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Chapter 1

Introduction and
Motivation

1.1 Introduction

We have recently celebrated the tenth anniversary of the discovery of the first
extrasolar planet around a solar-type star. What was shocking about the detec-
tion of this 0.5 M planet! (Mayor & Queloz 1995) was not that it was around
a star like our Sun, but that the period of the planet, 51 Pegasi b, was measured
to be only four days (for comparison, even Mercury’s period around the Sun is
several months). Its semi-major axis is 100 times smaller than Jupiter’s around
our Sun. At such distances, the planet is exposed to temperatures so high that
the material needed to assemble the core cannot be found in a solid phase. The
implication is that the planet formed much farther out and migrated inward. It
was theorized that tidal interactions between the planet and the protoplanetary
disc—the disc surrounding young stars where we believe form planets—can lead
to orbital migration (Goldreich & Tremaine 1979, 1980; Lin & Papaloizou 1979,
1993). The theory had been developed about 15 years before the discovery of
51 Pegasi b, and this migration had been predicted. What was not predicted,
however, was that planets of this size could be found on such short period orbits.

Today, there are over 200 known extrasolar planets in over 190 planetary
systems (with systems housing as many as six planets).? Their orbital char-
acteristics include systems with highly eccentric orbits and planets locked in
mean-motion resonance. Past theoretical models have relied on the solar sys-
tem for guidance, but it is now clear that there is a greater variety than ever
imagined. These systems suggest that planet-disc tidal interactions are very
important in determining the characteristics of planetary systems, and that
the characteristics of the disc could have large implications on the system’s fi-
nal outcome. The study of extrasolar planets and their interactions with the

n this paper, M will denote a Jupiter-mass, and Mg will denote an Earth-mass.
2See Jean Schneider’s website: http://exoplanet.eu/ for a continuously updated list.
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protoplanetary disc addresses significant problems regarding both the origin of
planetary systems as well as conditions pertaining to the development of life
both inside and outside our Solar System. By understanding how planetary
systems form, we may better understand whether our Solar System might be
unique in certain ways.

This thesis is organized as follows: In the remainder of this chapter, we will
review the current methods and limitations of observing extrasolar planets and
review the statistical properties of the observed systems. The second chapter
is dedicated to describing the physical processes that take place during planet
formation, including disc-planet interactions, orbital migration, and resonance
trapping. Additionally, it summarizes previous studies that have been done on
resonances in protoplanetary discs, and the goals of this work on resonances in
protoplanetary discs. The third chapter describes my N-body integrator code,
ResCap, developed to study resonance trapping phenomena. Additionally, I de-
scribe the set-up of my numerical integrations. The fourth chapter details the
results obtained to date. Finally, in the fifth section, we consider the impli-
cations of this study for the understanding of the early evolution of planetary
systems.

1.2 Detection Methods

1.2.1 Radial Velocity

Presently, almost all planets have been detected by the radial velocity tech-
nique, which consists of measuring the Doppler shift due to the motion of the
star around the center of mass of the system, observing the influence orbiting
bodies (planets) have on their host star. This measurement gives the velocity
component projected along our line of sight, and is given as v = K - g(t), where
g(t) varies periodically with time ¢ around the orbit and has a mean value of
zero. For a one-planet system, g(¢) is of the form

g(t) = cos(f(t) + w) + ecos(w), (1.1)

where f is the planet’s true anomaly, w is the argument of pericenter, and e is
the orbital eccentricity.? The amplitude K can be easily derived using Kepler’s
third law and Newton’s law of gravitation. For a planet of mass M, orbiting a
star of mass M,, K is given by

1/3 .
K— 221G M, sini 1 . (1.2)
T (M, + M,)?/3 /1 —¢2

Here, GG is the gravitational constant, T is the orbital period of the planet, and ¢
is the angle of inclination.* By measuring v, we can determine both the orbital
period and the eccentricity. A Fourier transform can then be applied to the

3See Appendix A for a detailed description of each orbital parameter.
4 An orbit viewed edge-on corresponds to i = 90°.
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radial velocity curve to isolate the individual orbits of multi-planet systems.
For a circular orbit (e = 0), g(t) reduces to a sinusoid with unit amplitude. For
non-circular orbits, g(t) reaches an amplitude of 1 + ¢ and, by measuring its
departure from a sinusoid, we can determine the eccentricity e.

Radial velocity curves only give the components along our line of sight, and
therefore, the inclination angle cannot be measured directly. Using Kepler’s
third law,

4m2a? N 4m%a’
G(M,.+ M,) ~ GM,’

where I have assumed M, << M,, the radial velocity measurement can only
provide a lower limit on the planetary mass by fixing the value of the projected
mass M, sini. However, for the population of the first 150 discovered objects,
the ratio of the real mass to the projected mass is, on average, of order unity.
Upper limits can be placed by requiring additional characteristics of the system,
such as requiring that the system remain stable on timescales relative to the
lifetime of the star. This generally provides a maximum % since systems tend
to be more unstable with increasing planetary masses. Because forces increase
with larger masses and smaller distances, larger planets close to the star are
easier to detect through a radial velocity curve. Assuming that M, << M,, let
us rewrite the expression for K and T as the following;:

284( T )—1/3 <Mpsini> (1\4*)—2/3 1
' 1 yr Mj M@ V1 — e2 ’
a \3/2 ([ M,\ V?
T = () (M)
(vr) 1 AU (M®>
The detection limit of current instruments is about 1 ms~'. The following table
lists some particular maximum values of detectable distance for a solar star.
They are determined from Equations 1.4, by equating K= 1 ms~! and solving

for a. I then calculate the period the planet would have for a given semi-major
axis.

