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ABSTRACT
Physical collisions between stars occur frequently in dense star clusters, either via close en-
counters between two single stars, or during strong dynamical interactions involving binary
stars. Here we study stellar collisions that occur during binary–single and binary–binary inter-
actions, by performing numerical scattering experiments. Our results include cross-sections,
branching ratios and sample distributions of parameters for various outcomes. For interactions
of hard binaries containing main-sequence stars, we find that the normalized cross-section for at
least one collision to occur (between any two of the four stars involved) is essentially unity, and
that the probability of collisions involving more than two stars is significant. Hydrodynamic
calculations have shown that the effective radius of a collision product can be 2–30 times larger
than the normal main-sequence radius for a star of the same total mass. We study the effect of
this expansion, and find that it increases the probability of further collisions considerably. We
discuss these results in the context of recent observations of blue stragglers in globular clusters
with masses exceeding twice the main-sequence turn-off mass. We also present FEWBODY, a
new, freely available numerical toolkit for simulating small-N gravitational dynamics that is
particularly suited to performing scattering experiments.

Key words: stellar dynamics – methods: N-body simulations – methods: numerical – binaries:
close – blue stragglers – globular clusters: general.

1 I N T RO D U C T I O N

Close encounters and direct physical collisions between stars oc-
cur frequently in globular clusters. For a star in a dense cluster
core, the typical collision time can be comparable to the cluster
lifetime, implying that essentially all stars could have been affected
by collisions (Hills & Day 1976). Even in moderately dense clus-
ters, collisions can happen frequently during resonant interactions
involving primordial binaries (Hut & Verbunt 1983; Leonard 1989;
Sigurdsson & Phinney 1993; Davies & Benz 1995; Sigurdsson &
Phinney 1995; Bacon, Sigurdsson & Davies 1996). In open clus-
ters with significant binary fractions (∼10 per cent or more), merg-
ers may occur more often through binary–binary interactions than
through single–single collisions and binary–single interactions com-
bined (Leonard & Fahlman 1991). Collisions involving more than
two stars can be quite common during binary–single and binary–
binary interactions, since the product of a first collision between
two stars expands adiabatically following shock heating, and there-
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fore has a larger cross-section for subsequent collisions with the
remaining star(s).

Collisions and binary interactions strongly affect the dynami-
cal evolution of globular clusters. The formation of more massive
objects through mergers tends to accelerate core collapse, shorten-
ing cluster lifetimes. On the other hand, mass loss from evolving
collision products can indirectly heat the cluster core, thereby post-
poning core collapse. The realization during the 1990s that primor-
dial binaries are present in globular clusters in dynamically signifi-
cant numbers has completely changed our theoretical perspective on
these systems (Goodman & Hut 1989; Sigurdsson & Phinney 1995;
Ivanova et al. 2004). Most importantly, dynamical interactions of
hard primordial binaries with single stars and other binaries are
thought to be the primary mechanism for supporting globular clus-
ters against core collapse (McMillan, Hut & Makino 1990, 1991;
Gao et al. 1991; Hut et al. 1992; Heggie & Aarseth 1992; McMillan
& Hut 1994; Rasio, Fregeau & Joshi 2001; Fregeau et al. 2003;
Giersz & Spurzem 2003). Observational evidence for the existence
of primordial binaries in globular clusters is now well established
(Hut et al. 1992; Cote et al. 1994; Rubenstein & Bailyn 1997).
Recent Hubble Space Telescope (HST) observations have pro-
vided direct constraints on the primordial binary fractions in many
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clusters. For example, the observation of a broadened main sequence
in NGC 6752, based on HST-WFPC2 images, suggests that the bi-
nary fraction is probably in the range 15–40 per cent in the inner core
(Rubenstein & Bailyn 1997). Using a similar method, Bellazzini
et al. (2002) find that the binary fraction in the inner region of
NGC 288 is probably between 10 and 20 per cent, and less than
10 per cent in the outer region. Observations of eclipsing binaries
and BY Draconis stars in 47 Tuc yield an estimate of ∼13 per cent for
the core binary fraction (Albrow et al. 2001), although a recent rein-
terpretation of the observations in combination with new theoreti-
cal results suggests that this number might be closer to ∼5 per cent
(Ivanova et al. 2004). Using HST-WFPC2, Bolton, Cool & Anderson
(1999) derive an upper limit of only ∼3 per cent on the binary frac-
tion in the core of NGC 6397.

In this paper, we focus on interactions involving main-sequence
(MS) stars, and the production of blue stragglers (BSs). BS stars
appear along an extension of the MS blueward of the turn-off point
in the colour–magnitude diagram (CMD) of a star cluster. All ob-
servations suggest that they are massive MS stars formed through
mergers of two (or more) lower-mass stars. For example, Gilliland
et al. (1998) have demonstrated that the masses estimated from the
pulsation frequencies of four oscillating BSs in 47 Tuc are consis-
tent with their positions in the CMD. Indirect measurements of BS
masses yield values of up to four times the MS turn-off mass, al-
though the uncertainties are significant (Bond & Perry 1971; Strom,
Strom & Bregman 1971; Milone et al. 1992). More recent spectro-
scopic measurements yield much more precise masses, with one BS
in 47 Tuc about twice the MS turn-off mass (Shara, Saffer & Livio
1997), and two in NGC 6397 more than twice the MS turn-off mass
(Sepinsky et al. 2000).

Mergers of MS stars can occur in at least two different ways:
via physical collisions, or through the coalescence of two stars in
a close binary system (Leonard 1989; Livio 1993; Stryker 1993;
Bailyn & Pinsonneault 1995). Direct evidence for binary progeni-
tors has been found in the form of contact (W UMa type) binaries
among BSs in many globular clusters (Rucinski 2000), including
low-density globular clusters such as NGC 288 (Bellazzini et al.
2002), NGC 5466 (Mateo et al. 1990) and M71 (Yan & Mateo
1994), as well as in many open clusters (e.g. Kaluzny & Rucinski
1993; Milone & Latham 1994; Jahn, Kaluzny & Rucinski 1995). At
the same time, strong indication for a collisional origin comes from
detections by HST of large numbers of bright BSs concentrated in
the cores of some of the densest clusters, such as M15 (de Marchi
& Paresce 1994; Yanny et al. 1994a; Guhathakurta et al. 1996),
M30 (Yanny et al. 1994b; Guhathakurta et al. 1998), NGC 6397
(Burgarella et al. 1994), NGC 6624 (Sosin & King 1995) and M80
(Ferraro et al. 1999). High-resolution HST images reveal that the
central density profiles in many of these clusters steadily increase
down to a radius of ∼0.1 pc, with no signs of flattening. Direct
stellar collisions should be extremely frequent in such high-density
environments.

Evidence for the greater importance of binary interactions over
direct collisions of single stars for producing BSs in some globular
clusters can be found in a lack of correlation between BS specific fre-
quency and cluster central collision rate (de Angeli & Piotto 2003;
Ferraro et al. 2003). More direct evidence comes from the BS S1082
in the open cluster M67, which is part of a wide hierarchical triple
system (Sandquist et al. 2003). The most natural formation mech-
anism is via a binary–binary interaction. There is further evidence
in the radial distributions of BSs in clusters. HST observations, in
combination with ground-based studies, have revealed that the ra-
dial distributions of BSs in the clusters M3 and 47 Tuc are bimodal –

peaked in the core, decreasing at intermediate radii, and rising again
at larger radii (Ferraro et al. 1993, 1997, 2004). The most plausi-
ble explanation is that the BSs at larger radii were formed through
binary interactions in the cluster core and ejected to larger radii
(Sigurdsson, Davies & Bolte 1994).

In this paper, we perform numerical scattering experiments to
study stellar collisions that occur during binary interactions. One
approach for attacking the problem is to perform a full globular
cluster simulation, taking into account every relevant physical pro-
cess, including stellar dynamics, stellar evolution and hydrodynam-
ics. This approach is enticing in its depth, but would certainly yield
results with a complicated dependence on the input parameters and
physics that would be difficult to disentangle. A simpler approach
is to study in detail the scattering interactions that occur between
binaries and single stars or other binaries. This approach isolates
the relevant physics and produces results that are easier to interpret.
Furthermore, the cross-sections tabulated will be useful for future
analytical and numerical calculations of cluster evolution and inter-
action rates. For a discussion of the interplay between globular clus-
ter dynamics and stellar collisions, see e.g. Hurley et al. (2001). For
dense globular cluster cores, merger rates via binary stellar evolution
can be significantly enhanced by dynamical interactions (Ivanova
et al. 2004).

Our paper is organized as follows. In Section 2 we summarize pre-
vious theoretical work on stellar collisions in binary interactions. In
Section 3 we describe our numerical method, and introduce the two
numerical codes used. In Section 4 we test the validity of our numer-
ical method by comparison with previous results. In Section 5 we
present a systematic study of the dependence of the collision cross-
section in binary–single and binary–binary interactions on several
physically relevant parameters. In Section 6 we consider binaries
with parameters characteristic of those found in globular clusters,
and study the properties of the resulting binaries and triples con-
taining collision products. Finally, in Section 7 we summarize and
conclude.

2 P R E V I O U S WO R K

There now exists a very large body of numerical work on binary–
single and, to a lesser extent, binary–binary interactions (see e.g.
Heggie & Hut 2003, for an overview and references). Hut &
Bahcall (1983) performed one of the most extensive early studies of
binary–single star scattering for the equal-mass, point-particle case.
Mikkola (1983a) performed the first systematic studies of binary–
binary interactions in the point-particle limit, first for the case
of equal-energy binaries, and later for unequal energies (Mikkola
1984a). He also studied the energy generated in binary–binary inter-
actions in the context of the evolution of globular clusters (Mikkola
1983b, 1984b). Most numerical scattering experiments have been
performed in the point-mass limit, neglecting altogether the effects
of the finite size of stars. However, as we summarize below, there
are a number of studies that apply approximate prescriptions for dis-
sipative effects and collisions post facto to numerical integrations
performed in the point-mass limit but in which pairwise closest ap-
proach distances were recorded. There is also one study in which
collisions are treated in situ in a simplified manner, and several that
perform full smoothed particle hydrodynamics (SPH) simulations
of multiple-star interactions (see below).

