially defined particle-based quantit
we first lay down a grid of SPH particles in a hexagon
close-packed~HCP! lattice with constant lattice spacing an
particle smoothing length. This grid is then treated as if
reflected around thez50 plane, to take advantage of th
vertical symmetry inherent in the problem. Each particle
treated as if it were really two particles for all SPH summ
tions, one located above thez50 plane, the other an equa
distance below, both with half the true mass of the ‘‘rea
particle. Since the vertical symmetry is enforced on
particle-based level, we solve all our field equations only
vertical angles 0,u,p/2, and reflect the solutions for a
points below the plane. The mass of each particle is initia
set to be proportional to the density at the particle’s posit
according to the quasiequilibrium model.

Next, using an iterative process, we calculate the S
expression for the density of each particle, using Eq.~8!, and
adjust each particle’s mass so that the SPH density mat
the proper value from the initial model, stopping once t
maximum difference for any particle is less than 0.25%
the star’s central density. Particle velocities are assigne
match the quasiequilibrium model’s velocity field, as are
other thermodynamic variables. Finally, we advance the
locities by half a time-step, using the same methods as
standard iteration loop~see below!, since we use a second
order accurate leapfrog algorithm~described in detail in
@58#!.

During each iteration, the first step is always the calcu
tion of each particle’s neighbor list, and the associated S
forms for the density and other hydrodynamic terms. On
this is done, we perform a Euclidean transformation on
coordinates into a new frame~denoted by primed quantities!,
whose origin is defined to be the system center-of-mass, w
the center-of-mass of each star lying on thex axis, making
sure to transform the positions, velocities, and accelerat
for each particle. In terms of the inertial frame coordinates
the NS centers-of-mass,xW1 and xW2, the transformation is
given by

f8[tan21
y22y1

x22x1
, ~25!

xCoM[
x11x2

2
; yCoM[

y11y2

2
, ~26!

x8~x,y![~x2xCoM!cosf81~y2yCoM!sinf8,
~27!

y8~x,y![~y2yCoM!cosf82~x2xCoM!sinf8,
~28!

2http://www.lorene.obspm.fr/data/
6-7
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FIG. 2. A pictorial demonstration of the coordinate transformations described in Secs. III A and III B; the particle configuration
demonstration purposes only, and was not taken from our calculations. In the upper left panel, we show a NS-NS binary in thex2y ~inertial!
frame, as well as thex82y8 frame, defined so that the centers-of-mass of the stars~crosses! lie equidistant from the origin on thex8 axis@see
Eqs.~25!–~29!#. In the upper right, we see the same system in thex82y8 frame. The anglesF1 andF2 are determined from the respectiv
moment of inertia tensors using Eq.~30!. The best fit ellipsoidal configurations, determined from Eqs.~31!–~38! are shown around each sta
aligning with theXq82Yq8 axes, determined from Eqs.~59! and~60!. In the bottom left, we show isocontours for the radial functionsf 1 and
f 2, defined by Eq.~58!, as well as the boundary of the overlap region~heavy solid line!. Finally, in the bottom right, we show the rescalin
of the surface function for very close configurations, showing only star 2 for clarity. Here, the binary separation isr /Mch56.0, implying the
maximum extent of the surface of star 2 is tox8/Mch5r /4Mch51.5. We linearly rescale the surface function, as well as the correspon
values off 2, for all points withx8.0.
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xW1,28 5S 6
R

2
,0,0D ; R[A~x22x1!21~y22y1!2. ~29!

This transformation is shown in the upper left panel
Fig. 2. The next computational task is defining the shape
the innermost computational domains, calculated for set
rays equally spaced inu andf, as measured from the cente
of-mass of each star. We denote these surface funct
r (uq ,fq), where the ‘‘q’’ subscript, taking the value 1 or 2
refers to angles measured in the primed frame of Eqs.~25!–
~29! outward from the center-of-mass of starq. These sur-
faces are used to determine the position of the colloca
points, which in turn are used as the basis for the en
spectral decomposition. While it is easy to find the po
12403
f
f
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ns
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along any ray where the SPH density drops to ze
r SPH(uq ,fq), we have found that such a set of points lea
to unacceptable results from the field solver, especially w
regard to the convexity of the matter distribution. If we i
nore the density contributions of all particles whose dens
falls below some fixed value, sayrmin50.0001, the resulting
surface functionr̃ SPH(uq ,fq) is typically much more regu-
lar, but still is not an ideal choice, since we still cann
guarantee convexity. It should be noted that the field solve
entirely capable of handling matter sources which lie outs
the innermost domain, although it does work best in the c
where the surface of the matter matches the domain bou
aries closely. For this reason, we restrict the shapes of
innermost domains to triaxial ellipsoidal configurations, o
ented along the principal axes of the moment of inertia t
sor for each star. The growing misalignment between
6-8
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MERGERS OF IRROTATIONAL NEUTRON STAR . . . PHYSICAL REVIEW D 69, 124036 ~2004!
stars and the~rotated! coordinate system is a well-know
effect, reflecting the tidal lag that develops in close binar
as matter tries to reconfigure itself in response to the rap
changing gravitational field@68#. Thus, for each star, we ca
culate the angleFq such that

Fq5
1

2
tan21S 2I xy

I xx2I yy
D , ~30!

whereI i j [(ama(xa82xq8) i(xa82xq8) j , and define our surface
function r (uq ,fq) such that

r ~uq ,fq!5F x̂2

a2
1

ŷ2

b2
1

ẑ2

c2G21/2

, ~31!

where

x̂~uq ,fq![sinuq~cosFqcosfq1sinFqsinfq!

5sinuqcos~fq2Fq!, ~32!

ŷ~uq ,fq![sinuq~cosFqsinfq2sinFqcosfq!

5sinuqsin~fq2Fq!, ~33!

ẑ~uq ,fq![cosuq , ~34!

anda, b, andc are the axis lengths of the ellipse.
We have found it best to fix the axis ratios of the ellip

by computing the maximum extent of the surface defined
r̃ (uq ,fq) in each principal direction, such that

a05maxu r̃ SPH~uq ,fq!• x̂~uq ,fq!u, ~35!

b05maxu r̃ SPH~uq ,fq!• ŷ~uq ,fq!u, ~36!

c05maxu r̃ SPH~uq ,fq!• ẑ~uq ,fq!u. ~37!

Since this prescription can lead to some particles withra
.rmin falling outside of the surface, we multiply the dis
tance in all directions by the smallest factorF0 required to
encompass all SPH particles whose density is greater
rmin , typically leading to an increase in linear size of n
more than 2%, such thata5a0F0 , b5b0F0 , c5c0F0, and

F05maxF r̃ ~uq ,fq!Ax̂2

a0
2

1
ŷ2

b0
2

1
ẑ2

c0
2G . ~38!

A typical surface fit is shown in the upper right panel of F
2. The outer two domains are defined in terms of these n
coordinate systems as well, to allow us to match field val
and their derivatives at the boundaries.

Using the collocation points derived from these surfac
our next task is to calculate the value of the field equat
source terms at these points. Since calculatingE and S for
each SPH particle from Eqs.~16! and ~17! would require a
great deal of ultimately needless algebraic work, we do
calculate the SPH expressions for these quantities at coll
tion points. Instead, at every collocation point, we calcul
12403
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the SPH expression for the rest mass density, the ‘‘rest p
sure’’ P* [kr

*
G , and the density-weighted average veloc

ũi . Using these values, as well as the field values from
previous iteration, we calculategn from Eq.~12!, and thenE
and S at every collocation point, and proceed to solve t
field equations, using the iterative techniques described
GGTMB. Typically, we require'50 iteration loops to
achieve a solution for which no field value varies by mo
than 1 part in 109 from one iteration to the next.

Once we have solved the field equations, we use the s
tral expansion of the fields to calculate as much as we ca
the terms in the force equation, before reading off the val
at every particle position, which takes a significant amo
of time. In practice, we use the spectral decomposition
calculate the prefactor for the pressure force term,NA3, the
vector sum of the terms involving derivatives of the confo
mal factor and lapse function, the nine first derivatives of
shift vector, and the radiation reaction terms. While it wou
be faster to calculate the force term involving the derivat
of the shift vector completely in the spectral basis, we ha
found it to be inadvisable. This term alone is linear in t
velocity, and it is inconsistent to use an averaged velocity
this term on the RHS of the force equation to calculate
rate of change of each particle’s individual velocity on t
LHS. Thus, denoting terms calculated within the spectral
sis and exported to particle positions by ‘‘sb,’’ and tho
calculated using SPH techniques only by ‘‘SPH,’’ Eq.~9! is
truly evaluated as

dũi

dt
5@2NA3#sbF¹i P

r*
G

SPH

1FNh~gn
221!

Agn
¹iA2hgn¹iNG

sb

2@¹iN
j #sb@ ũ j #SPH. ~39!

After calculating the forces on each particle and advanc
the velocities by a full time step, we are still left with th
task of recomputing Eq.~7!, which relatesv i and ũi . Since
the sources for the field equations are velocity depend
and we have just advancedũ, we rerun the field solver with
the new values ofũi , and compute Eq.~7! in the form

v i5@Ni #sb1F 1

A2hu0G
sb

@ ũi #SPH. ~40!