T2 =

(1.3)

K(ms™)

(1.4)

M,=1Mg, e=0,1=90°
Mp (MJ) Amazx (AU) Taa (yr)
1 806.56 22906.3
0.5 201.64 2863.29
0.1 8.0656 22.9063
0.01 0.0806 0.0229
Earth 0.007976 0.007123

Table 1.1: Maximum Detection Distances

It is clear that Jupiter-size planets could be detected very far from their
parent star, but radial measurements rely on the fact that multiple periods
must be observed. This leads to a bias in radial velocity measurement, in that
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massive planets with very short orbits are more easily detected. Additionally,
this approach is far from detecting Earth-like planets anywhere close to the
habitable zone, the distance from the star where water can exist in liquid form.?

1.2.2 Transits

A transit occurs when a planet passes in front of the star along our line of sight.
We can then measure the relative change in the stellar flux of the star during

the transit,
AF,  [(R,\’
= (=2 1.5

coupled with the radial velocity measurements to greatly constrain the planet’s
mass® and determine the planet’s radius. However, transits are not common,
and only 19 have been detected to date. The probability of detecting a transit,
R./a,, for a R, =1 Rg star is only 10% with a = 0.05 AU, the smallest orbit
known.

The first transiting planet (HD 209458 b) was observed in September 1999
by Charbonneau et al. (2000).” Transiting allowed us to determine HD 209458
b to have a mass of 0.63 M ; with a radius of 1.3 that the radius of Jupiter. This
predicts a mean density of 400 kgm ™3, significantly smaller than the density of
Saturn (700 kgm—3), which is the least dense planet of our Solar system. This
suggests that the planet consists primarily of gas, and it has been suggested
that at such short distances, the atmosphere of the planet is evaporating (Vidal-
Madjar et al. 2003, 2004)!

1.2.3 Astrometry

While the radial velocity method measures the motion of the star along the line
of sight, it is also possible to measure the motion of the star perpendicular to
the line of sight. For a circular orbit, the angular motion of the star is

M,a/1 AU
a(arcsec) = Mpcil//lpc’

(1.6)

where d is the distance to the star measured in parsecs. Since d and M, are
known, and a is given by the periodicity of the star’s motion, M,, can be deter-
mined by measuring . For comparison, the motion of the Sun from a distance
of 10 pc due to Jupiter is 500 pas, whereas due to Earth from the same distance
it is only 0.3 pas. From the ground, the best accuracy comes from inferom-
eters, and VLTI and KECK expect to reach astrometric accuracies of 10 pas

5For the interested reader, to detect an Earth-size planet at 1 AU, this would require that
we be able to measure amplitudes of 0.0893 ms—!. It is not clear if such precision could be
reached, since it would have to be extracted from the intrinsic “noise” at the stellar surface,
i.e. random Doppler shifts due to atmospheric oscillations, spots, or magnetic cycles.

6Since sini must be close to 1.

"This was not the first planet detected using the transit method. The first planet detected
by transit was TrES-1 by Alonso et al. in 2004.
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in the near future. Currently developing space observations include the Space
Interferometry Mission (SIM), and will have accuracies of order 1 pas. SIM is
expected to be launched by NASA in 2010. Since stars being viewed are at least
a few parsecs away, it will not be possible to detect terrestrial planets in habit-
able zones with this method, which is better suited for detecting giant planets.
However, these measurements are easier for longer period systems, as compared
to radial velocity measurements.

1.2.4 Microlensing

Gravitational microlensing requires a background star to provide a source of
light, allowing the foreground star to act a gravitational lens when it passes in
front of the background star, making the background star appear up to ~1000
times as bright. A microlensing process typically lasts for several months. How-
ever, when the foreground star has a close companion, there can be two suc-
cessive spikes of brightness superimposed on the regular light curve pattern of
the microlensing event (Mao & Paczynski 1991, Gould & Loeb 1992, Bennet
& Rhie 1996). This is most sensitive for planets within five AU of the lensing
star, and planets less than an Earth mass can produce large effects on the light
curves. This technique is well suited for finding terrestrial planets in habitable
zones. However, microlensing patterns do not repeat, so follow-up monitoring
must occur as soon as detections are made.

Four planets have been found by microlensing, with the first discovered in
2004 (Bond et al.), located 5.2 kpc from Earth. At these distances, radial
velocity measurements would be useless. The detected planet has a mass and
semi-major axis of 2 My and 3 AU, respectively.