Hoffer (1983) was the first to study distances of closest approach
between stars in both binary–single and binary–binary interactions.
He found that roughly 40 per cent of binary–binary encounters in a
typical globular cluster core will lead to a physical collision between
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two stars. Krolik, Meiksin & Joss (1984) considered the evolution of
a compact binary in a globular cluster core subject to perturbations
by single field stars, and found that an induced merger or collision
between two stars in a binary–single interaction is likely. Hut &
Inagaki (1985) applied a single-parameter, ‘fully inelastic sphere’
collision model after the fact to a large number of binary–single
interactions for which distances of closest approach were recorded,
and calculated merger rates. McMillan (1986) applied simple pre-
scriptions for the dissipative effects of gravitational radiation, tidal
interactions, and physical contact between stars after the fact to a
large number of binary–single interactions involving tight binaries.
He found that dissipative effects reduce binary heating efficiency in
cluster cores by roughly an order of magnitude over that obtained in
the point-mass limit. He also found that the most likely outcome of a
binary–single interaction involving a tight binary is the coalescence
of at least two of the stars. This work was carried further by Portegies
Zwart, Hut & Verbunt (1997a) and Portegies Zwart et al. (1997b),
who included the effects of binary stellar evolution on binary–single
interactions. They found that about 20 per cent of encounters be-
tween a primordial binary and a cluster star result in collisions,
while almost 60 per cent of encounters with tidal-capture binaries
lead to collisions. Leonard (1989) performed a small number of
binary–binary interactions and recorded close-approach distances
and calculated ejection speeds of collision products. Leonard &
Fahlman (1991) performed the first set of binary–single and binary–
binary interactions in which stars were allowed to merge during the
numerical integration. They studied the rate of production of BSs
in clusters, and performed the first, simplified ‘population synthe-
sis’ study of BSs in clusters. Hills (1991, 1992) considered stars
with a range of masses exchanging into binaries, and found the dis-
tance of closest approach to be roughly a constant fraction of binary
semimajor axis independent of intruder mass, over a wide range of
mass ratios. Cleary & Monaghan (1990) performed full SPH simu-
lations of binary–single interactions and showed directly the impor-
tance of taking into account the non-zero size of stars. Goodman &
Hernquist (1991) and Davies, Benz & Hills (1993, 1994) performed
sets of binary–single and binary–binary interactions with tight bi-
naries in the point-mass limit, and selected a handful to run with
a full SPH code. They found that multiple mergers are common.
Bacon et al. (1996) performed a large number of binary–binary in-
teractions and presented a survey of close-approach cross-sections
for several sets of physically relevant binary parameters. They also
calculated outcome frequencies, studied the properties of the inter-
action products, and used their results in analytical calculations of
interaction rates in globular cluster cores. More recently, Giersz &
Spurzem (2003) have incorporated into their Monte Carlo globu-
lar cluster evolution code Aarseth’s NBODY for performing direct
integrations of binary interactions. By storing the results of binary
interactions that occur during cluster evolution, they have calculated
close-approach cross-sections, and a few differential cross-sections.

3 N U M E R I C A L M E T H O D

The scattering experiments presented in this paper were performed
primarily using FEWBODY,1 a new numerical toolkit designed for
simulating small-N gravitational dynamics, which we describe be-
low. In some cases we also use the scattering facilities of the STARLAB

software environment (Portegies Zwart et al. 2001). STARLAB was
used mainly to compare with FEWBODY, but in cases where STARLAB

1 See http://www.mit.edu/∼fregeau, or search the web for ‘Fewbody’.

data were compiled before FEWBODY was written, STARLAB results
were used. In particular, all calculations in Section 6 were performed
with STARLAB.

3.1 Setup

We label the two objects in a scattering experiment 0 and 1. In the
case of binary–single scattering, 0 is the binary and 1 is the single
star. In the case of binary–binary scattering, 0 and 1 are each binaries.
We use the same system of labelling for each binary, so the mem-
bers of binary i are labelled i0 and i1. There are several parameters
required to specify a binary–single or binary–binary scattering ex-
periment uniquely. To describe the initial hyperbolic (or parabolic)
orbit between objects 0 and 1, one needs to specify the relative ve-
locity at infinity v∞, impact parameter b and masses m 0 and m 1. To
describe the internal properties of each object, one needs to spec-
ify the semimajor axes ai, eccentricities ei, individual masses mij

and stellar radii Rij. There are also several phase and orientation
angles required for each binary: the orientation of the binary an-
gular momentum vector relative to the angular momentum vector
describing the orbit between 0 and 1, given by the polar angle θ and
the azimuthal angle φ; the angle ω between the binary Runge–Lenz
vector and some fiducial vector perpendicular to the binary angular
momentum vector (e.g. the cross-product of the binary angular mo-
mentum and the 0–1 angular momentum); and η, the mean anomaly
of the binary. For all the scattering experiments presented in this
paper, these phase and orientation angles are chosen randomly,
so that the cross-sections calculated represent averages over these
quantities. In detail, these angles are given by θ = cos−1(2X − 1),
φ = 2πX , ω = 2πX and η = 2πX , where X is a uniform deviate in
the range [0, 1). In addition, unless otherwise noted, the eccentricity
of each binary is chosen from a thermal distribution (Jeans 1919)
truncated at large e such that there is no contact binary. In each
scattering experiment, numerical integration is started at the point
at which the tidal perturbation (F tid/F rel) on a binary in the system
reaches δ (see Section 3.3.4).

It is customary to specify the relative velocity at infinity in terms
of the critical velocity, vc, defined such that the total energy of the
binary–single or binary–binary system is zero. For v∞ > vc the
total energy of the system is positive, and full ionization is possible.
That is, a possible outcome of the scattering experiment is that
each star leaves the system unbound from any other with positive
velocity at infinity. For v∞ < vc, the total energy of the system is
negative, and the encounters are likely to be resonant, with all stars
involved remaining in a small volume for many dynamical time-
scales. Defining the total mass M = m 0 + m 1 and reduced mass
µ = m 0m 1/M , the critical velocity is

vc =
[

G

µ

(
m00m01

a0

)]1/2

(1)

for the binary–single case, and

vc =
[

G

µ

(
m00m01

a0
+ m10m11

a1

)]1/2

(2)

for the binary–binary case. The cross-section for outcome X is ob-
tained by performing many scattering experiments out to a maxi-
mum impact parameter bmax and calculating

σX = πb2
max

NX

N
, (3)

where NX is the number of experiments that have outcome X, and N
is the total number of scattering experiments performed. In all cases
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the maximum impact parameter was chosen large enough to ensure
that the full region of interest was sampled. In other words, for b >

bmax, all interactions are fly-bys in which each binary is only weakly
tidally perturbed during the interaction. For calculations performed
with FEWBODY, bmax was chosen to correspond to a pericentre dis-
tance of r p = 5(a0 + a1) in the binary–binary case, and r p = 5a
in the binary–single case. For this value of pericentre distance, the
binary eccentricity induced in the fly-by is quite small [δe � 1 for
initially circular binaries, and δe/e � 1 for non-circular binaries;
see Rasio & Heggie (1995) and Heggie & Rasio (1996)]. For calcu-
lations performed with STARLAB, bmax was chosen automatically by
using successively larger impact parameter annuli until no relevant
outcomes were found (McMillan & Hut 1996). The uncertainty in
the cross-section is calculated assuming Poisson counting statistics,
so that

�σX = πb2
max

√
NX

N
. (4)

In principle, it is necessary to include scattering experiments that
result in unresolved outcomes in this uncertainty (see e.g. Hut &
Bahcall 1983). However, in practice, we find that the number of
unresolved outcomes is small, and does not significantly contribute
to �σ X .

Table 1. Possible outcomes of binary–single star encounters, ordered by
the number of collisions, ncoll. Brackets enclose two objects that are bound
to each other, while colons represent physical collisions. For simplicity, we
have only listed the outcomes that would result from indistinguishable stars.

ncoll Symbol Description

0 [• •] • Preservation or exchange
0 • • • Ionization
0 [[• •] •] Stable hierarchical triple

1 [•:• •] Binary containing a two-star merger
1 •:• • Two-star merger and single star

2 •:•:• Three-star merger

Table 2. Possible outcomes of binary–binary star encounters, ordered by the number of collisions, ncoll. Brackets enclose two
objects that are bound to each other, while colons represent physical collisions. For simplicity, we have only listed the outcomes
that would result from indistinguishable stars. Listed in the third column are the abbreviations used in the paper to refer to various
outcomes.

ncoll Symbol Abbreviation Description

0 [• •] [• •] Preservation or exchange
0 [• •] • • Single ionization
0 • • • • Full ionization
0 [[• •] •] • Stable hierarchical triple and single star
0 [[[• •] •] •] Stable hierarchical quadruple
0 [[• •] [• •]] Stable quadruple composed of two binaries

1 [• •] •:• (SS)D Binary and two-star merger
1 [•:• •] • (DS)S Single star and binary containing two-star merger
1 •:• • • DSS Two-star merger and two single stars
1 [[•:• •] •] ((DS)S) Stable hierarchical triple with two-star merger in inner binary
1 [[• •] •:•] ((SS)D) Stable hierarchical triple with two-star merger in outer binary

2 [•:• •:•] (DD) Binary composed of two two-star mergers
2 [•:•:• •] (TS) Binary containing a three-star merger
2 •:• •:• DD Two two-star mergers
2 •:•:• • TS Three-star merger and single star

3 •:•:•:• Q Four-star merger

3.2 Possible outcomes

The possible outcomes of binary–single and binary–binary scatter-
ing interactions are listed in Tables 1 and 2, ordered by the number
of collisions, n coll. Stars are represented as filled circles, brackets en-
close two objects that are bound to each other in a binary, and colons
represent physical collision products. In Table 2 we also list the ab-
breviations used in the paper to refer to certain outcomes. When there
are no collisions (as is the case in the point-mass limit), the number
of possible outcomes is small, as shown in the n coll = 0 rows in each
table. However, when one considers stars with non-zero radius and
allows for the possibility of collisions and subsequent mergers, the
total number of outcomes becomes large. Assuming indistinguish-
able stars, there are six possible outcomes for the binary–single case,
and 16 for the binary–binary case. These numbers are evidently in-
creased for distinguishable stars. The software used in this paper
distinguishes among all possible outcomes.

3.3 FEWBODY

FEWBODY is a new numerical toolkit for simulating small-N gravi-
tational dynamics. It is a general N-body dynamics code, although
it was written for the purpose of performing scattering experiments,
and therefore has several features that make it well suited for this
purpose. It can be described succinctly in terms of its key elements.