Finally, we record the GW strains, ADM mass and syst
angular momentum, after rotating all positions, velocitie
and accelerations back to the inertial frame by means of
inverse Euclidean transformation to the one at the beginn
of the iteration.

There are several different ways to calculate the AD
mass numerically, all of which should be equivalent to E
~21!, yielding an important check on the code. First, we c
culate the system’s ADM mass using by taking a surfa
integral at spatial infinity@see Eq.~65! of GGTMB#,

M052
1

2p R̀ ] iA1/2dSi . ~41!
6-9
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FABER, GRANDCLÉMENT, AND RASIO PHYSICAL REVIEW D69, 124036 ~2004!
This quantity can be compared to the particle-based exp
sion, with two important caveats. Since the extrinsic cur
ture contribution to the ADM mass, Eq.~23!, does not have
compact support, there is no way to convert the integral i
a sum over particles that have a different spatial extent. S
ond, noting our concerns about exporting large numbers
terms from the spectral representation to particle positio
we perform some of the algebra involved in determining
ADM mass in the spectral representation. In the end,
particle-based expression for the ADM mass becomes

M05S E r2d3xD
sb

1(
a

maF r1

r*
G

sb

, ~42!

and we definer̃[r1 /r* as the ratio of ADM mass densit
to rest mass density, calculated using LORENE technique
all SPH particle positions.

In a similar fashion, there are two ways to calculate
system angular momentum. We check the behavior ofJ in
the spectral basis@see Eq.~67! of GGTMB#,

Ji5
1

16p
e i jk R̀ ~xjKkl2xkK jl !dSl , ~43!

as well as the SPH expression for the angular momentu

Ji5e i jk(
a

maxj ũk . ~44!

Since the CF formalism is time-symmetric, the dissipat
effects of gravitational radiation back reaction have to
added in by hand, just as they are for PN calculations. P
vious PN calculations of binary NS systems~FR and@39#!
have typically employed the exact 2.5PN formulas int
duced by@40# to describe lowest-order GW losses from t
system. Unfortunately, those equations are not applicabl
CF calculations, since they are written in terms of fields
fined in the PN approximation that differ from those defin
in the CF approximation. For this work, we follow the a
proach of@45#, using the slow-motion approximation to e
timate the radiation reaction potential of the system. Wh
this method contains some obvious flaws, most obviously
fixed spatial dependence of the radiation reaction potentia
does yield a back reaction force which is quantitatively c
rect in overall magnitude. These approximations should
affect our calculations to a large degree. While the inf
velocity of the binary prior to plunge is driven by the GW
back reaction, a different regime occurs after dynamical
stability sets in. During this period, the evolution is almo
completely hydrodynamic in nature@58#. While the chosen
GW back reaction treatment may affect the final mass
angular momentum of the resulting merger remnant, it w
play only a secondary role in the detailed evolution of t
fluid configuration, since GW back reaction becomes l
important during the coalescence.

From Eq.~51! of @45#, the radiation reaction force in th
slow-motion approximation is given by adding a term,

ai :reac5N2hu0¹ix, ~45!
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to the RHS of Eq.~9!. We define the radiation reaction po
tentialx in a similar but slightly different way than their Eq
~56!, such that

x5
1

5
xkxlQkl

[5] , ~46!

similar to the approach taken in@48#. As they do, we define
the quadrupole moment as

Qkl5STFF E rADMxkxld
3xG , ~47!

noting that our ‘‘rADM’’ corresponds to many other author
Sc , or some multiple thereof. The expression ‘‘STF’’ refe
to the symmetric, trace-free component of the tensor, wh
is linked to the gravitational radiation production in th
quadrupole limit. As noted previously in our calculations
the system’s ADM mass, we can evaluate the contribut
from r1 using standard SPH summation techniques, but
second term can only be found using LORENE integrat
techniques. Thus,

Qkl[Q11Q25STFF S (
a

mar̄axa
kxa

l D 1S E d3xr2xkxl D
sb

G ,
~48!

whereQ1 andQ2 reflect the contributions fromr1 andr2,
respectively. Using SPH, we can take the first time derivat
of the former half, so long as we ignore the Lagrangian
rivative dr1 /dt, which should be essentially negligible du
ing our calculations. We find

~Q̇1!kl5STFF E r1~xkv l1xlvk!d
3xG . ~49!

To calculate the rate of change of the extrinsic curvature,
assume that the time variation in the tensor is due solely
the orbital motion~rather than an overall change in magn
tude of the tensor components in a corotating frame!, which
yields

~Q̇2!xx52~Q̇2!yy'2v~Q2!xy , ~50!

~Q̇2!xy'2vF ~Q2!xx2~Q2!yy

2 G , ~51!

where the factor 2v reflects the fact that the quadrupo
tensor makes two cycles during every orbital period. To c
culate the fifth time derivative of the quadrupole tensor,
use the same technique with both components of the ten
finding

Qkl
[5]'16v4Q̇kl , ~52!

where in all cases the system’s instantaneous angular ve
ity is calculated as the ratio of the angular momentum to
moment of inertia,
6-10
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v[

(
a

ma„xa~vy!a2ya~vx!a…

(
a

ma~xa
21ya

2!

, ~53!

which holds exactly in the quadrupole limit for synchroniz
binaries.

Calculating the GW signal and energy spectrum is a m
straightforward task which can be done after the calcula
is finished. We calculate the GW strain in two independ
polarizations for an observer located at a distanced from the
system perpendicular to the orbital plane from the lowe
order quadrupole expressions,

dh15Qxx
[2]2Qyy

[2] , ~54!

dh352Qxy
[2] , ~55!

where we calculate the second time derivatives of the qu
rupole tensor by numerically differentiating the results fro
Eq. ~49!. In terms of the Fourier transform of the quadrupo
moment,

Q̃kl
[2]~ f GW![E e2p i f tQkl

[2]~ t !dt, ~56!

where f GW[2 f orb is the GW frequency, the GW energy
spectrum is computed as@63#

dE

d fGW
5p f GW

2 S 8

15
@~Q̃xx

[2]2Q̃yy
[2] !21~Q̃xx

[2]2Q̃zz
[2] !21~Q̃yy

[2]

2Q̃zz
[2] !2#1

8

3
@~Q̃xy

[2] !21~Q̃xz
[2] !21~Q̃yz

[2] !2# D . ~57!

B. Merging systems

As the stars in the binary system spiral inward, they re
a point where the density distributions begin to overlap
matter from the inner edge of each star falls onto the surf
of the other. Our field solver can handle this situation, sin
it does not assume that the matter sources are spatially
tinct, but the surfaces required to envelop the particles fr
each star would become poorer and poorer fits to the two
Noting this, we alter the approach described above in a n
ber of ways when the particles first cross through the in
Lagrangian point at the center of the system, in such a w
that the surfaces we define for each star always rem
smooth and still do an acceptable job of describing the t
density distribution in a meaningful way.

Once the binary separation shrinks sufficiently, mat
streams from the inner edge of each NS toward the other
flowing along the surface of the companion. These coun
streaming, low-density flows lead to the formation of a v
tex sheet~FR3!. Mass transfer typically occurs before th
triaxial ellipsoidal surfaces used to define the two stars ov
lap, since particles crossing from one star to another ge
ally fall beneath the density cut used to define each surf
To account properly for the star to which each particle
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bound, we declare particle ‘‘a’’ a member of the first star
xa8,0 and a member of the second star ifxa8.0, at least for
the purposes of defining each star’s center of mass and
lag angle, as described in Eqs.~25!–~38!.

This approach entails further alterations once the ellips
dal computational domains from each star begin to over
Using they8-axis as the dividing line between the two sta
is fine for determining the center-of-mass, tidal lag ang
and ellipsoidal surface for each star, but it is inappropriate
draw a fixed line atx850 when calculating field equation
source terms. These would induce a sudden density d
from finite density at small negative values ofx8 to zero
density at positivex8 values~for the first star, vice versa fo
the second!, leading to large Gibbs effects. It is equally in
appropriate to count one particle as a member of both st
since we would end up double-counting its density contrib
tion to the field equations. Instead, we introduce a wei
function f a[ f (xWa8), for each particle in the overlapping re
gion in such a way thatf 50 at the surface of star 1,f 51 on
the surface of star 2, and 0, f ,1 in a spatially differentiable
way within the overlap region. To do so, we definef 1 and f 2,
the fractional squared distance outward a point lies from
center of each star to the surface. For the first star,

f q~x8![
~Xq8!2

a2
1

~Yq8!2

b2
1

~z8!2

c2
, ~58!

where

Xq8[xqcosFq1y8sinFq , ~59!

Yq8[2xqsinFq1y8cosFq , ~60!

are the rotated coordinates used to define the~tidally lagging!
ellipsoidal surface of the star, andxq(x8)[x82xq8 is the dis-
tance in thex8-direction from the center-of-mass of starq. A
picture of these quantities is shown in the bottom left pa
of Fig. 2. In terms off q , we define our overlap functionf a
for each particle such that

f a5 f ~xWa8!5
~12 f 1!3

~12 f 1!31~12 f 2!3
. ~61!