1.2.5 Direct Imaging

The IR detection of the transiting planet HD 209458 b through a secondary
eclipse (Deming et al. 2005) was the very first observation of photons emitted by
extrasolar planets. It was done by observing the decrement in infrared flux when
the planet passed behind its parent star. By measuring AF, a characteristic
wavelength can be determined, and by assuming some model for the atmosphere
of the planet, a blackbody temperature can be estimated.

This method will allow for long period objects to be detected, complement-
ing radial velocity surveys. Low mass non-transiting objects can currently be
detected only if they are isolated (free floating). Orbiting planets are more dif-
ficult because of the high star to planet flux ratio. The contrast is smallest in
the IR, and hence the most favorable region for planet imaging. Additionally,
nulling techniques on interferometers and coronographs can be used to block
light from the star. Current developments in adaptive optics suggest direct
detection of extrasolar planets may be possible within the next decade.
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1.3 Statistical Properties of Observed Systems

The first extrasolar planet, 51 Pegasi b, was reported in 1995 by Mayor &
Queloz. It was detected from Haute-Provence Observatory and immediately
there after at Keck Observatory by Marcy & Butler (1995). Subsequently, there
has been a continuous flux of new systems discovered. The lightest object
detected has been 0.0158 M ;.® In this statistical analysis, I will only include
objects with masses less than 13 My, as heavier objects are typically referred
to as brown dwarfs. I do not consider planets orbiting pulsars.

1.3.1 Mass

Known extrasolar planets have a wide range of masses, ranging from five Earth
masses to over 10 M ;. However, the majority of known extrasolar planets are
quite massive.? As of now, 37% of the planets detected have masses smaller
than 1 My and only 13% have masses larger than 5 M. Figure 1.1 plots the
distribution of known extrasolar planets as of December 2006. A major question
facing theoriests has been to explain, as the histogram shows, the significant
number of planets (~ 12%) that have semi-major axes between 0.035 and 0.05
AU (“hot Jupiters”).

Additionally, Figure 1.2, plotting semi-major axis versus the projected mass,
shows several alarming points. It appears there is a deficit of sub-Jupiter mass
planets beyond 0.5 AU, where 57% of the planets are located. The dashed lines
in the figure show the detection limits for planets in circular orbits at 3 and 10
ms~!, respectively. It is not clear if this deficit is the result of an observational
bias (Udry et al. 2003). Also, there are few massive planets (> 4 M) closer
than 0.3 AU to the star. Since observations favor close massive planets, this is
not an observational bias, suggesting a minimum distance where gas giants can
exist in planetary systems.

1.3.2 Eccentricity

The observed eccentricities of extrasolar planets range over the entire allowed
spectrum, but the majority of extrasolar planets have quite high eccentricities
(up to 0.93), as shown in Figure 1.3. Over half of the observed extrasolar planets
have eccentricities above 0.2, including multi-planet systems housing planets
with eccentrities above 0.6. This is in stark contrast to planets in our solar
system, which have eccentricities all below 0.1, with the exception of Mercury.'°
For further comparison, the largest eccentricity in the gas planets is Saturn, with
e = 0.054. The upper limit of 0.93 may be special, as it could be due to secular
perturbations of the planet HD 80606 b by a stellar companion on an inclined
orbit (Wu & Murray 2003). It also appears that more distant planets tend to

80r equivalently, 5.03 Earth-masses.

9This should not suggest that most planets are massive, remember, this is an observational
bias. We believe the majority of planets are closer to Earth-size planets.

10 And Pluto, too.



CHAPTER 1. INTRODUCTION AND MOTIVATION 7

T3 25 e
50_— ] N ]
[ i 20-_ J
o - Jd @« I ]
3O L 1% [ ]
§ 1 8.t 1
— N ] .51‘15— —
30 | 1 2t ]
°c r 1 © | ]
o [ 1 o [ ]
%o'_ q sor p
[ ] 8 [ i
5 [ 1 5 [ ]
'z, n g -4 L ]
10F 3 sp] 3
ol L = P S I I PP B e
0 5 10 -1.5 -1 -0.5 0 0.5
M, sini (M,) log(a/au)

Figure 1.1: Distribution of projected mass M, sini (in M, left panel) and semi-
major axis a (in AU, right panel) for known extrasolar planets.

have higher eccentricities. The question to consider is what physical processes
occur to create these eccentricities, and does it create either higher eccentricities
for larger mass planets or higher eccentricities for larger orbital separations?
Artymowicz (1992) suggests disc interactions can create larger eccentricities for
larger mass planets, while tidal circularization explains why we observe small
eccentricities for short period orbits (Rasio et al. 1996).
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Figure 1.2: Projected mass M, sini (in M) vs semi-major axis a (in AU) for
known extrasolar planets. Planets in multiple systems are indicated by open
symbols. The dotted and dashed lines represent the detection limit for planets
on circular orbits and an accuracy of 3 and 10 ms~!, respectively.
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Chapter 2

Physical Processes in Discs

In this chapter, I will begin by briefly reviewing the current models of planet
formation, focusing on planetesimal and gas giant formation. I then discuss the
planet-disc interactions and how this leads to orbital migration and resonance
trapping. From there, I will review some of the previous work done on resonance
trapping and eccentricity excitation, discussing particular accomplishments and
further questions incited from these studies. Finally, I will outline my research.