3.3.1 Adaptive integration and regularization

At its core, FEWBODY uses the eighth-order Runge–Kutta Prince–
Dormand integration method with ninth-order error estimate and
adaptive time-step to advance the N-body system forward in time.
It integrates the usual formulation of the N-body equations in
configuration space, but allows for the option of global pairwise
Kustaanheimo–Stiefel (KS) regularization (Heggie 1974; Mikkola
1985). Global regularization is a coordinate transformation that re-
moves all singularities from the N-body equations, making the in-
tegration of close approaches, and even collision orbits, much more
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accurate. It is well suited for small-N dynamics, since it requires the
integration of ∼N 2 separations instead of N positions, and becomes
prohibitively computationally expensive for N � 10. Although it
should in principle make numerical integration more accurate, it
was found that the adaptive time-step algorithm alone performed
as well as global regularization, in terms of the computational time
required for a specified level of energy and angular momentum
accuracy. The use of regularization requires extra effort to detect
physical collisions, since, with regularization, pericentre is not nec-
essarily resolved by the integrator. For the sake of simplicity, we
have chosen not to implement the appropriate technique for detect-
ing collisions with regularization (see section 9.8 of Aarseth 2003).
Furthermore, physical collisions naturally soften the singularities in
the non-regularized N-body equations by making them physically
inaccessible. Regularization was therefore only used to test calcu-
lations made in the point-mass limit. For all other calculations the
non-regularized integration routine was used.

3.3.2 Classification

FEWBODY uses a binary tree algorithm to handle several aspects
related to performing scattering experiments. Most importantly, it
uses a binary tree algorithm to classify the N-body system into a
set of independently bound hierarchies. For example, if the out-
come of a scattering experiment between two hierarchical triples is
a hierarchical triple composed of binaries, FEWBODY will classify it
accordingly. FEWBODY creates the set of binary trees iteratively, ac-
cording to the following simple rules. First, as shown in Fig. 1, any
existing set of trees is flattened so that each star in the N-body system
represents the top-level node of a one-node tree. Next, as shown in
Fig. 2, the two top-level nodes that are bound to each other with the
smallest semimajor axis are replaced by a parent node containing
all dynamical information about the centre of mass, as well as all
information about the binary’s orbit, including phase. The previous
step is repeated, as shown in Fig. 3, until no top-level nodes are

Figure 1. Schematic representation of the binary-tree algorithm used by
FEWBODY. A circle containing a number represents a star. The set of binary
trees is shown flattened here, as it is before processing, so that each star is
the top-level node of a one-node tree.

Figure 2. Schematic representation of the binary-tree algorithm used by
FEWBODY. A circle containing a number represents a star, while an empty
circle represents a general parent node. The set of binary trees is shown
after the first stage of processing, with stars 1 and 2 replaced by their parent
node, which contains the dynamical information pertaining to the centre of
mass of the 1–2 binary, as well as all phase and orientation information. For
classification, the replacement of stars 1 and 2 by their parent node simply
means that they are bound to each other with the smallest semimajor axis.
For hierarchy isolation, it would also mean that the 1–2 binary is sufficiently
weakly perturbed that it can be treated analytically, and is stable in the sense
that its two members will not collide at pericentre.

Figure 3. Schematic representation of the binary-tree algorithm used by
FEWBODY. A circle containing a number represents a star, while an empty
circle represents a general parent node. The set of binary trees is shown
after the second stage of processing, with the 1–2 centre of mass and star
3 replaced by their parent node. For hierarchy isolation, this replacement
is quite rare, as it would require that the triple be not only dynamically
stable, but also sufficiently hierarchical that its evolution could be treated
analytically.

found to be bound to each other. This algorithm is clearly general in
N. The resulting set of binary trees is a unique classification of the
configuration of the N-body system. As described below, the clas-
sification is used for determining when an interaction is complete.
The binary tree algorithm is also used (with a slightly different set of
rules for creating the trees) to make the numerical integration more
efficient, as also described below.

3.3.3 Stability

FEWBODY assesses the dynamical stability of gravitationally bound
hierarchies in an approximate way using the classification just de-
scribed, and a simple analytical test. There currently exists only
one reasonably accurate criterion for the dynamical stability of an
N > 2 gravitational system, the approximate analytical criterion of
Mardling & Aarseth (2001) for the dynamical stability of hierar-
chical triples. FEWBODY assesses the stability of each binary tree
by applying this criterion at each level in the tree. For example, for
a hierarchical quadruple system (which consists of a star in orbit
around a hierarchical triple – shown as ‘[[[• •] •] •]’ in Table 2), it
first applies the triple stability criterion to the inner triple, then ap-
plies it to the ‘outer’ triple, treating the innermost binary as a single
object. For the case of a hierarchical quadruple composed of two
binaries (‘[[• •] [• •]]’ in Table 2), FEWBODY uses the additional
correction factor presented in section 4.2 of Mardling & Aarseth
(2001). The stability of a hierarchical system as determined by this
method is only approximate, but, in our experience, seems to work
reasonably well. For the particular case of binary–binary scattering,
hierarchical triples that appear to be stable are classified as unstable
less than roughly 1 per cent of the time.

It should be noted that the stability assessed here is dynamical
rather than secular, so, for example, any resonances that would de-
stroy an otherwise stable hierarchical system are ignored. Such res-
onances are likely to be important in the more general context of the
dynamics of globular clusters and their constituent populations (e.g.
Ford, Kozinsky & Rasio 2000; Miller & Hamilton 2002), but are be-
yond the scope of the present paper. It should also be noted that our
use of binary trees prevents us from recognizing stable three-body
systems that are not hierarchical, such as the stable ‘figure eight’
orbit for three stars of comparable mass (Chenciner & Montgomery
2000; Montgomery 2001). However, the fraction of strong binary–
binary scattering encounters resulting in this configuration is likely
to be exceedingly small (Heggie 2000).
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6 J. M. Fregeau et al.

3.3.4 Hierarchy isolation

FEWBODY also uses a binary tree algorithm to speed up numerical
integration by isolating from the integrator certain tight binaries
and hierarchies that are only very weakly perturbed, yet dominate
the calculation by driving down the integration time-scale. It does
this by integrating only the top-level nodes (centres of mass) of a
set of binary trees created using the algorithm described in Section
3.3.2, but subject to a slightly different rule set. Two top-level nodes
can only be replaced by their parent node if: (1) the binary tree
represented by the parent node is stable, (2) the tidal perturbation
on the outer binary of the tree (the two nodes below the top level)
at apocentre due to all other top-level nodes in the system is less
than a specified fraction, δ, of the minimum force between them
(F tid/F rel < δ at apocentre), and (3) the evolution of the binary
tree can be treated analytically. The relative force at apocentre is
calculated simply as

Frel = Gm0m1

[a(1 + e)]2
, (5)

where m 0 and m 1 are the masses of the members of the outer binary,
a is the semimajor axis, and e is the eccentricity. The tidal force at
apocentre is calculated simply as

Ftid =
∑

i

2G(m0 + m1)mi

r 3
i

a(1 + e), (6)

where the sum is taken over all other top-level nodes in the system,
mi is the mass of the other top-level node, and ri is the distance to
the other top-level node. Note that this sum represents the upper
limit of the tidal force since it does not take into account relative
inclination between the binary and the other top-level nodes.

A binary (or hierarchy) that is isolated from the integrator in this
way is treated numerically again when its relative tidal perturbation
exceeds δ. This is done by resuming the integration from the pre-
vious step (when the hierarchy’s tidal perturbation was less than δ)
with the parent node replaced by its child nodes, and orbital phase
advanced to the current time. In practice, this algorithm isolates
from the integrator mainly weakly perturbed binaries, and a few
extremely hierarchical triples in which the tidal perturbation on the
inner binary due to the outer member is very small. For binary–single
scattering, hierarchy isolation can speed up the integrations by up
to an order of magnitude on average. For binary–binary scattering,
especially when the two binaries have very disparate semimajor
axes, and hence orbital time-scales, this algorithm can speed up the
integrations by a few orders of magnitude on average. The quan-
tity δ plays the role of an integration tolerance parameter. Larger
values of δ allow hierarchies to be treated analytically more fre-
quently, yielding faster calculations but sacrificing energy accuracy.
Smaller values of δ yield better energy conservation at the expense
of computational speed.

3.3.5 Calculation termination

FEWBODY uses the classification and stability assessment techniques
outlined above, in combination with a few simple rules to terminate
automatically the integration of scattering encounters when they are
complete – in other words, when the separately bound hierarchies
comprising the system will no longer interact with each other or
evolve internally. Integration is terminated when: (1) each pair of
top-level nodes has positive relative velocity, (2) the tidal perturba-
tion (F tid/F rel) on the outer binary (the two nodes below the top
level) of each tree due to the other top-level nodes is smaller than

δ, (3) each tree is dynamically stable (as defined in Section 3.3.3),
and (4) the N-body system composed of the top-level nodes has
positive energy. The last condition is required because it is possible
for the members of an N-body system to be separately unbound
and receding from each other, yet for the system as a whole to be
bound. Here δ again plays the role of an accuracy parameter, with
smaller δ yielding more accurate outcome classifications. Since the
N-body problem is chaotic, with initially neighbouring trajectories
in phase space diverging exponentially, the value of δ should play
only a minor role in the statistical accuracy of classifications of
outcomes.

3.3.6 Physical collisions

FEWBODY performs collisions between stars in the ‘sticky star’ ap-
proximation. In this approximation, stars are treated as rigid spheres
with radii equal to their stellar radii. When two stars touch, they are
merged with no mass lost, and with linear momentum conserved.
[Tidal effects, which may significantly increase the collision rate for
close encounters (see e.g. McMillan 1986), are beyond the scope
of this method, but may be approximated by larger initial effective
stellar radii.] The radius of the merger product is set to

Rmerger = fexp(R1 + R2), (7)

where R1 and R2 are the radii of the merging stars, and f exp is
an expansion factor. To determine a reasonable value for f exp, one
must consider the relevant time-scales involved. The characteristic
time-scale of a typical binary scattering encounter in a globular clus-
ter core is between ∼10 yr for a fly-by and �104 yr for a resonant
encounter, while the thermal time-scale of a ∼1 M� MS star is
∼107 yr. Therefore, it is invalid to treat merger products as rejuve-
nated (‘reborn’) MS stars ( f exp = 1) during scattering encounters.
The hydrodynamical time-scale is ∼1 h, so it is more accurate to
treat merger products as hydrodynamically settled. SPH simulations
show that f exp should be in the range 2–30, depending on the rel-
ative orientations of the two stars before collision (Lombardi et al.
2003). These simulations also show that the amount of mass lost in
the types of collisions characteristic of globular clusters is typically
of the order of 1 per cent, so our assumption of zero mass loss is a
reasonable first approximation.