For the first star, source terms in the field equations
evaluated as

~r* !15(
a

maf aWa , ~62!

~P* !15
~r* !1

~r* !11~r* !2
k@~r* !11~r* !2#G,

~63!

~ ũi !15

(
a

maf a~ ũi !aWa

(
a

maf aWa

, ~64!
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TABLE II. A summary of the runs presented in this paper.

Run Description See Sec. no

OV1 Equilibrium OV model,GM0 /Rc250.126 IV A
OV2 Nonequilibrium OV model,R051.1Req IV A
OV3 Same as OV2, w/relaxation drag IV A
DC5 Collapsing dust cloud,M051, R055 IV B
DC10 Collapsing dust cloud,M051, R0510 IV B
DC50 Collapsing dust cloud,M051, R0550 IV B
QC1 Quasicircular binary orbit w/o rad. reac.,

r 0 /Mch519.91
IV C

QC2 Quasicircular binary orbit w/o rad. reac.,
r 0 /Mch520.42

IV C

QC3 Quasicircular binary orbit w/o rad. reac.,
r 0 /Mch522.98

IV C

RR1 Full binary evolution w/rad. reac.,r 0 /Mch

519.91
V B

RR2 Full binary evolution w/rad. reac.,r 0 /Mch

522.98
V A
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where Wa is the smoothing kernel function evaluated b
tween the collocation point and overlapping particle
Complementary expressions hold for the second star by
stituting (12 f a) for f a .

This approach allows us to calculate the fields prope
using spectral methods well into the merger, but a final mo
fication is necessary to bring us to the point where the d
sity profile of the matter can better be described by view
it as a single object. When the inner edge of one star over
the center of the other star, the density profile typically b
comes bimodal, leading to spurious results from the spec
expansion. To guard against this happening, we use a
tively simple approach. If the surface of one ellipse exten
more than halfway fromx850 toward the center-of-mass o
the other star atxq856R/2, we linearly rescale all surfac
points that lie across they8-axis. Thus, definingxq(uq ,fq)
5r (uq ,fq)sinuqcosfq in accordance with our previous no
tation, if the surface of either star extends to a maxim
value xq:max[max(uxqu).3R/4 @or in other words, if
max„ur (uq ,fq)sinuqcosfq2xq8u….R/4], we adjust all points
on the other side of they8-axis, yielding

xq:new~uq ,fq!5
R

2
1

R

4 S xq:old~uq ,fq!2R/2

xq:max~uq ,fq!2R/2D
for all points with xq~uq ,fq!.R/2.

~65!

To evaluate the weight function, we adapt thex8-dependence
correspondingly, such that for particles withxq.R/2

f a:new~xWq!5 f a:old~k•xWq!, ~66!

where the rescaling factork[R/21(xq2R/2)@(xq:max
2R/2)/(R/4)#. The bottom right panel of Fig. 2 demon
strates this last coordinate transformation.

Eventually, the system will reach a point where it can
longer be properly described as a binary, and our field so
12403
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fails to converge. Before this happens, we reach a p
where we can describe the system as a rapidly rotating si
star, using all the methods described above for computing
evolution, but now assuming that all particles comprise
same star. We have found that our results are independe
the exact moment at which we make this conversion. In
following discussion, we will show the results for runs whe
we perform the conversion at the earliest possible time
which the field solver will converge to a solution when th
matter configuration is treated as a single star.

IV. TEST CALCULATIONS

We have performed several tests to check the accu
and numerical stability of our code, for both single-star a
binary systems. We have studied the behavior of the code
spherically symmetric problems for which the exact field s
lution can be calculated semi-analytically: the Oppenheim
Volkov solution for a static spherical star and the collapse
a pressureless dust cloud initially at rest. We have also
culated the dynamical evolution of the binary quasiequil
rium models calculated in TG, without the inclusion of r
diation reaction forces. A summary of all our calculation
including those used for testing the code, can be found
Table II.

A. The Oppenheimer-Volkov „OV… test

Since the CF formalism is exact for spherically symmet
systems, which can always be described in isotropic coo
nates, it is fair to expect that any working code should
able to reproduce the well-known Oppenheimer-Volkov s
lution exactly, noting that the traditional form of the O
solution needs to be rewritten into CF coordinates. Withr8
[r(11e) as the total energy density~including both the rest
and internal energy densities!, the OV equations are typically
written

dm

dr̄
54p r̄ 2r8, ~67!
6-12
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dP

dr̄
52

~r81P!~m14pPr̄3!

r̄ 222mr̄
, ~68!

dF

dr̄
5

~m14pPr̄3!

r̄ 222mr̄
, ~69!

for an interior metric in the form

ds252e2Fdt21S 12
2m

r̄
D 21

dr̄21 r̄ 2dV2, ~70!

and exterior metric in the Schwarzchild form

ds25S 12
2M0

r̄
D dt21S 12

2M0

r̄
D 21

dr̄21 r̄ 2dV2,

~71!

where the star’s total gravitational~ADM ! mass M0

[m( r̄ s), andr̄ s is the Schwarzchild coordinate radius of th
stellar surface. A quick comparison with the CF metric, E
~2!, shows thatN5eF inside the star, but the conversio
betweenA andF requires more care, since we have to d
termine the relationship between the two coordinate ra
r ( r̄ ). The simplest way to determine the change of coor
nates is to solve for the values ofr s and r̄ s , the radii of the
stellar surface, using the asymptotic behavior of the exte
solution ~following the same logic used in exercise 31.7
@64#!. Comparing the radial and angular parts of the met
we find

A2dr25S 12
2M0

r̄
D 21

dr2, ~72!

A2r 25 r̄ 2. ~73!

Dividing and taking a square root, we find

dr

r
5

dr̄

Ar̄ ~ r̄ 22M0!
. ~74!

Integrating yields

ln r 1k52 ln~Ar̄ 1Ar̄ 22M0!, ~75!

and we find

kr5~Ar̄ 1Ar̄ 22M0!252r̄ 22M012Ar̄ ~ r̄ 22M0!.
~76!

The asymptotic behavior at infinity indicates that we m
havek54, so our final expression forr ( r̄ ) takes the form

r 5
1

2
~ r̄ 2M01Ar̄ ~ r̄ 22M0!!. ~77!

For a star with Schwarzchild surface radiusr̄ s , we find that
the CF surface radius is given by
12403
.
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t

r s5
1

2
~ r̄ s2M01Ar̄ s~ r̄ s22M0!!, ~78!

the surface value for the conformal factor is

As5
r̄

r
5

2r̄ s

r̄ s2M01Ar̄ ~ r̄ 22M0!
, ~79!

and the lapse function at the surface is given by

Ns5A12
2M0

r̄ s

. ~80!

To solve for the interior metric, we add an equation to t
OV set to take into account the different radial schem
defining a scale free conformal radius satisfying a bound
condition limr̄→0r 05 r̄ whose radial behavior is given by

dr0

dr̄
5

r 0

Ar̄ ~ r̄ 22m!
. ~81!

This yields an expression forr 0( r̄ ) which is defined up to an
arbitrary multiplicative constantk, such thatr 05k• f ( r̄ ),
where f is determined from the mass distribution. To fin
r ( r̄ ), we merely set k5r s /(r 0)s , which implies r

5 r̄ r s /(r 0)s and determineA from Eq. ~73!.
To test the code, we ran three calculations whose res

could be compared with well-known semi-analytic solution
First, we constructed an equilibrium model for an isolat
NS, whose density profile was given by an OV solution fo
G52 EOS, with unit ADM mass, and a conformal radiu
r s56.874. The solution has a total baryonic massMb

51.066, and an areal radiusr̄ s57.913. We started run OV1
by taking this solution as an initial condition, and used it
test the overall stability of the code for equilibrium config
rations. Next, we constructed a similar model with the sa
mass and EOS, but scaled to an initial radius 10% lar
Run OV2 is a dynamical calculation started from this init
condition using our standard evolution code, enabling us
study the oscillations around our equilibrium solution. La
we took the nonequilibrium configuration from run OV2, b
added a ‘‘relaxation’’ drag term of the form2ũi /t relax to the
RHS of the force equation, Eq.~9!, with t relax /M057.9.
This provides an overdamped force for run OV3 since
dynamical time scaletD /M0[(Gr)20.5518. All three runs
were followed until t/M05120, corresponding to 6.7 dy
namical times for the NS, and in all cases radiation react
was turned off.