Protoplanetary discs exist around T Tauri stars, which are a class of pre-
main sequence stars named after their prototype T Tauri. They are identified
by their optical variability and strong chromospheric lines. Roughly half of T
Tauri stars show evidence of a gaseous disc, which is estimated to dissipate on
timescales of up to 107 yr. Protoplanetary discs around T Tauri stars differ
from the discs surrounding close binary systems in their size and temperature.
Protoplanetary discs have radii up to 1000 AU and are rather cool. Only the
innermost part of the disc reach temperatures above 1000 K.

2.1 Planet Formation

Terrestrial planets are believed to form from solid body accretion of km-sized
objects, which are the result of sedimentation and collisional growth of dust
grains in protoplanetary discs (see Lissauer 1993 and references therein). This
was originally stated in the 19th century from the idea that Earth formed from
meteoritic material. Geologist T. C. Chamberlin describes these objects as
“planetesimals,” sub-Earth to Earth-size solid objects that through collisions
can form larger planets. It was not until the 1960’s, however, that the theory
was developed in detail by V. Safronov (1969). A major accomplishment of this
theory was to suggest that gas giants also form in this manner. We will see how
large rocky cores can lead to gas giants below.

10
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Terrestrial planets and core formation

Rocky planets and planetary cores form in several stages. First, micron-size
dust within the disc forms sediments that settles toward the midplane. This
occurs because gravitational interactions with the central body causes the dust
in the disc to undergo damped oscillations. The damping occurs because of
frictional forces from the gas. Without damping, the dust would oscillate about
the rotational plane, by the conservation of angular momentum, at the Keplarian
angular velocity

G M,

Q=15

(2.1)

Additionally, the dust tends to drift toward the star, because its coupling with
the gas forces it to rotate at a slightly sub-Keplerian velocity. This means that
the dust rotates slightly slower than an object would at a given radius without
the presence of a drag force.! Assuming the dust particles are spherically shaped
with radius rq, and ¢, is the thermal velocity of the gas, the drag force exerted
by the gas is ~ mr2pcs(Vgas — Va), provided that (vgas — va) << ¢, (Epstein
law; e.g., Weidenschilling 1977). For a dust grain of mass mg, we define a

characteristic timescale
mgq

(2.2)

Te = mripes
as the time it takes the velocity of the grain to decrease by a factor e. It is
from the fact that 27/Q >> 7. that the oscillations are suppressed and the
grains sediment toward the midplane. Assuming adopted values of p ~ 10710
gem ™3, ¢, ~ 10° ecms~ !, and assuming the density of the grains to be 3 gcm ™3
(which is comparable to the mass density of the Earth’s crust and that of the
asteroids) we get 7. ~ 10 s. For a highly damped harmonic oscillator, this
defines a characteristic timescale for sedimentation,

_ 1
Q2

(2.3)

Ts

Using the values above, we can approximate this timescale as 7, ~ 10° yr
at 1 AU. This is small compared to planet formation timescales, as we shall
see. Collisions and accumulation continues until the objects grow into cm-
sized objects. The process of how these objects become km-sized objects is
still unclear. Safronov (1969) and Goldreich & Ward (1973) independently
pointed out that dust may concentrate in the layers that undergo gravitational
instability. These processes would then require the mass density of the dust to
be on order of 1077 gem™3. Fragmentation of these layers would then produce
km-sized planetesimals. Widenschilling (1980) refuted this theory, however, by
showing that, if dust densities were this high, the dust would drag the gas
at Keplerian velocities around the star. This would produce a velocity shear
between the dust layers and gas around it, giving rise to Kelvin-Helmholtz

IMathematically, its velocity is given by v = Qr — Av, where Av > 0.
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instabilities. Dust mixing would result, preventing the densities from getting
large enough for gravitational instability to occur.

At this point, further collisions lead to larger planetesimals. It is believed
that this process begins with runaway growth and forms a population of small
cores. From here, runaway growth ceases and oligarchic growth occurs among
these cores. As accretion continues, these cores further isolate themselves, where
disc-planet interactions may become important. This process is estimated to
take on the order of a few million years.

Gas giant formation

Two theories have been proposed for gas giant formation. The first states that
gas giants form through the collapse and fragmentation of the protoplanetary
disc. It was first proposed by LaPlace in 1796 and later developed by G. Kuiper
in the 1950’s (see also, Boss 2006; Boss & Durisen 2005; Mayer et al. 2007).
The second theory, proposed by Cameron in 1973, is called the “core accretion
model.” A solid core is first assembled, as outlined above, until it becomes
massive enough to gravitationally bind the surrounding gas it is embedded in.
This causes a gaseous envelope to form around the core.

Mizuno (1980) first showed that a gaseous envelope bound to a planetesimal
cannot remain in hydrostatic equilibrium if the core exceeds 10-15 Mpg. At this
time, rapid accretion occurs by the core, converting the rocky core into a gas
giant. A gas giant’s envelope is acreeted on the order of < 105 yr (Pollack et
al. 1996). A problem with this model is that it does not explain what stops the
accretion. It is possible that the gas is dispersed rapidly during the accretion
phase, but timing constraints (dispersal in < 10° yr) make this unlikely. One
explanation is that gravitational tides become strong enough to “repel” nearby
gas (Lin & Papaloizou 1993).