Collision products are likely to have significant rotation and be
non-spherical. Furthermore, it is not clear that the value of the ex-
pansion parameter for the merger of two pristine MS stars should
be the same as that for mergers involving collision products. Thus
f exp should be considered an effective quantity, averaged over many
collisions. A more realistic approach that adopts several separate pa-
rameters is in principle possible, but beyond the scope of the current
paper.

3.3.7 General availability

FEWBODY is freely available for download on the web, licensed under
the GNU General Public License (GPL). It contains a collection
of command-line utilities that can be used to perform individual
scattering and N-body interactions, but is more generally a library of
functions that can be used from within other codes. Its facilities make
it aptly suited for performing scattering interactions from within
larger numerical codes that, for example, calculate cross-sections,
or evolve globular clusters via Monte Carlo techniques.

Available along with FEWBODY, there is an OpenGL-based visu-
alization tool called GLStarView that can be used to view N-body
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interactions as they are being calculated by FEWBODY, in an immer-
sive, 3D environment. GLStarView has proven to be a valuable aid
in developing our understanding and physical intuition of binary
interactions.

3.4 STARLAB

STARLAB is a collection of modular software tools designed to simu-
late the evolution of dense stellar systems and analyse the resulting
data (see Portegies Zwart et al. 2001, for a detailed description). It is
freely available on the web.2 It consists of a library of programs for
performing stellar dynamics, stellar evolution and hydrodynamics,
together with a set of programs acting as bridges between them.
They may be combined to study all aspects of the evolution of
N-body systems. For this paper, we use the three-body scattering
facility SCATTER3 and the general N-body scattering facility SCATTER

from version 3.5 of STARLAB, along with SIGMA3 and SIGMA for the
automated calculation of cross-sections.

4 T E S T S A N D C O M PA R I S O N S

To assess the validity of calculations performed with FEWBODY, we
have compared the results of several scattering experiments with
the results of previous studies. For general binary–single interac-
tions, we have compared our results with those of Hut & Bahcall
(1983); for general binary–binary, we have made a comparison
with Mikkola (1983a); and for detecting close-approach distances,
we have compared with binary–binary calculations performed by
Bacon et al. (1996). The scattering facilities in STARLAB have
been used extensively and tested thoroughly (see, in particular,
Gualandris, Portegies Zwart & Eggleton 2004). However, there has
only been one reported comparison between the three-body scat-
tering routine and the N-body routine in the literature (Gualandris
et al. 2004). Below, we perform a new test and show that the two
routines agree at a basic level.

4.1 General binary–single comparison

Hut & Bahcall (1983) performed one of the most extensive early
studies of binary–single star scattering for the equal-mass, point-
particle case. Fig. 4 shows a comparison of the results of 8 × 105

scattering interactions calculated using FEWBODY with their fig. 5.
Plotted are the total dimensionless cross-sections (σ/πa2, where a
is the binary semimajor axis) for ionization (shown by stars) and
exchange (triangles) as a function of v∞/vc, for the equal-mass,
zero-eccentricity, point-particle case. The dotted lines represent the
data from their figure (without error bars), while the straight lines
are the theoretically predicted cross-sections for ionization and ex-
change from the same paper. The agreement between the two is
excellent, although it appears that Hut & Bahcall systematically
find a slightly larger cross-section for ionization. We note, however,
that the two agree at roughly the 1σ level.

4.2 General binary–binary comparison

The first systematic study of binary–binary scattering was presented
by Mikkola (1983a). He considered binaries with equal semimajor
axes, and stars of equal mass, in the point-particle limit. We have
chosen to compare with table 5 of that paper, which presents sets

2 See http://www.manybody.org

Figure 4. Comparison of FEWBODY with fig. 5 of Hut & Bahcall (1983):
total cross-sections for binary–single scattering for the equal-mass, zero-
eccentricity, point-particle case. A total of 8 × 105 scattering experiments
were used to create this figure. The dotted lines represent the data from Hut
& Bahcall, while the straight solid and dashed lines are the theoretically
predicted cross-sections for ionization and exchange from the same paper.
Data points are from FEWBODY. The agreement between the two is excellent.

of scattering experiments performed for several different values of
v∞/vc, with impact parameter chosen uniformly in area out to the
maximum impact parameter found to result in a strong interaction
(listed in his table 3). Only strong interactions were counted, and the
eccentricities of the binaries were chosen from a thermal distribu-
tion. It should be noted, for the sake of completeness, that Mikkola
(1983a) characterized his encounters by their dimensionless energy
at infinity, T ∞. The relation between v∞ and T ∞ is v∞/vc = √

T∞.
Mikkola’s classification scheme is similar to FEWBODY’s, the two
primary differences being: (1) the value of the tidal tolerance, δ,
used by Mikkola is 3 × 10−4, while the FEWBODY runs use δ =
10−5; and (2) the criterion used to assess the dynamical stability
of triples is that of Harrington (1974), a much less accurate stabil-
ity criterion than the Mardling & Aarseth (2001) criterion used by
FEWBODY. It is therefore expected that the classification of FEWBODY

is more accurate. The binary–binary scattering encounters are clas-
sified into five different outcomes. The label ‘undecided’ represents
an encounter that was deemed to be unfinished after a preset amount
of computation time – in other words, it could not be classified into
one of the four categories of ‘exchange’, ‘triple’, ‘single ionization’,
or ‘full ionization’. These four outcomes are described in the n coll =
0 rows of Table 2. Table 3 compares results from FEWBODY with
table 5 of Mikkola (1983a). The comparison is also shown graphi-
cally here in Fig. 5.

Several comments are in order. Looking at the ‘Undecided’ col-
umn in Table 3, it is clear that FEWBODY resolves more encounters
than Mikkola (1983a), yielding roughly half as many undecided en-
counters. This is a result of both the increased power of modern
computers – resonant encounters can be integrated longer, and one
can use smaller δ – and the more accurate triple stability criterion
available today. In the next column, labelled ‘Exchange’, it is clear
that Mikkola finds many more exchange encounters than FEWBODY.
This is thought to be primarily because in this column Mikkola’s
data include strong interactions, which result not only in exchange,
but also in preservation. We have not included this type of outcome
in the FEWBODY results because it would have been cumbersome
to implement Mikkola’s test for a strong interaction. The next col-
umn, labelled ‘Triple’, shows that Mikkola regularly classifies more
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Table 3. Comparison of FEWBODY with table 5 of Mikkola (1983a): fraction of strong binary–binary interactions that result
in various outcomes. In each binary–binary interaction the stars had equal masses and were assumed to be point particles, the
binaries had equal semimajor axes, and the eccentricities were drawn from a thermal distribution. The data are normalized to 100
total scattering experiments. The results are also shown graphically in Fig. 5.

v∞/vc Method Undecided Exchange Triple Single ionization Full ionization Total

0.316 Mikkola 4.7 ± 1.2 11.0 ± 1.9 24.3 ± 2.8 60.0 ± 4.5 0.0 ± 0.0 300
FEWBODY 1.6 ± 0.2 6.0 ± 0.3 22.8 ± 0.7 69.7 ± 1.2 0.0 ± 0.0 5225

0.500 Mikkola 2.7 ± 0.9 7.3 ± 1.6 20.3 ± 2.6 69.7 ± 4.8 0.0 ± 0.0 300
FEWBODY 1.4 ± 0.2 6.7 ± 0.4 17.2 ± 0.6 74.7 ± 1.3 0.0 ± 0.0 4366

0.707 Mikkola 0.7 ± 0.5 9.3 ± 1.8 11.7 ± 2.0 78.3 ± 5.1 0.0 ± 0.0 300
FEWBODY 0.5 ± 0.1 7.7 ± 0.5 6.8 ± 0.5 85.0 ± 1.6 0.0 ± 0.0 3303

0.866 Mikkola 0.7 ± 0.5 16.7 ± 2.4 5.0 ± 1.3 77.7 ± 5.1 0.0 ± 0.0 300
FEWBODY 0.1 ± 0.1 8.2 ± 0.5 2.3 ± 0.2 89.4 ± 1.5 0.0 ± 0.0 3827

1.000 Mikkola 0.0 ± 0.0 9.3 ± 1.8 1.7 ± 0.7 89.0 ± 5.4 0.0 ± 0.0 300
FEWBODY 0.1 ± 0.0 6.4 ± 0.4 0.6 ± 0.1 92.7 ± 1.6 0.2 ± 0.1 3499

1.225 Mikkola 0.0 ± 0.0 8.3 ± 1.7 0.7 ± 0.5 73.7 ± 5.0 17.3 ± 2.4 300
FEWBODY 0.0 ± 0.0 4.6 ± 0.3 0.2 ± 0.1 92.1 ± 1.5 3.1 ± 0.3 3969

Figure 5. Comparison of FEWBODY (solid lines) with table 5 of Mikkola
(1983a) (dotted lines): fraction of strong binary–binary interactions that re-
sult in various outcomes. In each binary–binary interaction the stars had
equal masses and were assumed to be point particles, the binaries had equal
semimajor axes, and the eccentricities were drawn from a thermal distribu-
tion. Circles represent outcomes that were undecided after a preset maximum
computation time, squares represent exchanges, diamonds represent stable
hierarchical triples, upward-pointing triangles represent outcomes that re-
sulted in one binary being disrupted, and downward-pointing triangles repre-
sent outcomes that resulted in both binaries being disrupted. The solid lines
represent FEWBODY data, while the dotted lines represent data from Mikkola.
The results are also presented in Table 3.

triples as stable than FEWBODY. This results in fewer outcomes la-
belled as ‘Single ionization’, since the test for single ionization
occurs after that of triple stability in Mikkola’s code. ‘Full ioniza-
tion’ can only occur when the total energy of the system is greater
than or equal to zero (v∞/vc � 1). There is a large discrepancy
in the number of full ionizations for v∞/vc = 1.225. We are not
quite sure of the underlying reason for the discrepancy, but think it
may be due to the tidal tolerance used, which differs by more than
an order of magnitude between the two methods. Aside from the
systematic discrepancies pointed out above, the two methods agree
at a reasonable level, given the differences between them. This is
especially clear from Fig. 5. For all outcomes except full ionization,

the methods agree at roughly the 2σ level (the uncertainties shown
are 1σ ).