In Fig. 3, we show the radial profiles of the lapse functi
and conformal factor att/M05100 for runs A and C, along
with the correct OV solution. It is no surprise that run A h
essentially remained the same, since the initial field val
were essentially exact, but it is reassuring that run C
converged as well toward the same solution. Indeed, res
for configurations at later times continue to converge tow
the exact solution. In Fig. 4, we show the evolution of t
6-13



th
it
n

is
ld

nc
ca
ch
lis
n

ry
a

om
, a
te
l-
CF
f t

ore
a

al

ach,
are
ns
he
s a
nc-
on

lly
out

na-

tial
r

n
em
l
,
e
n
th

ed

ch

0%
ns

3
but
ilib-
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maximum central density for the three runs, as well as
predicted value from the OV solution. The maximum dens
from run A stays near this value throughout the evolutio
with small deviations which result from the unavoidable d
cretization effects present in SPH; in general, SPH will yie
very accurate global integrals over a mass distribution, si
numerical noise smoothes out, but demonstrates signifi
noise in quantities defined for individual particles, whi
vary iteration to iteration as each particle’s neighbor
adapts to current conditions. The maximum density for ru
oscillates around the proper value with a period ofT/M0
5112, showing no signs of systematic drift. This is ve
close to the proper value for the limiting case of infinitesim
radial variations,T/M05104, which we find by interpolating
from the values given in Table A18 of@65#, after scaling their
results to our units.

B. Spherical dust cloud collapse

To further test the dynamical aspects of the code, we c
puted the evolution of a uniform density dust cloud, i.e.
spherical distribution of matter with zero pressure, star
initially from rest. This is a familiar problem from cosmo
ogy, and the solution is well known, but the conversion to
coordinates and the matching conditions at the surface o

FIG. 3. Conformal factorA and lapse functionN for an
Oppenheimer-Volkov solution with aG52 polytropic EOS, and
conformal radiusr s /M056.874~solid lines!, compared to our com-
puted values att/M05100 for two models: run OV1 started from
equilibrium ~crosses! and run OV3 started from a configuratio
10% larger with a velocity damping term used to drive the syst
toward equilibrium~triangles!. The agreement is within 1% for al
particles. Units are defined such thatG5c51. All masses, lengths
and times in the OV and dust cloud calculations are made dim
sionless by scaling results against the system’s initial gravitatio
~ADM ! mass. Note that the conformal radius is not equivalent to
areal radius typically used in solving the OV equation.
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dust cloud make the resulting expressions considerably m
complicated. The complete description of the metric as
function of time was derived for the case of both maxim
time-slicing@66# and polar time-slicing@67#; it is the former
case which can be compared to our results. In this appro
the field values and CF time and position variable values
computed by solving a set of ordinary differential equatio
which describe the behavior of the fields in terms of t
comoving time and space variables. Using these, it i
simple process of interpolation to derive the fields as fu
tions of CF time and position. We checked our integrati
code by comparing our results against the plots in@66#, find-
ing perfect agreement.

To construct our initial configuration, we used essentia
the same techniques described above. Particles were laid
in an HCP lattice, with masses set proportional to the a
lytically known value ofr* (r ), which we derive as follows.
Note thatr* varies with radius; it isr(r ) that is initially
uniform.

The total mass of the cloud was set to unity, and the ini
radius in comoving coordinates tor̄ s , the parameter used fo
all figures in @66#. The initial metric in comoving coordi-
nates, for a cloud with unit mass and comoving radiusr̄ s , is
given by

ds252dt21a~t!2~dx21sin2xdV2!, ~82!

n-
al
e

FIG. 4. Evolution of the maximum density for three runs bas
on the OV solution described in Fig. 3. Run OV1~solid line! was
started from equilibrium, and shows only small variations whi
result from typical uncertainties in SPH summation. Run OV2~dot-
ted line! used the same EOS, but was started from a radius 1
smaller than the equilibrium value, showing sinusoidal oscillatio
with a period ofT/M05112 and no systematic drift. Run OV
~dashed line! was started from the same configuration as run B,
with an overdamped drag term to force the system toward equ
rium, converging rapidly toward the proper value ofM0

2rmax

50.006.
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a~t50![2/~sinxs!
3, ~83!

r̄ s[2/~sinxs!
2, ~84!

with the exterior metric described by the Schwarzchild for
Eq. ~71!, with r̄ 5a(t50)sinx. In terms ofxs , the CF ra-
dius is given by

r s5
1

2
~ r̄ s2M01Ar s~r s22M0!!

5
1

2 S 2

sin2xs

211A 4

sin4xs

2
4

sin2xs
D

5
1

2

11cosxs

12cosxs
. ~85!

Equating interior metric coefficients, we setAdr5adx and
Ar5a sinx, dividing and then integrating to find

r}S 12cosx

11cosx D 1/2

, ~86!

5
1

2 S 12cosx

11cosx D 1/2S 11cosxs

12cosxs
D 3/2

, ~87!

where the proportionality constant is determined from E
~85!. The initial conformal factor can now be written dow
since

A5
a sinx

r
5

4~11cosx!

~11cosxs!
3

, ~88!

and we can simplify the resulting expression by noting t
cosxs5(2rs21)/(2rs11) and cosx5(12r2/2r s

3)/(1
1r 2/2r s

3). Since the matter starts from rest, we know th
ui50 initially, and thusgn51 everywhere, and we find th
initial rest-mass density profile is given as a function of
dius by

r* 5gnA3S 3M

4p r̄ s
3D 5

3

4pr 3 S 11
1

2r s

11
r 2

2r s
3
D 3

. ~89!

Once the initial particle configuration was set, we calc
lated the dynamical evolution of the system using the sa
techniques described above for the OV case. Since the p
sureless material had no outwardly directed force, the in
table fate of the system was collapse to a BH.

To allow for direct comparison with the figures shown
@66#, we computed the evolution of a dust cloud with un
ADM mass and an initial areal radiusr̄ s510, just as they
did. In Fig. 5, we show the evolution of a set of equa
spaced Lagrangian tracer particles compared to the e
semianalytic solution we computed. This corresponds to t
Figs. 8, 9, with two slight differences. Our figures are plott
12403
,

.

t

t

-

-
e

es-
i-

ct
ir

in CF coordinates, rather than comoving coordinates, and
tracers are equally-spaced in radius, not in increments
enclosed mass. For comparison with their Fig. 9, we a
show the more familiar areal radius of the cloud, whi
roughly satisfies the relationr s' r̄ s21 initially. We see the
agreement between our calculation and the exact solutio
very good throughout the evolution, up untilt/M0'38,
where a slight discrepancy begins to develop, primarily
the surface of the cloud. This time corresponds closely w
the formation of an event horizon for the system, shown a
dotted line, starting at the center att/M0538 and moving
outward, reaching the surface of the cloud att/M0543.4,
shown as a horizontal line. This late time discrepancy
two sources. The first is that SPH, which by definition pr
duces a differentiable density field, cannot reproduce
step-function density drop at the surface of the dust clo
This explains to a large degree why the outermost trac
diverge furthest from their exact path. In addition, the lar
field values and gradients found around the event hori
present a challenge for our field solver. We typically see
dramatic increase during this period in the number of rel
ation iterations required to converge to a sufficiently accur
solution.

In Fig. 6, we show the evolution of the conformal factorA

FIG. 5. A comparison between the actual paths traced out b
set of equally-spaced Lagrangian tracers in run DC10, our calc
tion of a collapsing dust cloud with unit ADM mass and initial are

radius r̄ s510, ~dashed lines! and the exact semianalytical solutio
of @66#, shown as solid lines. All radii are shown here in conform
coordinates. We see excellent agreement up until the point wher
event horizon forms at the center of the cloud, att/M0538. The
event horizon moves outward~heavy dotted line!, eventually en-
closing the entire cloud att/M0543.4, shown as a horizontal lin
in the figure. At this point, when the matter can be properly defin
as a BH, our field solver stops converging. For comparison w
Fig. 9 of @66#, we also show, as a long-dashed line, the exact so

tion for the cloud’s surface in comoving~areal! radii, r̄ s(t).
6-15
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FABER, GRANDCLÉMENT, AND RASIO PHYSICAL REVIEW D69, 124036 ~2004!
and lapse functionN for the dust cloud, again in compariso
to the exact solution, at timest/M050, 20, 30, and 40. We
see again that our code can reproduce the proper solu
pastt/M0530, but byt/M0540 shows nontrivial deviations
from the proper solution. Att/M0540, the relative error in
the metric fields and position of the Lagrange radii is a
proximately 4%, growing to roughly 15% by the time th
event horizon encompasses the entire mass distribution
all cases, the deviations from the correct solution take
same form: our computed field values are closer to un
~and the previous timestep’s solution! than we would expec
from the semianalytic solution.

This behavior was confirmed by testing the collapse
dust clouds with initial areal radii ofr̄ s55 and r̄ s550. In
both cases, we find extremely accurate results until the e
horizon forms, at which point our accuracy degrades t
noticeable extent. The effect seems to depend primarily
the formation of an event horizon in the system, and not
the relative change of the density or various field quantit
We have concluded that the relaxation techniques used in
code have difficulty in their current form in handling th
steep spatial gradients in the shift function near the ev
horizon ~see Fig. 2 of@66#!, and we are working on tech
niques to better handle this situation. Of particular imp
tance is altering the relaxation parameters of the itera
scheme used by the field solver in the presence of these
field values and gradients near the event horizon, to cor
for the systematic drift away from the expected values.