2.2 Tidal Interactions

The discovery of “hot Jupiters” led to the realization of the importance of or-
bital migration. Since it is difficult to form a core at small radii, it is proposed
that the planet formed at larger radii and migrated inward. Three mechanisms
have been developed to explain the locations of planets at very short orbital
distances. The first relies on the gravitational interaction between two or more
Jupiter mass planets, which may lead to orbit crossing and the ejection of one
planet while the other is left in a smaller orbit (Rasio & Ford 1996, Weiden-
schilling & Marzari 1996). This can account for some but not all of the relatively
large number (~ 20%) of short-period planets observed. A second mechanism
is migrational instability (Murray et al. 1998; Malhotra 1993). This involves
resonant interactions between the planet and planetesimals located inside its
orbit, which lead to the ejection of a fraction while simultaneously causing the
planet to migrate inwards. This, however, requires massive discs that would
be marginally gravitationally stable. The final mechanism involves tidal inter-
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actions between planets and the surronding gas (Goldreich & Tremaine 1979,
1980; Lin & Papaloizou 1979,1993). T will focus on the last of these mechanisms.

Three types of migration have been proposed. These are (1) type I mi-
gration, which applies to an embedded protoplanet of small mass where the
disc response can be analyzed analytically (e.g., Ward 1997), (2) type II mi-
gration, which applies for massive protoplanets that have opened a gap (Lin &
Papaloizou 1986), and (3) type III migration, or runaway migration, which is a
rapid migration applicable to more massive discs (Masset & Papaloizou 2003;
Artzmowicz 2004). Orbital migration occurs through the exchange of angular
momentum between the planetesimal and the disc. This can be accounted for
by considering viscosity and wave fluxes of angular momentum within the disc,
as well as the difference between the rate of advection of angular momentum by
gas flowing through the orbit. Additionally, migration can occur due to the rate
of increase in the angular momentum content of regions in the neighborhood of
the planetesimals due to non steady conditions. The angular momentum carried
in waves is associated with type I and type II migration, whereas advected fluxes
are associated with type III migration. I will not discuss type III migration here,
as most of the theory supporting this process is still in development.

The essential physics of these interactions can be shown by using the impulse
approximation (see e.g., Lin & Papaloizou 1979). The gravitational tidal inter-
actions allow angular momentum to be transferred from the gas on the inside to
the planet and from the planet to the gas on the outside. Since orbital angular
momentum must increase outward in dynamically stable discs (the Rayleigh cri-
terion; Drazin & Reid 1981), gas interior to the planet loses angular momentum
and must move farther inward. Similarly, gas outside the planet gains angular
momentum and must move farther outward. In effect, the gravitational tides
of a planet repel the nearby gas. In fluid dynamics, the tides of the planet
excite spiral density waves that propagate away from the planet (Goldreich &
Tremaine 1979). The waves become excited at the Lindblad resonances, loca-
tions in the disc where the natural frequency of radial oscillation is an integer
multiple of the frequency at which the gas is forced by the planet. That is,

+m(Q(r) — Q,) = Q(r), (2.4)

where €, is the orbital frequency of the planet, Q(r) is the orbiting frequency of
the gas at radius r, and m is a positive integer. The torque exerted on the gas
is the sum of the contributions from the Lindblad resonances and is negative
(positive) for gas interior (exterior) to the planet. The expression for the torque
is given by (Lin & Papaloizou 1993)

2
_ 2.4 (Tp\* ( Mp
Ttide - fEQprp (ﬁ) (]\4*> 9 (2'5)
where H is the height of the disc, 3 is the surface density, and f =~ 0.2 is a

constant. This torque tends to push gas away from the planet, whereas the
viscous stress of the gas seeks to diffuse gas back toward the planet and is given
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by (Lynden-Bell & Pringer 1974)

2
H
Tois = 3750Qr? = 3raX0?r? () , (2.6)
r
where « is a dimensionless parameter and v is the viscosity. Therefore, we would
expect that a gap forms when Tyq. > Tyis. We then arrive at the expression

for the minimum mass required to open a gap:

5/2
b5 (1)

Using typical values adopted for discs, this gives us a mass ~ 75Mp, slightly
less than the mass of Saturn. It is also possible that these gap-forming processes
serve as a way to terminate the gas accretion on the solid cores.

However, for planets smaller than this gap-forming limit, the exchange of
angular momentum between the gaseous disc and the planet can result in orbital
migration. The angular momentum of the planet is given by

MpQpr2 = My\/GM,ry, (2.8)

and therefore the net total torque exerted by the planet on the gas, T}, is
governed by

d
o (mpQpr2) = —Thet, (2.9)
or equivalently,
T,
dry _ __ Tnet (2.10)
dt 2mpQpry

This defines a characteristic timescale for type I migration

tmi = == ~ ST T
I ldrpfdt] ~ 2Tnes  Qp M, 212

"p Qry 1 M. M, <H>2 (2.11)

s IR .
where I estimated Tyet as Tiige reduced by H/r (Ward 1986). Again, this
only applies to smaller planets that cannot form gaps; more massive planets
within gaps have surface densities that drop of significantly. This timescale is
surprisingly short, on the order of 10° yr for Earth-sized planets. The expected
lifetime of these discs are on order of 107 yr, which raises the question of why all
planets do not eventually migrate into the star? There must be some mechanism
that is stopping this runaway migration. I will explore a possible solution in
this thesis.