4.3 Comparison for close-approach distances

Bacon et al. (1996) presented a more recent and detailed study
of binary–binary interactions in the point-particle limit, in which
close-approach distances were recorded and used to calculate cross-
sections. In the scattering experiment we have chosen for compari-
son, each binary had equal semimajor axis (a0 = a1 = a) and zero
eccentricity, and all stars had equal mass. The impact parameter
was chosen uniformly in area out to the maximum impact parame-
ter given by bmax/a = C/v∞ + D, where C = 5 and D = 0.6. This
expression for the impact parameter is an extension of that used by
Hut & Bahcall (1983), designed to sample strong interactions ade-
quately. For each encounter, the minimum pairwise close-approach
distance, r min, was recorded; and from the set, the cumulative cross-
section calculated.

Fig. 6 shows a comparison with fig. 4 of Bacon et al. (1996). The
circles with error bars represent FEWBODY data, while the solid-line
broken power-law is the best fit to the results obtained by Bacon
et al.. There is clearly a multiple-sigma discrepancy for r min/a �
0.01. The discrepancy results from the lack of use by Bacon et al.
of the appropriate algorithm for detecting close-approach distances
with regularization (section 18.4 of Aarseth 2003). Sigurdsson has
resurrected the original code, and performed a recalculation with
smaller time-steps.3 The new result is shown by the dot-dashed
line. The resulting cross-section is closer to the FEWBODY result, yet
still systematically smaller.

For comparison, we have performed the same calculation us-
ing STARLAB, shown by the dashed line. The agreement between
FEWBODY and STARLAB is excellent. The only discrepancy between
the two occurs at r min/a ∼ 1, which represents the weak pertur-
bation of binaries due to distant fly-bys. This discrepancy is most
likely due to the differing values of the tidal tolerance used. For the
FEWBODY runs, the tidal tolerance was δ = 10−5, while for the STAR-
LAB runs it was δ = 10−6, causing STARLAB to integrate numerically
some weakly perturbed binaries that FEWBODY treated analytically.

3 See http://www.astro.psu.edu/users/steinn/4bod/index.html
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Figure 6. Comparison of FEWBODY with fig. 4 of Bacon et al. (1996):
cumulative cross-section for the distance of closest approach in binary–
binary scattering for the equal-mass, zero-eccentricity, equal-semimajor-axis
case. The stars are assumed to be point particles and v∞/vc = 0.25. A total of
1.5 × 104 scattering experiments were used to create this figure. The broken
power-law is the best fit given by Bacon et al. to their original results, while
the dot-dashed curve is Sigurdsson’s recalculation. The dashed curve shows
the results obtained using STARLAB. There is a clear discrepancy between
FEWBODY and Bacon et al., and even the recalculation. However, FEWBODY

and STARLAB agree quite well.

The result is a slightly larger STARLAB cross-section for r min/a ∼ 1,
as can be seen in the figure.

We should note that the original calculation of Bacon et al. (1996)
was averaged over the range 0.125 � v∞/vc � 0.25, while all other
results shown in Fig. 6 were calculated with v∞/vc = 0.25. This
cannot account for the discrepancy with the original calculation,
since the inclusion of smaller velocities at infinity will result in
more resonant interactions, and hence smaller distances of close
approach. We have performed calculations with v∞/vc = 0.125
and found that the cross-section differs from that with v∞/vc =
0.25 by no more than a few per cent.

Finally, we remark that the error in the original calculation of
Bacon et al. (1996) is only present for small r min; many of the
conclusions in their paper are not affected by this error.

4.4 Comparison between STARLAB’s three-body and N-body
scattering routines

The scattering facilities in STARLAB have been used extensively and
tested thoroughly (McMillan & Hut 1996; Gualandris et al. 2004).
However, there is only one reported comparison between SCATTER3,
the three-body scattering routine, and SCATTER, the N-body scatter-
ing routine, in the literature (Gualandris et al. 2004). A simple test,
tuned to suit the purposes of this paper, is to compare the binaries
containing merger products that result from binary–single interac-
tions with those from binary–binary interactions designed to mimic
binary–single interactions. An obvious choice for the limiting-case
binary–binary interaction is that in which one binary has an ex-
tremely small mass ratio. We performed binary–single runs in which
each star had mass 1 M�, radius 1 R�, the binary had semimajor
axis 1 au and e = 0, and v∞ = 10 km s−1. In the binary–binary
runs, the binary mimicking the single star had a secondary of mass
10−5 M�, semimajor axis of 20 au and e = 0. The results of 104 runs
are shown in Fig. 7, in which we plot the cumulative fraction of bi-
naries as a function of r p/a, where r p is the pericentre distance

Figure 7. Comparison between SCATTER3, STARLAB’s three-body scattering
routine (solid line), and SCATTER, its N-body scattering routine (dashed line).
Plotted is the cumulative fraction of binaries as a function of r p/a, where
r p is the pericentre distance of the merger binary, and a is the initial binary
semimajor axis. For the binary–single runs, each star had mass 1 M�, radius
1 R�, the binary had semimajor axis 1 au and e = 0, and v∞ = 10 km
s−1. In the binary–binary runs, the binary representing the single star had
a secondary of mass 10−5 M�, semimajor axis of 20 au, and e = 0. The
agreement between the two methods is excellent, and in either case r p is
strongly concentrated between 0.15 and 0.3 au.

of the merger binary, and a is the initial binary semimajor axis.
The agreement between SCATTER3 (solid line) and SCATTER (dashed
line) is good, with both yielding merger binaries with r p strongly
concentrated between 0.15 and 0.3 au.

5 S Y S T E M AT I C S T U DY O F T H E
C O L L I S I O N C RO S S - S E C T I O N

To understand the behaviour of the collision cross-section better,
we have systematically studied its dependence on several physically
relevant parameters. The understanding gained will allow us to re-
duce the dimensionality of parameter space that must be sampled
when we later consider MS star binaries with physically motivated
parameters.

5.1 Dependence on velocity at infinity

The dimensionless collision cross-section, σ/(πa2) for binary–
single and σ/[π(a0 + a1)2] for binary–binary, as a function of
the relative velocity at infinity, v∞/vc, is shown in Fig. 8, for
both binary–single interactions (left) and binary–binary interactions
(right), for several different values of the expansion parameter, f exp.
Circles represent outcomes with one or more collisions (two or more
stars collide); triangles, two or more (three or more stars collide); and
squares, three (four stars collide). Red represents runs with f exp =
1; orange, f exp = 2; green, f exp = 5; and blue, f exp = 10. In both
experiments (binary–single and binary–binary), each star had mass
1 M� and radius 1 R�, and each binary had semimajor axis a =
1 au and eccentricity e = 0. The cross-section decreases sharply
at v∞/vc = 1, above which resonant scattering is forbidden, and
appears to approach a constant value, consistent with being purely
geometrical. In the resonant scattering regime, below v∞/vc = 1,
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Figure 8. Cross-section for physical collisions in binary–single (left) and binary–binary (right) scattering as a function of the relative velocity at infinity, for
different values of the expansion parameter, f exp. Circles represent outcomes with one or more collisions; triangles, two or more; and squares, three or more.
Red represents runs with f exp = 1; orange, f exp = 2; green, f exp = 5; and blue, f exp = 10. In both experiments (binary–single and binary–binary), each star
had mass 1 M� and radius 1 R�, and each binary had semimajor axis a = 1 au and eccentricity e = 0. The cross-section decreases sharply at the critical
velocity, vc, above which resonant scattering is forbidden.

the collision cross-section follows the form 1/v2
∞, implying that

gravitational focusing is dominant. The n coll � 1 cross-section
in the resonant scattering regime is quite high, with σ (v∞/vc)2/

(πa2) ≈ 1 for binary–single and σ (v∞/vc)2/[π(a0 + a1)2] ≈ 0.8
for binary–binary.

The n coll � 2 cross-section in the binary–single case is about two
to three orders of magnitude below that for n coll � 1, depending on
f exp. However, in the binary–binary case, the n coll � 2 cross-section
is only down by a factor of a few to 10. The reason for the difference
is that, in the binary–single case, after one collision occurs, there
are only two stars left. The two remaining stars will either be bound
in a binary, or unbound to each other in a hyperbolic orbit. In the
case of a bound orbit, the two stars are guaranteed to make at least
one pericentre passage, and if the merger product in the binary is
large enough, a collision will occur. In the case of an unbound orbit,
the likelihood of a pericentre passage is decreased. In either case,
it is clear that with only two stars remaining, the complex resonant
behaviour observed in three- and four-body interactions that leads
to close approaches will not occur.

There is a large spread in the n coll � 3 cross-section in binary–
binary scattering. This is because it is likely for collision products to
suffer subsequent collisions given their increased size, implying that
the n coll � 3 cross-section should vary as f 2

exp. The n coll � 3 cross-
section varies from a factor of a few to two orders of magnitude
below that for n coll � 2.

Finally, we note that the spread in the n coll � 2 binary–binary
cross-section is a factor of about 4, essentially independent of v∞
for v∞/vc � 1, as f exp varies over an order of magnitude. The
cross-section is therefore not a particularly sensitive function of the
unknown expansion parameter f exp, and, if it is valid to parametrize
the size of collision products in this simplified manner, implies that
our results for the properties of merger populations are relatively
robust.

5.2 Dependence on the ratio of stellar radius to binary
semimajor axis

The collision cross-section varies as 1/v2
∞ for v∞/vc < 1, the regime

relevant to interactions involving hard binaries in the cores of glob-
ular clusters. Therefore, we can choose a single value for v∞ when

exploring the dependence of the collision cross-section on other
physically relevant parameters, thereby reducing the dimensional-
ity of parameter space that must be sampled. For the remainder
of this section, we set v∞/vc = 0.1, which corresponds to typical
binary–single and binary–binary interactions involving hard bina-
ries in a globular cluster core, with v∞ = 10 km s−1, stars of mass
1 M�, radius 1 R� and binaries with a = 0.1 au.