FIG. 6. The evolution of the conformal factorA and Lapse func-
tion N for the dust cloud in run DC10, compared to the exact so
tion. We see, att/M050, 20, 30, and 40, the SPH particle valu
for the lapse~the four curves with values less than 1.0! and confor-
mal factor~values greater than 1.0!, shown as points, and the exa
solutions, shown as dashed lines. The agreement is good up
t/M0530, but att/M0540 we see some quantitative disagreeme
since the field solver breaks down as we near the point where
cloud collapses completely into a BH.
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C. Circular orbits of quasiequilibrium configurations

Finally, to test out the overall stability of the code, w
evolved several quasiequilibrium binary configurations us
our code, but without adding in the radiation reaction dr
terms. Since the CF formalism is time-symmetric, we exp
that any stable quasiequilibrium model should yield a circ
lar orbit, maintaining a constant binary separation, AD
mass, and internal rotation profile, among other paramet
Here, we chose models at an initial binary separation
r 0 /Mch519.91, 20.42, and 22.97 from theM /R
50.14, 0.14 equal-mass sequence of TG, denoting the re
ing calculations as runs QC1, QC2, and QC3, respectiv
For NS with ADM masses ofM051.4 M ( , these separa
tions correspond to 33.64, 34.51, and 38.81 km, respectiv
The innermost of these represented the limiting case fo
for this sequence just before formation of a cusp at the in
edge of the two NS.

As a first check of our code, we compared the orbi
frequency determined from our dynamical runs to the kno
value for each model taken from the quasiequilibrium
quence. We found excellent agreement between the or
periods computed from our runs,T/Mch5422.6, 438.2, and
506.4, and those determined by TG,T/Mch5422.8, 438.0,
and 519.7, for runs QC1, QC2, and QC3, respectively.

There are several conserved quantities which should
respected in the time-symmetric CF formalism, allowing f
further code tests. In Fig. 7, we show the evolution of t
binary separation for the runs. For each run, the orbital
riod is shown with tick marks. We see in each case that
orbit is stable, with variations in the binary separation of
more than 4% during the first two orbits. The time scale
the radial variations is similar to the orbital period, but not
exact match; this reflects both the effects of GR as well
the slight degree of time-asymmetry present in the numer
implementation of the CF formalism. We note that the dev
tions from circularity were largest for run QC3, which ha
the largest binary separation. We believe this results from
larger relative magnitude of the spurious initial velociti
that result from deviations away from equilibrium in the in
tial condition; while these terms are of essentially const
magnitude in all three runs, the equilibrium velocity field h
the smallest magnitude at the largest separation.

Run QC1 was started from the innermost point along t
binary NS equilibrium sequence, and the binary perfor
three complete orbits with no sign of plunging behavior.
such, these results can be taken as the first direct proof
the entire equilibrium sequence is stable, and suggest
these configurations should be reasonably accurate app
mations to the true physical state of merging binaries. F
ther evidence of this claim is presented below in Sec. V
when we describe the results of our calculations with rad
tion reaction effects included. Note that this result is n
unexpected given the absence of a turning point~minimum
of ADM mass and total angular momentum! along this irro-
tational equilibrium sequence. Indeed, while such a turn
point along an equilibrium sequence ofcorotating binaries
marks the onset ofsecular instability, a truedynamical in-
stability is usually associated with a turning point along

-

ntil
t,
he
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irrotational sequence@55,68,69#.
While this result may appear at first glance to disag

with those of@70#, who find that the ISCO occurs at a great
binary separation than the termination point of an equi
rium sequence, we believe that the difference is purely
mantic. We define an initial configuration to be dynamica
stable if in the absence of dissipative radiation reaction e
fects, the circular orbit remains stable~no merger occurs!
when evolved forward in time. In@70#, a configuration is
described as within the ISCO if in full GR~i.e., including
dissipative radiation reaction effects!, a binary starts merging
~the surfaces of the two NS come into contact! within one
orbit when evolved forward in time. Clearly, using the
definitions, the same initial configuration can be dynamica
stable ~in the time-symmetric CF sense! at a separation
within the ‘‘ISCO’’ as defined by@70#.

In order to estimate how well our code respects conser
quantities, we show in Figs. 8 and 9 the evolution of both
ADM mass and system angular momentum, calculated fr
the SPH expressions, Eqs.~42! and ~44!, and the spectra
basis forms, Eqs.~41! and ~43!, respectively. In the former
we see that the SPH expression for the ADM mass is rem
ably constant over time, with only very minor deviations
relative magnitude less than a tenth of a percent. The sys
angular momentum varies more, but is still conserved
within 1%, with no sign of a systematic drift in either dire
tion. We note that much of the variation is correlated with t

FIG. 7. Binary separation as a function of time for the binar
in runs QC1, QC2, and QC3, using initial data generated by@27#,
evolved forward in time with radiation reaction terms neglect
The calculations use binaries with initial separations ofr 0 /Mch

519.91, 20.42, and 22.97, respectively. Full orbital periods, w
T/Mch5422.8, 438.0, and 519.7, respectively, are shown with t
marks. We see that the resulting orbits are nearly circular, w
changes in separation of no more than 4% over the first two or
This is the strongest available evidence that the innermost p
along this equilibrium sequence is actually stable against merg
12403
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deviations in the binary separation, oscillating on the orb
time scale. We see much more variation on an iteration
iteration basis when we look at the same quantities compu
using the spectral basis. This is hardly surprising, since th
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FIG. 8. ADM mass and total angular momentum, calcula
from Eqs.~42! and~44!, runs QC1, QC2, and QC3. We see that t
ADM mass is conserved almost exactly, and the angular momen
to within 1%, with the variation occurring primarily on the orbita
time scale.

FIG. 9. ADM mass and total angular momentum, calculated
the spectral basis from Eqs.~41! and ~43!, for the runs shown in
Fig. 7. We see roughly the same amount of variation in the ang
momentum as was found for SPH summation in Fig. 8. The AD
mass shows considerably more variation than the SPH version
remains well within 1% of the original value with no systema
drift.
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values are computed at the end of a relaxation routine,
we expect some degree of variation on a step-by-step b
depending on the exact phase space path traced out b
iterative solution. All the same, we see that the angular m
mentum is conserved to roughly the same level in the sp
tral basis as it was when computed using SPH, and while
variation in the ADM mass is larger, we see no sign o
systematic drift.

V. DYNAMICAL CALCULATIONS

While dynamical calculations including the effects of r
diation reaction are the only way to study the coalescenc
binary NS systems, they have several additional uses w
are often overlooked. Of particular importance is the abi
to determine the validity of quasiequilibrium models as i
tial conditions for dynamical calculations, regardless
whether CF or full GR gravity is used. Thus, we comput
two dynamical runs including radiation reaction. Run RR
was started from the cusp point of the sequence~the same
initial configuration used in run QC1!, and was used to stud
the details of the coalescence process. Run RR2 was st
from a larger separation~the same initial configuration use
in run QC3!, and was used to test out the deviations
expect from quasiequilibrium prior to reaching the termin
tion point along the equilibrium sequence.

A. Stable regime

The evolution of the binary separation for run RR2
shown in Fig. 10. The dotted curve, showing the result fr
the calculation, does not have the behavior one would
pect. Notably, after the binary separation decreases m
tonically until reachingr /Mch521.2 at t/Mch5700, the
system turns around and expands briefly back to a separ
of r /Mch521.5 att/Mch5950 before shrinking again. Thi
does not reflect any inherent problem in our radiation re
tion formalism, since oscillations in the binary orbit we
found for calculations which ignored all radiation reacti
effects. In fact, if we ‘‘correct’’ the binary separation b
looking at the difference in separation at equivalent tim
between runs RR2 and QC3, which were started from
same initial configuration, with and without radiation ba
reaction terms, we see a pattern of monotonic decre
shown as a solid line. This seems to indicate that deviati
from circularity in the orbit of the quasiequilibrium binar
configurations represent a systematic effect in the evolut

The ‘‘corrected’’ infall curve shows clear signs of an o
bital eccentricity with a time scale roughly corresponding
the orbital period. This is a natural consequence of star
out from an initial condition with zero infall velocity, and ha
been seen before in virtually every PN and CF calculat
~FR @39,48#!. Its origins are clear: the framework used b
GGTMB to construct quasiequilibrium initial conditions a
sumes a helical Killing vector exists, which enforces an i
tial circularity in the orbit, rather than the proper infallin
trajectory. If calculations could be started from sufficien
large separations, GW emission would cause the orbit to
cularize, but the process works slowly, and breaks down
the binary makes the transition toward a dynamical merge
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is fair to say that no computational scheme can currently
trusted to remain stable over the period required to circu
ize the orbit.