When gap conditions are satisfied, the outward flux of angular momentum
due to viscous transport in the outer disc is supplied by the planet, and the
angular momentum of the inner disc is taken up by the planet. When the
contributions do not balance, the planet’s change in angular momentum forces
it to migrate. Simulations have indicated that the outward flux dominates,
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causing inward migration. This migration also occurs on the viscous timescale
and is given by (Shakura and Sunyaev 1973)

= () 0 =B () () e

We arrive at values on order of 10% — 10 yr for r, between 1 and 5 AU. This is
even shorter than estimated planetary formation timescales, let alone the disc
lifetime.

Suggestions on how to stop this rapid migration have been proposed. Tidal
interactions with the star at small radii would allow for gap-formed planets to
cease migration (Lin et al. 2000). Additionally, planets close enough to the star
would lose part of their outer envelope as they are accreted onto the star, and
this transfer of mass would move the planets outward, allowing for migration to
cease (Trilling et al. 1998). Finally, magnetic activity within the gas could also
cease migration at small radii. Magnetic activity and tidal interactions with the
star account for the location of 51 Pegasi b (Lin et al. 1996), and help to explain
the location of hot Jupiters in general. However, these mechanisms cannot
account for the presence of gas giants orbiting at distances larger than a tenth
of an AU. What is causing these planets to stop migrating? Disc dissipation
may account for ceasing the migration. If there was not enough material left in
the disc after planet formation occurred, then significant migration could not
take place. It has been proposed that several gas giants form in a typical disc
and only a handful survive (Lin 1997).

A Possible Solution: Resonance

Orbital migration occurs at different rates within the disc, which depend on
the disc parameters, and can produce convergent migration and locking into
mean motion resonances—similar to the induced migrations of satellites in the
Solar System (Goldreich 1965). When the orbital periods of objects becomes
simple ratios, the periodicity of their motion can cause the objects to move as a
coupled system. Resonance trapping occurs when the gain of energy and angular
momentum of a particle due to resonant gravitational perturbations from a
planet exactly compensates for the loss of energy and angular momentum due
to an external dissipation, such as gas drag. Pairs of extrasolar planets have
been found in such resonance configurations. Gliese 876 (Marcy et al. 2001)
and HD 82943 (Mayor et al. 2004) have planets that are in 2:1 resonances, for
example. The origins of these commensurable orbits are naturally explained by
disc interactions. It has been shown that when a planet migrate inward and
lock into resonance with an inner planet, their migration rates are appreciably
slowed.
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2.3 Review of Previous Work

Resonance Trapping

Much work has been done in trying to determine the importance of resonances
in planetary systems and how it relates to (1) the formation and (2) the stability
of the systems. We review some of those results here while discussing some of
the questions that have arisen from these studies.

Lee (2004) has shown the diversity of the various 2:1 resonance configurations
that can be reached in planetary systems by means of migration. The 2:1
resonance can have three possible configurations: (1) Symmetric, where the
resonance variables?

0;, = Xi —2), + w;
0, = XN;i —2X, + wo, (2.13)

both liberate about 0°; (2) Anti-symmetric configuration, where 6; and 6, liber-
ate about 0° and 180°, respectively, and; (3) Asymmetric configurations, where
0; and 0, liberate about angles far from either 0° or 180°.2 In doing so, he
concluded that the mass ratio of the two bodies, m1/ms, can strongly affect
the possible outcome of the resonance trapping. In particular, some mass ratios
are unstable, in that any additional migration would break the resonance, and
the planets would move as an uncoupled system once again. Additionally, the
magnitude of the eccentricity damping in the migration greatly determines the
final outcome of the system, suggesting that even the model of our migration
term is important. This frictional term is typically written as

f= —av—i—Zgi(r,v), (2.14)

where understanding the form of g is one question we must seek to answer. Also,
Lee shows that the mass ratio of the bodies plays a substantial role in whether
the resonance trapping is stable or not. It would then be useful to understand
the role the mass ratio plays in various resonances, so to better understand
which resonances have a higher probability of capture under various conditions.

Resonance has been shown to be a crucial factor in determining the outcome
of planetary systems. It has been shown that when planets become trapped in
mean motion resonance, further migration leads to eccentricity growth. Reso-
nance then serves as a mechanism to create the observed eccentricities in plan-
etary systems.