Fig. 9 shows the normalized, dimensionless collision cross-
section, σ (v∞/vc)2/(πa2) for binary–single scattering (left),
σ (v∞/vc)2/[π(a0 + a1)2] for binary–binary scattering (right), as
a function of the ratio of stellar radius to binary semimajor axis,
R/a, for different values of the expansion parameter, f exp. Circles
represent outcomes with one or more collisions; triangles, two or
more; and squares, three or more. Red represents runs with f exp =
1; orange, f exp = 2; green, f exp = 5; and blue, f exp = 10. In both
experiments (binary–single and binary–binary), each star had mass
1 M� and radius R, each binary had semimajor axis a = 1 au and
eccentricity e = 0, and the relative velocity at infinity was set to
v∞/vc = 0.1. Calculations were performed down to R/a = 10−9 –
which corresponds to the extreme case of binaries with semimajor
axis 10 au composed of black holes of mass 1 M� – but no collisions
were found below R/a ≈ 10−6. For n coll � 1, the calculation cor-
responds to the simpler task of recording minimum close-approach
distances, as can be seen by comparing the binary–binary panel
(right) to Fig. 6. The n coll � 2 and n coll � 3 collision cross-sections
decrease more sharply than the n coll � 1 cross-section as R/a
decreases.

It is clear that multiple collisions are unlikely for R/a � 0.001,
which corresponds roughly to stars of radius 1 R� in binaries with
semimajor axis 1 au. We therefore expect that multiple collisions in
binary interactions are relevant only for MS stars in binaries tighter
than ∼1 au, white dwarfs in binaries tighter than ∼1 R� and neutron
stars in binaries tighter than ∼104 km. We caution that relativistic
effects may need to be included when considering close approaches
of neutron stars. However, the limits quoted should serve as a rough
guide.

We have held the stellar masses fixed at 1 M�, while varying their
radii over a large range. For MS stars, it is more realistic to adopt a
reasonable mass–radius relationship, which we do in Section 6 for
several sets of masses.
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Figure 9. Normalized cross-section for physical collisions in binary–single (left) and binary–binary (right) scattering as a function of the ratio of each star’s
radius to each binary’s semimajor axis, R/a, for different values of the expansion parameter, f exp. Circles represent outcomes with one or more collisions;
triangles, two or more; and squares, three or more. Red represents runs with f exp = 1; orange, f exp = 2; green, f exp = 5; and blue, f exp = 10. In both
experiments (binary–single and binary–binary), each star had mass 1 M� and radius R, each binary had semimajor axis a = 1 au and eccentricity e = 0, and
the relative velocity at infinity was set to v∞/vc = 0.1. Calculations were performed down to R/a = 10−9, but no collisions were found below R/a ≈ 10−6.

5.3 Dependence on mass ratio

In binary interactions involving stars of different masses, there is
a strong tendency for the lightest star(s) to be ejected quickly (see
e.g. Heggie & Hut 2003). One would expect, then, that resonant
behaviour, and the likelihood of collisions, would be decreased when
one or more of the stars involved are light. To test this prediction,
we have calculated the collision cross-section during binary–single
and binary–binary scattering for a range of mass ratios. In both
experiments, each binary had one star with mass 1 M� and the
other with mass q M�. For the binary–single case, the incoming
single star had mass 1 M�. Each star had radius 1 R�, each binary
had semimajor axis a = 1 au and eccentricity e = 0, and the relative
velocity at infinity was set to v∞/vc = 0.1. We normalize the cross-
section, as usual, by multiplying by (v∞/vc)2, and, in doing so,
inadvertently introduce a dependence on the mass ratio, q, in v2

c .
To remove it, we also multiply by a function of q alone that has
the same dependence on q as v2

c , from equations (1) and (2), and
is normalized to 1 at q = 1. For binary–single interactions this

Figure 10. Normalized cross-section for physical collisions in binary–single (left) and binary–binary (right) scattering as a function of mass ratio, q, for
different values of the expansion parameter, f exp. Circles represent outcomes with one or more collisions; triangles, two or more; and squares, three or more.
Red represents runs with f exp = 1; orange, f exp = 2; green, f exp = 5; and blue, f exp = 10. In both experiments (binary–single and binary–binary), each
binary had one star with mass 1 M� and the other with mass q M�. For the binary–single case, the incoming single star had mass 1 M�. Each star had radius
1 R�, each binary had semimajor axis a = 1 au and eccentricity e = 0, and the relative velocity at infinity was set to v∞/vc = 0.1.

function is 2q(2 + q)/[3(1 + q)]; for binary–binary interactions it
is 2q/(1 + q). The collision cross-sections are shown in Fig. 10 for
binary–single (left) and binary–binary (right), as a function of q, for
different values of the expansion parameter, f exp. Circles represent
outcomes with one or more collisions; triangles, two or more; and
squares, three or more. Red represents runs with f exp = 1; orange,
f exp = 2; green, f exp = 5; and blue, f exp = 10. As expected, the
collision cross-section is smaller for q < 1. However, it decreases
quickly, and for q � 0.1 becomes approximately constant, implying
that the test particle limit has been reached. What is most striking
is that the collision cross-section is decreased by no more than a
factor of a few for small q, despite the tendency for lighter stars
to be ejected quickly. It should be noted that in this experiment we
have kept the radii of all stars fixed at R�.

6 R E S U LT S F O R T Y P I C A L B I NA R I E S

We now turn from a slicing of parameter space to a discrete sampling,
by considering binaries with sets of parameters typical of those
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Table 4. Parameters of the binary–single runs, including: the number of scattering interactions performed, N; the masses of the
binary members, m00 and m01; the mass of the intruder, m1; the binary semimajor axis, a; and the ncoll � 1 cross-section.

Run N m00 (M�) m01 (M�) m1 (M�) a (au)
σncoll�1

πa2

(
v∞
vc

)2

A005 15054 1.0 1.0 1.0 0.05 6.4 ± 0.1
A010 30228 1.0 1.0 1.0 0.1 5.72 ± 0.07
A020 15222 1.0 1.0 1.0 0.2 4.41 ± 0.08
A050 18158 1.0 1.0 1.0 0.5 2.87 ± 0.07
A100 37625 1.0 1.0 1.0 1.0 1.94 ± 0.04
A300 21427 1.0 1.0 1.0 3.0 0.68 ± 0.04

B005 17619 1.0 0.5 1.0 0.05 9.3 ± 0.2
B010 30408 1.0 0.5 1.0 0.1 7.3 ± 0.1
B020 17969 1.0 0.5 1.0 0.2 5.4 ± 0.1
B050 18676 1.0 0.5 1.0 0.5 3.0 ± 0.1
B100 39739 1.0 0.5 1.0 1.0 1.62 ± 0.05
B300 28544 1.0 0.5 1.0 3.0 0.54 ± 0.05

C005 17696 0.5 0.5 1.0 0.05 12 ± 2
C010 35791 0.5 0.5 1.0 0.1 9.3 ± 0.1
C020 18284 0.5 0.5 1.0 0.2 6.6 ± 0.2
C050 19467 0.5 0.5 1.0 0.5 3.3 ± 0.1
C100 49032 0.5 0.5 1.0 1.0 1.96 ± 0.07
C300 33464 0.5 0.5 1.0 3.0 0.58 ± 0.07

D005 12530 1.0 1.0 0.5 0.05 2.5 ± 0.1
D010 12555 1.0 1.0 0.5 0.1 2.2 ± 0.1
D020 12610 1.0 1.0 0.5 0.2 1.75 ± 0.1
D050 12780 1.0 1.0 0.5 0.5 1.16 ± 0.08
D100 15672 1.0 1.0 0.5 1.0 0.73 ± 0.07
D300 14185 1.0 1.0 0.5 3.0 0.26 ± 0.04

E005 60252 1.0 1.0 1.2 0.05 8.0 ± 0.2
E010 60504 1.0 1.0 1.2 0.1 6.9 ± 0.2
E020 61008 1.0 1.0 1.2 0.2 5.4 ± 0.2
E050 72947 1.0 1.0 1.2 0.5 3.5 ± 0.1
E100 75894 1.0 1.0 1.2 1.0 2.2 ± 0.1
E300 100200 1.0 1.0 1.2 3.0 0.80 ± 0.05

found in the cores of globular clusters. We first present results for
binary–single interactions, and then binary–binary.

6.1 Binary–single scattering experiments

We consider only MS stars with masses 0.5, 1.0, or 1.2 M�. We
adopt the mass–radius relationship R = 1 R�(M/1 M�), which
is a reasonable approximation for MS stars of mass ∼1 M�. We
study five different mass combinations, labelled A through E, with a
range of semimajor axes, 0.05 au � a � 3.0 au, for each. In all cases
we use v∞ = 10 km s−1. This choice of parameters covers a range
of binary binding energies from ∼1kT (the hard–soft boundary) in
a typical globular cluster core, to ∼102kT , corresponding to a close
binary (a ∼ 10 R�). The thermal energy kT is defined by the relation
1
2 kT = 1

2 〈m〉σ 2, where 〈m〉 is the average stellar mass, and σ is the
one-dimensional velocity dispersion. The details of each run are
presented in Table 4, including: run name; the number of scattering
interactions performed, N; the masses of the binary members, m 00

and m 01; the mass of the intruder, m 1; the binary semimajor axis, a;
and the n coll � 1 cross-section.

In order to study the dependence of the collision cross-section on
the expansion parameter, f exp, without performing calculations for
each value of f exp considered, we have adopted an approach that
allows us to calculate multiple collision cross-sections for any value
of f exp based on the results of calculations for one value of f exp.

We set f exp = 1, and consider the properties of merger binaries
formed. A binary containing a merger product will be a triple-star
merger if the pericentre of the binary, r p, is approximately less than
the radius of the collision product, R cp = f exp(R1 + R2), where R1

and R2 are the radii of the two stars that merged to form the collision
product. First we calculate N coll, the total number of outcomes that
resulted in either merger binaries or triple mergers with f exp =
1. We then calculate N 3coll, the number of triple mergers, for a
different value of f exp, as the number of triple mergers for f exp = 1,
plus the number of merger binaries with r p < R cp. Defining f T =
N 3coll/N coll, the triple-star merger (n coll � 2) cross-section for f exp

is simply σ T( f exp) = f Tσ coll( f exp = 1).
Some remarks about this approach are in order. We ignore merger

escapes, and argue that an outcome labelled as a merger escape is
unlikely to become a triple merger even if the first merger product
expands. Before it escapes, the third star can approach the expanded
merger at most once, and, if it does, it is likely to have a sufficiently
high speed at close approach to fully traverse the tenuous envelope
of the expanded merger product. On the contrary, in a merger bi-
nary, even if the third star initially has a high pericentric speed, it will
eventually be captured through gradual energy loss after repeated
traversal. Of course, an escaping third star may lose sufficient en-
ergy after traversal so that the entire system becomes bound, and
eventually be captured. A more precise treatment would be to run
calculations for each value of f exp, but, as mentioned above, we
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Figure 11. The normalized ncoll � 1 cross-section as a function of initial
semimajor axis for runs A, B and C.

are adopting the simpler, less computationally expensive approach
here. When two MS stars collide and their merger product expands,
the resulting object does not possess a well-defined boundary and,
in general, is not spherically symmetric; f exp is thus an effective,
averaged quantity, which serves well enough the purpose of our first
study.