B. Coalescence

We have also computed the full dynamical evolution o
binary system started from the innermost point along
quasiequilibrium sequence, denoted run RR1. In Fig. 11,
show density contours from the system during the bin
phase, which lasted untilt/Mch5883. The contours are
equally spaced logarithmically, two per decade, ranging fr
density values ofM ch

2 r* 51026.521021. We recognize a
familiar pattern from past PN and relativistic calculatio
~FR @39,43,48#!, including the development of tidal lag
angles as the time scale on which the gravitational fi
evolves becomes comparable to the dynamical time sc
This gives rise to an ‘‘off-axis’’ collision, as matter from th
inner portion of each star runs along the trailing edge of
other, forming a turbulent vortex sheet~see FR3!. Some frac-
tion of the mass in these flows eventually crosses through
outer Lagrange point on the opposite side of the bina
forming the very low-density spiral arm structures seen
t/Mch5850. In contrast to Newtonian binaries, in whic
angular momentum transfer outward leads to massive sp
arm formation, the very low-density arms formed here ha

FIG. 10. Binary separation over time for run RR2, started fro
an initial separation ofr 0 /Mch522.97, the same initial configura
tion that was used for run QC3. The dotted line shows the origi
‘‘uncorrected’’ result, including a separation increase fromt/Mch

5700–950. This is primarily due to oscillations associated w
numerical noise and deviations from equilibrium in the initial co
figuration. Correcting for deviations from circularity in run QC
which ignored radiation reaction~dashed curve!, yields the ‘‘cor-
rected’’ result, shown as a solid line. We see monotonic decreas
the separation over time, with an ellipticity induced by our initial
circular orbit.
6-18
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velocities much smaller than the escape velocity, and the
majority of the mass remains gravitationally bound to t
system.

At t/Mch5883, shortly before the binary field solve
fails to converge, we take our matter and field configuratio
and transform them into the single-star description descri
in Sec. III B. In Fig. 12, we show the particle configuratio
at t/Mch5883, which can be described as a bar with tw
low-density arms trailing off the edges. While it may see
inappropriate at first to describe the configuration as an
lipse, we note that the low-density contours, shown
dashed lines, do form a much more elliptical pattern than
might at first expect. In interpreting SPH particle plots, it
important to remember that low-density particles have la
smoothing lengths, implying that the matter distribution e
tends well beyond the apparent sharp edge. The bound
of the innermost computational domains are shown in
figure as heavy solid lines, for both binary and single-s
configurations. We see that they align rather well, failing
overlap only in low-density regions near the boundary.
confirm the validity of the switch, we compare the field s
lutions for the particles before and after the transition. In F
13, we show the relative change in the lapse functionN ~top
panel! and conformal factorA ~bottom panel!, as a function
of thex-coordinate. We see that in all cases the relative e
is ,1%.

The evolution of the single-body configuration is show
in Fig. 14. We see a strong pattern of differential rotation
the merger remnant, which slowly relaxes from a very ell

FIG. 11. The evolution of the matter run RR1, started from j
outside the separation where a cusp develops. We followed the
lution through the merger and formation of a remnant. Density c
tours are logarithmically spaced, two per decade, ranging f
M ch

2 r* 51026.521021. We see the development of significa
tidal lag angles att/Mch5500, followed by an ‘‘off-center’’ colli-
sion. This process leads to the formation of a vortex sheet an
small amount of matter ejection byt/Mch5850 from matter run-
ning along the surface of the other NS.
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tical shape toward a more spheroidal one. This is to be
pected, as our choice of EOS withG52.0 should not be able
to support a long term ellipsoidal deformation@58#. By
t/Mch51220, the remnant has relaxed to a nearly circu
profile, but the differential rotation, as shown in Fig. 1
persists. The latter will dissipate slowly on either the visco
or magnetic braking time scales, beyond the scope of w
we can reasonably calculate@71–73#. Differential rotation is
expected to stabilize the star against gravitational collaps
the short-term@74,75#. Quantitatively accurate determina
tions of the rotational velocity profile in terms of the param
eters of the initial system are likely to be crucial for makin
prediction as to which systems will or will not collaps
promptly to BHs, especially since these systems will like
have very large masses. As we see in Fig. 16, the vast
jority of the rest mass of the system ends up in the mer
remnant itself, with a fraction of a percent of the total ma
forming a low-density, bound halo around the remnant. T
seems to be the consensus from PN and relativistic calc
tions of irrotational binaries~FR3 @43#! and even PN and
relativistic calculations of synchronized binaries~FR3 @48#!,
which traditionally yielded significantly higher mass ejectio
fractions in Newtonian calculations. We note that PN calc
lations of irrotational binaries yielded an ejected mass fr
tion of &1% ~FR3!, rather than the 6% quoted by@43#.

To compare with the relativistic results of@43,48#, we
show the evolution of the maximum density as a function
time in Fig. 17. We see at the earliest times a low-amplitu
pulsation, resulting from small deviations from equilibriu
in the initial SPH particle configuration. This pulsatio

t
o-
-

m

a

FIG. 12. Detailed view of the binary to single-star transitio
performed during run RR1 att/Mch5883. We show the positions
of all SPH particles, as well as density contours, shown as das
lines, logarithmically spaced two per decade. The surface of
inner computational domain in both the binary and single-star r
resentations are shown as heavy solid lines, with good agreem
between the two.
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FIG. 13. The relative change in the lapse functionN ~top panel!
and the conformal factorA immediately preceding and following
the conversion from binary to single-star representations during
RR1 for every particle, shown as a function of the particle’s po
tion in thex direction. The maximum error is approximately 0.8%
with a mean difference of;0.2%.

FIG. 14. The evolution of the matter in run RR1, after the tra
sition to a single-star representation, following the same conv
tions Fig. 11. We see that a dense remnant forms in the center o
system, surrounded by a thin halo. Some ellipticity is seen sho
after the merger, but the system quickly relaxes toward a sphero
configuration, with maximum density in the center of the syste
unlike the toroidal configuration found by@43#.
12403
damps away almost completely by the time the stars plu
inward. As the system begins to accelerate rapidly inw
prior to the merger itself, the maximum density decrease
the stars are tidally stretched. This effect, seen in a numbe
calculations, further indicates that these systems will not

n
-

-
n-
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FIG. 15. Angular velocity of the merger remnant of run RR1
t/Mch51220, shown as a function of cylindrical radius,r cyl

[Ax21y2. We see strong differential rotation, with the highe
angular velocity in the center, decreasing monotonically with
dius.

FIG. 16. Enclosed mass as a fraction of thetotal mass of the
merger remnant in run RR1, att/Mch51220, expressed as a func
tion of ~spherical! radius. All but a few percent of the total mass
the system forms the body of the merger remnant, with no m
than a small fraction of a percent ejected from the system.
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dergo a pre-merger gravitational collapse. This process
originally suggested in@45#, but is likely to have been a
numerical artifact since they used a version of the CF f
malism containing an error in one of the evolution equatio
Indeed, the quasiequilibrium sequences in TG show a s
decreasein the central baryonic and energy densities,r* and
r, as the binary separation decreases. After contact, we s
strong rise in the maximum density, followed by a rap
high-amplitude oscillation. This result is similar to that se
by @48#, although they found a relatively higher maximu
density value during both the peak and the trough of
oscillation. This is almost certainly a result of using differe
initial spin configurations. Irrotational systems, such as
one used in run RR1, concentrate relatively more ang
momentum at small radii compared to initially synchroniz
systems, like run A of@48#. Thus, when a remnant is forme
from an initially irrotational binary, the central density wi
typically be lower, since there is a greater centrifugal bar
and less pressure support is needed to stabilize the con
ration. Our results differ rather significantly from those
@43#, who found a smaller-amplitude, more sinusoidal os
lation after merger. It is possible that this discrepancy can
attributed to the use of the CF approximation rather than
GR. A much more likely explanation, however, is that t
difference results from the numerical methods used to
scribe shock heating in the matter. Lagrangian SPH co
were used here and in@48#, whereas Shibata and collabor
tors @41–43# use an Eulerian grid-based code, which m
have a better ability to resolve shock fronts. It seems clea
examining the results from run M1414 in@43# that as the NS
cores converge, the increase in the central density is
pressed by the conversion of kinetic energy into heat. T
merger remnant shows a spike in the internal energy in

FIG. 17. Maximum density as a function of time for run RR
We see the SPH configuration oscillates slightly around equ
rium, decreasing slowly as the binary plunges toward merger. D
ing the merger, we see a sharp decrease, followed by a large
upward and evidence for sharp, nonsinusoidal oscillations.
12403
as

r-
.
w

e a
,

e
t
e
ar

r
u-

-
e
ll

e-
es

y
y

p-
e
e

very center, 2–3 times the adiabatic value, and a corresp
ing decrease in the density, giving the remnant its toroi
profile. Only calculations using their new shock-capturi
scheme@76# produce this behavior; previous calculatio
yielded remnants with centrally condensed density profi
@41,42#. It will be of great future interest to determin
whether or not SPH studies of rapidly rotating collapsi
matter configurations can produce these toroidal configu
tions with ‘‘hot’’ cores, and if so, which aspects of shoc
physics are crucial for understanding this process.