As mentioned above, GJ 876 contains two planets in a 2:1 resonance. Lee
and Peale (2002) have modeled this system by allowing the outer planet to

2These can be easily determined from the disturbing function of the N-body system. See,
e.g., Murray and Dermott’s Solar System Dynamics, chapters 6 and 8.
3Here ) is the mean longitude, and @ is the longitude of pericenter.
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migrate and become locked into a 2:1 resonance with the inner planet.* In an
attempt to recreate the observed properties of the system, Lee and Peale test
whether resonance can create the observed eccentricities of the planets, which
are 0.27 and 0.1 for the inner and outer planets, respectively. Their first tests
use only standard friction to model the migration, without eccentricity damping,
and were unable to recreate the observed system.® However, they were able
to get reasonably close by including an eccentricity damping term into their
migration models. However, it required such strong damping that their values
did not make sense with existing disc parameter estimates. They suggest that
the migration in this system must have been finely tuned to stop when the
system had progressed to its observed state, either through disc dissipation or
by some other mechanism. It does show that resonance can play a strong role in
pumping up eccentricities, and further knowledge of the disc parameters would
allow us to determine the maximum eccentricities that could be created.

Eccentricity Excitation

Several mechanisms have been proposed to explain the high eccentricities ob-
served in extrasolar planetary systems. I will outline the three most prominent
here.

Gravitational Perturbation by a Companion Star - Most stars are part
of binary star systems. This theory suggests that planets orbiting one
star can be gravitationally perturbed by the companion star, exciting large
eccentricities in the planetary orbits on very long timescales (108 yr). This
theory is one of the more appealing in general because only a handful
of stars known at present to harbor planetary systems also have stellar
companions (Schneider 2005).

Interactions with the Protoplanetary Disc - Planets having initial eccen-
tricities exceeding ~ 0.01 (Goldreich & Sari 2002) can have their eccen-
tricity excited due to Lindblad resonances in the protoplanetary disc, in
spite of damping from the corotation resonances. Additionally, when mi-
gration results with trapping into mean motion resonance, this leads to
eccentricity pumping, also in spite of damping forces. It has also been
shown that divergent migration (when the planets move away from each
other) through mean motion resonances can lead to eccentricity excitation
(Chiang, Fischer, & Thommes 2002).

Planet-Planet Scattering - Close encounters among planets in the system
can lead to large impulsive forces that result in a scattering event where
one object may be ejected from the system (Rasio & Ford 1996; Weiden-
schilling & Marzari 1996). These sudden perturbations have been shown
to impart finite eccentricities on the surviving planets (Malhotra 2002),

4The projected masses of inner and outer planets are 1.89 M and 0.56 M, respectively.
5T will derive what I mean by eccentricity damping in Section 3.4.
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and is a mechanism for scattering planets into higher-order resonances
(e.g., 4:1).

2.4 Outline of Thesis

These studies show the substantial role resonances play in the stability and
formation of planetary systems. Additionally, various parameters of the system,
such as the mass ratio of the two planets, properties of the disc, or the presence
of eccentricity damping can greatly alter the final configurations of the system.

The first part of this project is the systematic study of the processes that
lead to the formation of planetary systems within a protoplanetary disc. In
particular, I focus on the resonance phenomena and the implications of reso-
nant trapping for the evolution of the system. It has been shown that migrating
objects can be captured into resonances (Lee & Peale 2002; Kley 2003). These
resonances are then locations of high densities of mass, where mass accretion can
occur, leading to the formation of planets. The probability of capture depends
on a variety of factors. It has been shown, for example, that as giant planets
accrete their gaseous envelopes within the disc, this accretion can lead to migra-
tion and ultimately instability (Lissauer 1993, 1995). Moreover, the probability
is simultaneously affected by the eccentricity, dissipation (migration rate), or-
bital inclination, and mass ratio between the two objects. I have systemically
studied regions of this parameter space in order to determine what factors con-
tribute significantly to the success of resonance captures in conditions similar
to those found in real protoplanetary discs. This greatly extends all previous,
simplified studies exploring this parameter space (e.g., Quillen 2006).

The dynamical evolution of the system is influenced by the interaction of the
planets with the residual gas in the disc. I take into account interactions with
a gaseous disc in my simulations. I consider only three-body systems, which
will be simulated by orbital dynamical integrations using my code ResCap.
This code has been fine-tuned over the past year and has been successful in
reproducing results consistent with John Chamber’s similar software package
Mercury (Chambers 1999). The migration is controlled through a damping term
that is applied to the migrating outer planet. This damping term is set to model
the frictional effects of a protoplanetary disc given several parameters, such as
the density of the gas and masses of the planets (Thommes 2005). ResCap allows
for calculations of a wide range of initial conditions throughout this parameter
space, allowing me to treat each parameter individually in order to determine
its effects, without having to perform full hydrodynamic calculations of the disc.

I find that particular resonances are more stable than others, showing that
more planetestimals will collect at certain locations. The results of my research
on ideal two-planet, non-eccentric systems have shown that the number of pos-
sible mass ratios decreases as the resonance increases in complexity (e.g., 5:4
compared to 2:1). Further study will allow me to obtain the previously unknown
mass ratio interval to guarantee capture for initially non-eccentric orbits. Full
studies of this parameter space can then follow by slowly increasing eccentricity
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and inclination up to critical values that would prevent capture or stability. This
process can then be repeated for varying rates of migration. Once the adiabatic
limit is crossed, the probability of capture decreases significantly. This study
will require significant time in both computation and analysis.