6.1.1 Collision cross-sections

The n coll � 1 cross-sections are listed in the last column of Table 4.
The cross-sections from runs A, B and C are also shown as a function
of the initial binary semimajor axis, a, in Fig. 11. In the range of MS
masses of interest for globular clusters, the collision cross-sections
show only a weak dependence on masses, slightly more pronounced
at small a. The cross-section increases from case A to C as the mass
ratios of the stars decrease, as a result of the dependence of the
normalized cross-section on v∞/vc and hence on the mass ratio. For
a hard binary with a ∼ 1 au, the normalized collision cross-section
is comparable to the geometric cross-section of the initial binary,
i.e. σ coll(v∞/vc)2 ∼ πa2. This is because most strong interactions
are resonant, and most resonances lead to at least one collision.
For a � 0.1 au, the collision cross-section can be up to an order of
magnitude greater than the geometric cross-section. Indeed, for very
small values of a, even a small perturbation of a highly eccentric orbit
by a distant encounter can induce a binary merger. About 20 to 35 per
cent of the initial binaries with a = 0.05 au in Table 4 have pericentre
distances less than 3 R�. Our results for these very tight binaries
are therefore somewhat artificial, since in reality tidal circularization
effects are likely to modify the distribution of initial eccentricities,
and our simple assumption of a thermal initial distribution is no
longer justified.

6.1.2 Properties of the merger binaries

Of particular interest are binary–single interactions that result in bi-
naries containing merger products. The distributions of their prop-
erties are relevant to observations of BSs in the cores of globular
clusters. Figs 12 and 13 show the orbital parameters of the merger

Figure 12. Distribution of the semimajor axes and eccentricities of the
∼700 merger binaries formed in run A300. The vertical dashed line is the
hard–soft boundary for field stars of mass 1.0 M� with one-dimensional
velocity dispersion 10 km s−1. The solid curves represent constant angular
momenta J/J 0 = 0.2, 0.5, 1.0 and 2.0, where J 0 is the total angular mo-
mentum of the system such that the pericentre of the initial hyperbolic orbit
is 1.0 au.

Figure 13. Distribution of the semimajor axes and eccentricities of the
∼6000 merger binaries formed in run B005. The vertical dashed line is the
hard–soft boundary for field stars of mass 1.0 M� with one-dimensional
velocity dispersion 10 km s−1.

binaries produced in the two representative runs A300, for a wide
initial binary, and B005, for a very tight initial binary. The envelope
of the distribution follows curves of constant angular momentum,
consistent with angular momentum conservation during the inter-
action. The total angular momentum of the system is the sum of
the initial internal angular momentum of the binary and the initial
angular momentum of the binary–single hyperbolic orbit, added
vectorially. The spread in angular momentum spanned by the distri-
butions is due to averaging over the relative orientation of the two
separate angular momenta, the range of initial eccentricities of the
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Figure 14. Histograms of semimajor axes of the merger binaries formed
in runs A300 and B005, relative to the initial binary semimajor axis.

binary, and range of impact parameters used. Curves of constant an-
gular momentum are plotted in Fig. 12, for the values J/J 0 = 0.2,
0.5, 1.0 and 2.0, where J 0 = µbv∞ + µb[GMba(1 − e2)]1/2 is the
angular momentum of the system such that the pericentre distance of
the initial hyperbolic orbit is 1.0 au, i.e. b = r p(1 + 2GM/r pv

2
∞)1/2

with r p = 1.0 au. (Here µ and M are the reduced and total mass of
the binary–single system, and µb and M b are the reduced and total
mass of the binary.) The vertical dashed line in Figs 12 and 13 is the
hard–soft boundary with respect to field stars of mass 1 M� with
one-dimensional velocity dispersion 10 km s−1. Histograms of final
semimajor axes and eccentricities are shown in Figs 14 and 15. The
dotted lines in Fig. 15 are properly normalized thermal eccentricity
distributions.

Typically, more than 90 per cent of the merger binaries have final
semimajor axis, a′, larger than initial, a. On average, a′/a ≈ 5.

Figure 15. Histograms of eccentricities of the merger binaries formed in
runs A300 and B005. The dotted lines represent properly normalized thermal
distributions.

While most remain hard binaries, a small fraction become soft, with
a few having a′ as large as ∼100–1000 au. This softening comes
from the somewhat counter-intuitive result that collisions produce,
on average, an increase in the orbital energy of the system (while the
total energy, including the binding energy of the collision product,
is of course conserved on a dynamical time-scale, i.e. until some of
the internal energy released through shocks can be radiated away by
the fluid). To illustrate this, consider a trivial example in which two
identical stars of mass m are released from rest at some distance r and
collide head-on, forming a stationary merger product at the centre
of mass. The orbital energy of the system increased by Gm2/r in the
process. More relevant to our results, but still somewhat artificial,
consider an initial binary with a very high eccentricity, so that the two
members almost collide at pericentre. A small perturbation through
a distant encounter can induce a merger of the binary (implying that
its orbital binding energy disappears), while only weakly affecting
the orbit of the perturber.

The eccentricity distributions of merger binaries always remain
close to thermal, although a slight excess of highly eccentric orbits
is seen for wider initial separations (compare run A300, with a =
3 au, and B005, with a = 0.05 au, in Fig. 15). The average value
of e′ for runs A300 and B005 is 0.77 and 0.68, respectively, while
that of a thermal distribution is 2/3. It is interesting to note that
other calculations of small-N systems have yielded binaries with an
excess of high eccentricity systems in a nearly thermal distribution
(Portegies Zwart & McMillan 2000).

6.1.3 Three-star mergers

Three-star mergers happen primarily when the pericentre distance
of a merger binary is approximately smaller than the radius of the
merger remnant. Cumulative distributions of pericentre distances
from all A runs are shown in Fig. 16. For radii of first collision
products in the range ∼5–10 R� ( f exp ∼ 2.5–5), we find triple
collision fractions anywhere from a few up to 50 per cent, depend-
ing strongly on the initial binary semimajor axis a. Clearly, triple

Figure 16. Cumulative distribution of pericentre distance for the merger
binaries formed in case A. The dashed lines, from left to right, correspond to
a = 0.05, 0.1, 0.2, 0.5, 1.0 and 3.0 au respectively. Each curve is equivalent to
f T(Rcp), the fraction of triple mergers as a function of the effective expanded
radius of the first collision product, for a given a.
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Figure 17. Values of R0.95, R0.9, R0.5, R0.1 and R0.05 as a function of a
for case A, where Rf is the value of Rcp at which f T = f .

collisions occur often, particularly during encounters with very hard
binaries. If we consider the later expansion of the collision product
on the giant branch (with radius up to �100 au), a triple colli-
sion becomes almost inevitable, except for only the widest initial
binaries.

Denoting the value of R cp at which f T = f by Rf , we determine
the critical radii of merger products corresponding to a given triple
collision fraction, R0.05, R0.1, R0.5, R0.9 and R0.95, using simple
linear interpolation. These are plotted as a function of the initial
binary separation a in Fig. 17. The error bars in Fig. 17 are estimated
by dividing the uncertainty in f T by the slope of the f T versus R cp

curve at R cp = Rf , i.e.

�R f �
√

f /Ncoll

(d f /dRcp)R f

. (8)

We see that all the lines in Fig. 17 are nearly parallel and with a
slope close to unity. The same holds true for mass combinations
B through E as well. Thus we have approximately Rf ∝ a and the
relationship can be specified by a single quantity Rf /a for each
value of f T. These have been estimated using a least-squares fit
with weights inversely proportional to the size of the error bars.
Since hydrodynamic calculations have shown that R cp is unlikely
to be larger than ∼30 times the original stellar radius, according to
Fig. 17, the most relevant range corresponds to f T � 0.5 (although
the full range up to f T ≈ 1 will be relevant if the later expansion of
the merger product on the red giant branch is considered). In Fig. 18
we plot Rf /a as a function of f T. It is clear that Rf /a is directly
proportional to f T over the range of interest. For run A (equal-mass
case), the proportionality constant is 1.61 ± 0.01. Consequently, the
relation between R cp, f T and a for this particular mass combination
may be written

Rcp ≈ 1.6a fT, (9)

where 0.05 au � a � 3.0 au. Turning to different mass combinations,
we find results similar to equation (9), and so can write

Rcp = Ca fT, (10)

where C depends only on the stellar masses. Table 5 shows C for
the five mass combinations we have explored.

Figure 18. Dependence of Rf /a on f = f T, with f � 0.5, for three
different mass combinations. Solid triangles, open squares and open triangles
correspond to cases A, B and C, respectively.

Table 5. Fits for C in equation (10) for the different mass combinations
considered.

Case m00 (M�) m01 (M�) m1 (M�) C

A 1.0 1.0 1.0 1.61 ± 0.01
B 1.0 0.5 1.0 1.99 ± 0.01
C 0.5 0.5 1.0 2.40 ± 0.02
D 1.0 1.0 0.5 1.64 ± 0.02
E 1.0 1.0 1.2 1.78 ± 0.02

6.2 Binary–binary scattering experiments

For the sake of convenience, we use the abbreviations listed in
Table 2 to refer to certain binary–binary outcomes. In the abbrevi-
ated form, the letters S, D, T and Q denote a single star, double-star
merger, triple-star merger and quadruple-star merger, respectively,
and we have also chosen to use parentheses instead of square brack-
ets. Each run we do involves MS stars of either 0.5 or 1.0 M� and
binary semimajor axes of either 1.0 or 0.1 au. In all runs we set v∞ =
10 km s−1, as in the binary–single case. The properties of each run
are listed in Table 6, including the mass of each star, mij, the semi-
major axis of each binary, a, and the normalized cross-sections for
strong interactions and at least one collision to occur.