In Fig. 18, we show the GW signal for run RR1, calc
lated from Eqs.~54! and~55!. The waveforms show a famil
iar chirp signal up untilt/Mch'850, followed by a modu-
lated, high-frequency ringdown component. The strength
our signal at peak amplitude matches extremely well with
results of@43,48#, as one would expect from simple dimen
sional analysis. Our modulated remnant signal, though
much more similar to the results of@43# than@48#, who find
a damped ringdown signal of lower amplitude for this mod
with no obvious modulation. Previous PN calculations~FR2,
FR3! identified the source of the GW amplitude modulati
as a combination of differential rotation and ellipticity in th
remnant. When the inner and outer regions of the remn
have ellipsoidal deformations which are roughly aligned,
we see att/Mch'900 in Fig. 11, the GW amplitude will be
at a maximum. When differential rotation drives the inn
regions into misalignment, as we see att/Mch'1020 in the
same figure, the GW amplitude reaches a minimum. Eve

-
r-
ike

FIG. 18. The GW signal in theh1 andh3 polarizations for run
RR1, as seen by an observer situated along the vertical axis,
lowing Eqs. ~54! and ~55!. We see a chirp signal followed by
modulated ringdown spike. The modulation is caused by the al
ment between quadrupole deformations in the inner regions of
remnant core and those at larger radius. When there is strong
alignment, there is destructive interference and the signal ampli
drops, as we see att/Mch5920 andt/Mch51220 in Fig. 14. At
t/Mch51080 the density contours are more aligned, and the
plitude reaches a temporary maximum.
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FABER, GRANDCLÉMENT, AND RASIO PHYSICAL REVIEW D69, 124036 ~2004!
ally, these effects dissipate away as the remnant relaxe
ward a more spheroidal configuration. We believe the lack
modulation in the waveforms shown in Fig. 10 of@48#
merely reflects the use of a different initial spin configu
tion. As stated above, synchronized initial configuratio
contain relatively less angular momentum at smaller ra
and the lack of a centrifugal barrier allows the remnant
lipticity to damp away much more quickly as the dens
regions in the NS cores fall into the remnant’s center. O
results are in broad agreement with those of@43#, who find a
modulated waveform immediately after the merger on
similar time scale as our results, before a longer-liv
smaller-amplitude damped modulation eventually appear

Calculating the GW energy spectrum for the merg
waveform is more complicated than simply applying E
~57!, since taking the Fourier transform of a signal with no
zero initial and final values introduces aliasing of the bou
ary conditions into the resulting waveform. To correctly d
rive the proper spectrum, one must also ‘‘attach’’ analy
solutions to the beginning and end of the calculated sig
representing the portions of the inspiral and ringdo
phases, respectively, which fall outside the bounds of
numerical evolution. In the past, the authors~FR3!, and oth-
ers@48,63,77#, have modeled the initial inspiral phase via t
Newtonian point-mass approximation, but that is clearly
physically realistic. Indeed, it has been shown in FGRT t
relativistic effects should have a significant effect on the G
spectrum even before the dynamical merger. Summari
we know that for an equal-mass binary system, the to
mass-energy is given by E5Mt2Mt

2/8r 2521.2Mch

2M ch
2 /(20.6r 2), and the~Keplerian! orbital frequency by

f Kep5(AMt /r 3)/2p. In terms of the GW emission fre
quency,f GW[2 f Kep5(20.6/p)AMch /r 3, we find

EN~ f GW!521.2Mch2
p2/3

2
M ch

5/3f GW
2/3 , ~90!

dEN

d fGW
5

p2/3

3
M ch

5/3f GW
21/3, ~91!

where the latter equation demonstrates the familiar pow
law dependence of the GW energy spectrum.

For the quasiequilibrium sequence from which we ta
our initial condition, we found that the system ADM ma
can be given in terms of the GW frequency by a~phenom-
enological! fit of the form

E~ f GW!/Mch5EN /Mch20.4905~Mchf GW!

1231~Mchf GW!2. ~92!

Differentiating this equation yields what we term the ‘‘qu
siequilibrium energy spectrum,’’ but we require addition
assumptions to be made before we can construct the
history of the inspiral waveform. First, we determine a fit f
the GW frequency as a function of conformal separati
finding that we can approximate the proper function
within 0.1% with the form
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Mchf GW5
20.6

p
~r /Mch!

21.521.592~r /Mch!
22.5

16.325~r /Mch!
23.5. ~93!

Next, we assume that the GW signal amplitude is given b
slightly modified version of the quadrupole form,

Qxx
[2]~ t !52Qyy

[2]~ t !

5~1.02k!20.2p2M chr
2f GW

2 cos„uGW~ t !…, ~94!

Qxy
[2]~ t !5~1.02k!20.2p2Mchr

2f GW
2

3sin„uGW~ t !…, ~95!

where the prefactork is used to match the amplitude of th
inspiral signal onto that at the beginning of our calculat
signal. We find thatk50.015 throughout the early phases
our calculated waveform, indicating that it can be we
approximated by the expected quadrupole form. Furth
more, we note that the resulting energy spectrum is es
tially independent ofk; as k increases, the GW amplitud
decreases, decreasing both the energy loss rate and th
quency sweep rate in the same proportion, leavingdE/d f
unchanged. Finally, we assume that the energy loss rat
GWs is given by the standard quadrupole expression,

dE/dt50.2̂ 4p2f GW
2 Qi j

[2]Qi j
[2]&. ~96!

To construct the inspiral waveform, we start from a po
along our calculated waveform and evolve backward in ti
from that point. At every time step, we calculate the insta
taneous energy loss rate from Eq.~96!. After adjusting the
total energy, we calculate the new GW frequency by impl
itly solving Eq. ~92!, and adjust the phase of the GW sign
appropriately. We find the new binary separation by solv
Eq. ~93! implicitly, and finally evaluate the waveform via
Eqs.~94! and ~95!.

The question of where to match the quasiequilibriu
waveform to the calculated one deserves some atten
Matching the two att50 is very much a mistake, because
represents a transition from an infalling configuration to
circular one; beforehand, the frequency sweep rated fGW /dt
is positive and increasing, while afterward it is reset insta
taneously to zero. This mismatch in the infall velocity, a
thus the frequency sweep rate, results in energy ‘‘piling u
at the transition frequency, as can be seen in FR3 and
smaller degree in Fig. 12 of@48#. We find that matching the
inspiral waveform to the calculated signal att50 reproduces
this error, but that byt/Mch5250, the match in the inspira
velocity is sufficient to leave no measurable trace in the
sulting spectrum.

We note that@48# also match their inspiral waveform t
their calculated one at some time into the calculation, but
believe that they place too much trust in the behavior of
energy spectrum near this transition frequency. In their pa
they alter the frequency of a Newtonian inspiral waveform
match their relativistic calculation by adjusting by hand t
coalescence time,t[(dr/dt)/r . We believe this approach to
6-22
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be a mistake. The effect of this change is to use a Newton
waveform with different physical parameters from tho
used in the calculation; in particular, it is equivalent to c
culating a Newtonian waveform using the wrongtotal mass,
and thus the wrong limit for the spectrum at low frequenci
It is only through the use of an inspiral waveform who
frequency approaches the proper Keplerian limit at low f
quencies and therelativistic form at high frequencies tha
accurate energy spectra can be constructed. Indeed, sinc
initial condition was taken from the same quasiequilibriu
sequence used to generate our frequency data, the initial
frequency derived from our calculation matched that of
inspiral waveform within 0.1% without requiring further ma
nipulation.

In Fig. 19, we show as a solid line what we believe to
the first complete and consistent relativistic waveform fo
binary NS merger at frequenciesf GW<1.5 kHz. The fre-
quencies listed on the upper axis assume our ‘‘stand
model’’ parameters, i.e., each NS has an ADM massM0
51.4M ( . The two dotted lines show the components wh
make up the energy spectrum. At low frequenci
Mchf GW,0.004, we see the primary contribution is fro
the quasiequilibrium inspiral waveform, whereas at high
frequencies it is from our calculated waveform. The sho
dashed line shows the Newtonian point-mass relation, gi
by Eq. ~91!, and the long-dashed curve the quasiequilibriu
result, found by numerically differentiating Eq.~92!. We see
excellent agreement between our calculated waveform
the quasiequilibrium fit, up until frequenciesMchf GW
'0.00720.009. This peak represents the ‘‘piling up’’ of en
ergy at the frequency corresponding to the phase of m
mum GW luminosity, as the stars make contact and the in
rate drops dramatically. The second peak, atMchf GW
'0.01020.011, represents emission from the ringdown
the merger remnant. It is likely that we underestimate
true height of this second peak, since we assume that the
signal after our calculation damps away exponentially. S
it is extremely unlikely that including the ringdown pha
will increase the strength of this peak by more than a fac
of a few, since our chosen EOS will not support a long-liv
ellipsoidal deformation, and it is likely that the ringdow
oscillations will smear the GW emission over a small ran
of frequencies rather than coherently emitting at a single
quency.