To study the dependence of the outcomes on the expansion param-
eter, f exp, we have performed separate calculations for each value
of f exp considered. For binary–binary interactions, the dynamics
do not reduce to the trivial analytical case of two-body motion after
one collision has occurred, and so it is not possible to use the simple
approach of tracking pericentre distances in merger binaries as we
did for the binary–single case. It should be noted, however, that we
apply the simple expansion factor prescription for the radius of a
merger product, Rmerger = f exp(R1 + R2), where R1 and R2 are the
radii of the merging stars, to every merger, regardless of whether the
merging stars are unperturbed MS stars or merger products them-
selves. The simplicity of this prescription allows us to study the
dependence of our results on only one parameter, f exp, which can
thus be considered an effective expansion parameter, averaged over
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Table 6. Parameters of the binary–binary scattering experiments, including: the mass of each star, mij; the semimajor axis of each binary, ai; and the normalized
cross-sections for strong interactions and at least one collision to occur.

Run m00 (M�) m01 (M�) m10 (M�) m11 (M�) a0 (au) a1 (au)
σstrong

π(a0 + a1)2

(
v∞
vc

)2 σncoll�1

π(a0 + a1)2

(
v∞
vc

)2

I 1.0 1.0 1.0 1.0 1.0 1.0 0.62 ± 0.13 0.12 ± 0.07
II 1.0 1.0 1.0 1.0 0.1 0.1 0.09 ± 0.03 0.04 ± 0.02
III 1.0 1.0 1.0 1.0 1.0 0.1 0.090 ± 0.003 0.0020 ± 0.0005
IV 1.0 0.5 1.0 0.5 0.1 0.1 0.12 ± 0.03 0.0099 ± 0.0004

all types of mergers. A more realistic approach that adopts separate
expansion parameters for different types of mergers is feasible, but
beyond the scope of this study.

6.2.1 Collision cross-sections

The normalized cross-sections for strong interactions, σ strong, and
for at least one collision, σ coll, for our binary–binary runs are listed
in the last two columns of Table 6. A strong interaction is defined to
be one in which the final configuration is different from the initial
configuration (i.e. anything but preservation), or a preservation re-
sulting from a resonant encounter. The test for a resonant encounter
is that of Hut & Bahcall (1983), wherein the mean-square distance
between pairs of stars is checked for multiple minima.

Comparing the results from run I (a0 = a1 = 1 au) with run II
(a0 = a1 = 0.1 au), we see that σ coll is a larger fraction of σ strong

for run II, consistent with our findings in Section 5.2 for small R/a.
Comparing run II with run IV, we see that introducing a non-unity
mass ratio does not seem to affect σ strong, but slightly lowers σ coll. By
calculating the branching ratio for outcome X involving collisions –
defined as fX = NX/N coll where N coll is the number of outcomes
that result in collisions and NX is the number of those that result in
outcome X – the value of σ coll for a particular run can be used to
calculate the cross-section for outcome X, according to the simple
relation σ X = fXσ coll.

6.2.2 Properties of merger products

In Figs 19 and 20, we show the branching ratios for several outcomes
as a function of f exp. That is, we plot the fraction of outcomes involv-
ing at least one collision that result in various configurations con-
taining double-star, triple-star and quadruple-star mergers. Fig. 19
shows results from run I (a0 = a1 = 1 au) and Fig. 20 shows results
from run II (a0 = a1 = 0.1 au). The upper left panel in each shows
the branching ratios for outcomes of two unbound double-star merg-
ers, labelled DD, and two double-star mergers in a binary, labelled
(DD); the upper right shows a quadruple-star merger, labelled Q;
the lower right, a triple-star merger bound to the remaining single
star, labelled (TS); and the lower left, the combined branching ratio
for any outcome involving a merger of three or more stars, labelled
T/Q.

From Fig. 19, we see that, even for encounters involving wider
binaries, the branching ratio for more than two stars to merge is
significant – as high as ∼5 per cent. When one considers tighter
binaries, as in Fig. 20, the branching ratio increases to ∼40 per
cent. The dependence on initial semimajor axis is as expected – all
branching ratios for mergers are increased in run II over run I. The
dependence on f exp is also as expected. As the expansion factor is
increased, more multiple mergers occur, leading to an increase in

Figure 19. Branching ratios for various outcomes involving collisions in
run I, as functions of the expansion factor.

Figure 20. Branching ratios for various outcomes involving collisions in
run II, as functions of the expansion factor.
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Figure 21. Orbital parameters of four kinds of binaries formed in run I,
with f exp = 5.

Figure 22. Orbital parameters of four kinds of binaries formed in run II,
with f exp = 5.

the branching ratios for triple-star and quadruple-star mergers, and
a decrease in those for double-star mergers.

The distributions of orbital parameters for all four types of
binaries, (DS)S, D(SS), (DD) and (TS), are plotted in Figs 21 and 22
for runs I and II, with f exp = 5. From these figures, we see that (DS)
binaries form with semimajor axes comparable to, and only slightly
greater than, the semimajor axes of their progenitor binaries –
except for the case (DS)S, where a′ can be significantly larger
than a for large e′ – and with an eccentricity distribution that does
not appear to be inconsistent with thermal. The data are more sparse

Table 7. Linear fits for the branching ratio of T/Q(>2 M�) as a function
of f exp, where fT/Q(>2 M�) = A fexp + B. Also shown in the last column is
the normalized cross-section for the formation of triple-star/quadruple-star
mergers with masses >2 M� for f exp = 5.

Run A B
σT/Q(>2 M�)( fexp = 5)

π(a0 + a1)2

(
v∞
vc

)2

I 0.007 0.007 0.011 ± 0.002
II 0.0485 0.14 0.035 ± 0.003
III 0.0182 0.024 0.00041 ± 0.00005
IV 0.0249 0.0616 0.034 ± 0.006

for the (DD) and (TS) cases, but their orbital parameters appear to
be comparable to those of (DS) binaries.

The three outcomes TS, (TS) and Q (labelled T/Q collectively
in Figs 19 and 20) are responsible for the production of BSs of
mass >2 M� in our runs. The branching ratio for T/Q appears
to increase almost linearly with f exp in the range considered, for
all runs performed. Linear fits for the branching ratio of T/Q as a
function of f exp (obtained by least-squares fitting) are provided in
Table 7.

7 S U M M A RY, C O N C L U S I O N S
A N D F U T U R E D I R E C T I O N S

We have performed several sets of binary–single and binary–binary
scattering experiments, and studied the likelihood of (multiple) col-
lisions. We have presented collision cross-sections, branching ratios
and sample distributions of the parameters of outcome products.
Results reported in this paper, particularly cross-sections, may be
employed in both analytical and numerical calculations.

In the gravitational focusing regime, relevant to hard binaries in
globular cluster cores, the likelihood of collisions during binary in-
teractions is quite high. For solar-mass main-sequence (MS) stars in
1 au binaries, the normalized cross-section for at least one collision
to occur during a binary–single or binary–binary interaction (n coll �
1) is essentially unity, with σ (v∞/vc)2/(πa2) ∼ 1 for binary–single
and σ (v∞/vc)2/[π(a0 + a1)2] ∼ 1 for binary–binary. The collision
cross-section depends strongly on the ratio of stellar radius to binary
semimajor axis, but is reasonably high even for MS stars of approxi-
mately solar mass in orbits of ∼1 au. Perhaps counter to intuition, the
collision cross-section is not particularly sensitive to binary mass
ratio, dropping by only a factor of a few in the test-particle limit
when the stellar radii are kept fixed. We also found that the multiple
collision (n coll � 2) cross-section is quite high, only a factor of ∼10
lower than the n coll � 1 cross-section for binary–binary interactions.
It is also not a particularly sensitive function of the expansion param-
eter, f exp, varying by a factor of a few as f exp is varied by an order
of magnitude. This implies that studies using this one-parameter
model for the radius of a collision product are reasonably robust in
spite of the large uncertainties in the physics. For typical binaries in
globular cluster cores, we have shown that collisions of more than
two stars during binary–single and binary–binary interactions are
likely, with branching ratios for triple-star mergers of ∼5 per cent
for binary–single and ∼10 per cent for binary–binary.

We have introduced FEWBODY, a new numerical toolkit for sim-
ulating small-N gravitational dynamics that is particularly suited to
performing scattering interactions. We have shown that it produces
results in good agreement with several previous numerical studies
of binary–single and binary–binary scattering, as well as with the
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STARLAB software suite. Instead of using cross-sections and simple
recipes for binary interactions in globular cluster evolution codes,
one may use FEWBODY to perform them directly. We have adopted
this approach with our Monte Carlo globular cluster evolution code
(Fregeau et al. 2003).

It is clear from our results that collisions of more than two stars
during binary interactions are a viable pathway for creating blue
stragglers (BSs) with masses more than twice the MS turn-off mass,
such as those observed in NGC 6397 (Sepinsky et al. 2000). These
massive BSs may also be formed via recycling – in other words,
a binary containing a BS may be formed via a binary interaction,
and the BS may later merge with another star in a subsequent bi-
nary interaction, creating a more massive BS. We are in the process
of creating a more detailed model, based on a Monte Carlo binary
population study, which incorporates both channels to study the for-
mation of massive BSs. Such studies are needed to help interpret
current BS observations (see Sills & Bailyn 1999; Sills et al. 2000),
and the large data bases of BS properties, including many new spec-
troscopic mass measurements, that will soon be available (M. Shara,
private communication).

The expansion of merger products has been treated here in a
simplified manner, using a single expansion parameter, f exp. As
observations of BSs become more detailed and more numerous, in-
cluding details of their internal properties, it becomes necessary to
treat collisions in a more accurate way. Full smoothed particle hydro-
dynamics (SPH) calculations are quite computationally prohibitive,
taking up to several hours to perform a single merger. However,
there are faster, approximate approaches that capture the essential
physics of the hydrodynamic merger process. One such approach
is the fluid-sorting algorithm, which utilizes the property that the
fluid in merger products must rearrange itself according to specific
entropy (Lombardi, Rasio & Shapiro 1995; Lombardi et al. 2002).
The MAKE ME A STAR (MMAS) software developed by Lombardi
and collaborators implements this procedure, and is freely avail-
able on the web (Lombardi, Rasio & Shapiro 1996; Lombardi et al.
2002, 2003). We have begun to replace the simple merger module in
FEWBODY with a call to MMAS. The result should be much more ac-
curate predictions for the properties of (multiple) merger products.
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