In general, the energy spectrum we calculated here c
firms the general conclusions we put forward in FR3 a
FGRT, albeit in a much more consistent way. The GW
ergy spectrum does show a significant drop away from
Newtonian point-mass form at frequencies significantly
low 1 kHz, in almost the exact same form as we predic
from quasiequilibrium data alone in FGRT. Nowhere do
the spectrum rise above the Newtonian value, including
peaks associated with maximum GW luminosity and
ringdown oscillations. These results suggest that the w
signal amplitude of the peaks above 1 kHz, which lie outs
the Advanced LIGO broadband frequency range, may inh
detections by high-frequency narrow-band interferometer
well. However, combining lower-frequency narrow-band d
tectors with broadband LIGO measurements, as suggest
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@34#, appears extremely feasible, and may allow GW m
surements to constrain the NS compactness and EOS.

One possible cause for concern with our code is nonc
servative behavior caused by numerical errors that deve
after t/Mch5500. In Fig. 20, we show the change in th
system’s angular momentum over time. The dotted curv
the uncorrected result derived from our calculation, wh
shows two periods of angular momentum generation, the
from t/Mch56002700, and the second att/Mch5875
2900. The former is associated with the numerical inac
racies discussed in Sec. V A for run RR2. All of our ru
show some spurious angular momentum generation
slowing of the binary infall during this period. The latte
spike occurs immediately before and after the transition fr
a binary to a single-star description. Correcting for both
these spurious terms yields the solid line on the plot, wh
still underestimates by a nontrivial amount the angular m
mentum loss we would expect from the quadrupole formu

~ J̇k!GW50.4e i jk^Qil
[2]Qlk

[3]&. ~97!

Using the quadrupole formula on our results yields a to
angular momentum loss fraction which very nearly equ

FIG. 19. GW energy spectrum,M ch
22dE/d f , as a function of

the GW frequency,Mchf GW , for run RR1. The dotted lines show
respectively at high and low frequencies, the components con
uted by our calculated signal and the quasiequilibrium inspiral co
ponent. Also shown are the Newtonian point-mass energy spec
(dE/d fGW)Newt ~short-dashed line!, Eq. ~91!, and the quasiequilib-
rium fit (dE/d fGW)QE derived from Eq.~92!. We see confirmation
that the ‘‘break frequency’’ calculated from a fit ofE( f ) for the
equilibrium sequence~i.e., the frequency at which the energy spe
trum decreases to a given fraction of the Newtonian level! is repro-
duced by a full numerical evolution. On the upper axis, we show
corresponding frequencies in Hz assuming the NS each have a
M051.4M ( The two peaks correspond to the phases of maxim
GW luminosity and ringdown oscillations, respectively.
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that found by@43,48#, with approximately 7% of the sys
tem’s angular momentum converted into GW emission. T
discrepancy between this amount and what we derive f
the SPH particle configuration, Eq.~44!, can be easily under
stood. First, we do not see strong angular momentum los
the NS first make contact, since this is where we push
field solver to its limit. Second, our method for estimati
the instantaneous angular velocity, Eq.~53!, underestimates
the proper value ofv, yielding a radiation reaction force, Eq
~45!, smaller than the correct quadrupole value~which we
can determine after the fact!. This error could be decrease
in magnitude by calculating the angular velocity from t
change of position of the NS centers-of-mass in time,
such a prescription is difficult to define consistently in t
single-body regime. Even defining the orbital frequency
terms of the rate of change of the quadrupole tensor, as d
by @48#, underestimates the correct angular momentum
rate by up to 40% during the GW emission peak.

We see a similar pattern at work in the evolution of t
system’s ADM mass, shown in Fig. 21, comparing the e
ergy loss to GWs from the quadrupole approximation f
mula ~dashed line!, Eq. ~96!, to the value we find from SPH
summation via Eq.~42! ~solid line!. The quadrupole value
agrees well with other calculations, which typically fin
DMADM /MADM50.004. Looking at our particle summatio
value, we see a slow decrease fromt/Mch50 –500, of mag-

FIG. 20. Angular momentum loss for the binary in run RR
measured using the SPH integral, Eq.~44! ~dotted line!, and the
result after correcting for spurious angular momentum creation
ing the binary to single-object transition~solid line!. We see that the
result yields an angular momentum loss approximately half that
would have predicted from the quadrupole formula, Eq.~97!
~dashed line!, primarily because our estimate for the system’s a
gular velocity used in the back reaction force is systematic
lower than the GW signal would indicate. The quadrupole result
derive shows that about 7% of the system angular momentum
emitted in GWs, in line with previous relativistic estimates.
12403
e
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-
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nitude 0.2–0.3 % of total value, in good agreement w
other calculations and our own quadrupole estimate. Fr
that point on, we see a small spurious increase from the p
the numerical errors begin to become significant, follow
by a sharp decrease of;2% immediately prior to our tran-
sition from binary to single-star descriptions. Once we ha
made the transition, the ADM mass oscillates slightly, w
an overall peak-to-trough amplitude of 1%. Thus, we co
clude that while the instantaneous value we measure f
the particles directly is liable to be off by up to 2%, we ca
reconstruct the proper energy loss rate after the calculatio
over.

VI. CONCLUSIONS

We have developed and tested a new relativistic 3D
grangian hydrodynamics code, which should prove useful
studying a wide variety of physical systems. Here, as
initial investigation, we have performed the first full evolu
tions of the coalescence and merger of irrotational binary
in the CF approximation to GR. Moreover, these calculatio
represent the first numerical evolution of coalescing bin
systems performed with either a spectral methods field so
or the use of spherical coordinates adapted to a binary e
ronment.

The code has been validated using several tests. We
accurately reproduce static spherical stellar configuration
well as the known solution for a collapsing pressureless d

r-

e

-
y
e
is

FIG. 21. The evolution of the total ADM mass for the system
run RR1, calculated using the SPH integral, Eq.~42! ~solid line!.
Up until t/Mch5600, we see a slow decrease as energy is emi
in GWs, at approximately the rate predicted by the quadrupole
mula, Eq.~96! ~dashed line!. Beyondt/Mch5600 numerical inac-
curacies lead to oscillations of total amplitude;2%. From the
quadrupole estimate, we find that 0.4% of the system’s energ
radiated away as GWs, in line with previous estimated from re
tivistic calculations.
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cloud. In both cases, the CF approximation yields the ex
solution in GR, as it will for any spherical configuration. W
find that we can reproduce these known semianalytic s
tions to high accuracy, up until the formation of an eve
horizon for the collapsing dust clouds.

Our dynamical evolution calculations for quasiequili
rium models at a number of different binary separations
dicates that we can successfully integrate forward for sev
orbits, with typical errors in conserved quantities of;1%.
In doing so, we have demonstrated directly for the first ti
that theM /R50.14, equal-mass sequence of TG is stable
the way to its innermost configuration, at which point a cu
develops on the inner edge of each NS.

Our dynamical calculation of a complete binary N
merger, including radiation reaction effects, demonstra
that our spherical coordinates, spectral method approac
robust enough to follow the system from the point just bef
the formation of a cusp through merger and the formation
a stable remnant. Some errors were introduced during
period into the globally conserved quantities such as
ADM mass and system angular momentum, but we find t
the field values were computed consistently throughout,
that the global dynamics was treated in a quantitatively
curate way.

We find that the merger remnant formed in our calculat
is differentially rotating, with a transient quadrupole defo
mation. This combination of effects produces a GW amp
tude with a modulated form, similar to what has been s
before in PN calculations~FR3! and more recent full GR
calculations of the same model@43#. We find that the rem-
nant is initially stable against gravitational collapse, as
@43#, with the supermassive NS~which has a baryonic mas
essentially twice that of either NS in isolation! supported by
strong differential rotation. We find that a density maximu
develops rather rapidly in the center of the merger remn
as has been seen in all other PN and CF calculations, bu
that of @43#, whose full GR merger calculation yielded
.
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toroidal remnant. We believe the difference results from th
use of a capturing scheme, whereas our runs were perfor
using an adiabatic treatment.

By combining our calculated GW signal with a relativist
quasiequilibrium inspiral precursor, we have generated
first GW energy spectrum from a binary NS merger which
complete at all sub-kHz frequencies and consistent throu
out. We find that the energy spectrum deviates from
Newtonian power-law relation by more than 50% at freque
cies f GW,1 kHz ~the ‘‘break frequency’’!, in very good
agreement with the predictions of FGRT. There are disti
peaks in the power spectrum corresponding to the phase
maximum GW luminosity and merger remnant ringdow
but at levels significantly below the point-mass power-la
value.

In our future work on binary NS systems, we hope
address a number of topics, many of which deserve m
more careful study. Based on the excellent agreement
tween our calculated GW energy spectrum and that ba
purely on equilibrium sequence data, we hope to do a br
phase space survey to determine the dependence of
‘‘break frequency’’ on both the NS EOS and the system
mass ratio. Beyond this parameter study of NS-NS merg
we also plan to investigate in detail the formation process
the merger remnant, to determine the conditions which m
lead to the formation of a quasitoroidal merger remnant. T
will necessarily involve the use of a relativistic artificial vis
cosity scheme to treat shocks. The density profile of
merger remnant is likely to influence the final fate of t
system, and may prove crucial for determining the coin
dence properties of GW emissions and short-period GR
should they result from compact object binary mergers,
has been widely suggested.
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