The second part of this project is to study both how dynamical instability
can affect the longterm evolution of the system and how it can explain the large
number of highly eccentric planets. The gravitational interactions between plan-
ets can cause systems to go unstable through either collisions or the ejection of
planets (e.g., Rasio & Ford 1996, 2007). In some cases, however, these perturba-
tions can toss planets into highly eccentric orbits. Additionally, gas giants can
be thrown into very close orbits around their central star. I place three-body
systems in a particular resonance under conditions that will cause the system to
become unstable (either through making one of the planets sufficiently massive,
having planets with large eccentricities, or using resonances where the orbital
separation is small). I find that the probability for dynamic instability depends
on the resonance selected and is highly sensitive to the eccentricity of the plan-
ets. Highly eccentric orbits have a greater tendency for dynamic instability over
circular orbits. Additionally, this mechanism serves as a way to create planets
in higher-order resonances (e.g., 4:1 or 5:3) by having planets tossed into these
resonances.

My research provides the first complete study of the resonance capture phe-
nomena in protoplanetary discs. The results will lead to an improved under-
standing of an important process involved in the formation and dynamical evo-
lution of extrasolar planetary systems. In doing so, we will gain a stronger
understanding of our own solar system’s origins as well as qualify the existence
of habitable systems outside our own.



Chapter 3

Numerical Setup: ResCap

ResCap is a fourth-order Runge-Kutta N-body integrator that I developed over
the summer of 2006. I include the entire code, which is written in C, as Appendix
B. The code allows for the integration of planetary systems over arbitrarily long
timescales, similar to leading software packages such as Chamber’s Mercury
(Chambers 1999). I have chosen to have ResCap integrate Newton’s laws of
motion rather than Hamilton’s equations. Integrators that integrate the latter
are referred to as symplectic integrators. My N-body integrator easily allows for
external parameters, such as friction, to be incorporated for individual planets.
However, symplectic integrators are known to have two important advantages
over other algorithms. First, they exhibit no long-term build up in energy error.
Second, the motion of each object about the central body can be “built in,” so
that the choice of timestep is determined by the perturbations between bodies,
whose magnitude can be substantially smaller than the forces due to the central
body (Wisdom & Holman 1991). These two factors will have to checked in order
to ensure ResCap can work properly. We will first review the basic structure of
Runge-Kutta integrators, and then the structure of ResCap in detail.

3.1 Runge-Kutta Method

Problems involving ordinary differential equations (ODEs) can always be re-
casted as a set of first-order differential equations. For example, the equation

d?y

LY h@) L = gfa) (31)

de

can be rewritten as the set of differential equations

dy

Iz = z(z)

dz

T = gla) - b)) (32)



CHAPTER 3. NUMERICAL SETUP: RESCAP 21

: (3.3)

where 2z is introduced as a new variable to signify the derivative of the original
variable y. It could also be useful to incorporate into these variables additional
factors, such as powers of the independent variable (e.g. let z = 2%y), so to
mitigate singular behavior that could result in overflows or roundoff errors.
The original problem then reduces to solving a set of first-order differential
equations. This, along with a set of initial conditions, allows us to numerically
solve the equations of motion. The underlying idea of solving the linear first-
order initial value problem is the rewrite the dy’s and dx’s as finite steps Ay
and Az, and multiply Equation 3.3 by Az. In the limit of Az being very small,
a good approximation can be achieved. Literal use of this method is referred
to as Fuler’s Method, but is not recommended for practical use. However, the
concept is important; all methods typically come down to the same idea. The
Runge-Kutta method propagates a solution over an interval by combining the
information from several Euler-style steps (each involving one evaluation of the
right-hand side of Equation 3.3) and then using the information obtained to
match a Taylor series expansion up to some higher order. Another popular
method is the Bulirsch-Stoer method. It is a powerful idea of extrapolating a
computed result to the value that would have been obtained if the stepsize had
been much smaller that it actually was. It gains an advantage over Runge-Kutta
in efficiency, but works better for “smooth” problems, that is, problems that
would not require the timestep to be increasingly small. Runge-Kutta succeeds
virtually always; but it is not usually the fastest. However, the timescales
required for my simulations (< 107 yr) makes Runge-Kutta an ideal choice.

3.1.1 Derivation of the Method
The formula for the Euler method is

Yn+1 = Yn + hf(xna yn) + O(h2)1 (34)

which advances the solution from x,, to xp+1 = 2, + h. This formula is unsym-
metrical in that it advances through an interval h but uses derivative information
only from the beginning of the interval. Additionally, the Taylor expansion in
Equation 3.4 shows that the error is only one order of i smaller than the correc-
tion, making this a first-order approximation. Using this method directly is (1)
not very accurate compared to other algorithms, and (2) unstable for complex
sets of equations. Consider, however, the use of a “trial step,” to the midpoint of
the interval. Then use the values of both  and y at the midpoint to reevaluate
the derivatives and use those values to get to the real values across the whole

'Where higher orders of h have been supressed. These terms originated by simply taking
a power series of Ay about h.
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interval. That is, use the following set of equations to evaluate ;41

kl = hf(-rnvyn)
ky = hf(zn + 5h,yn + 5k1)
Yn+1 Yn + k2 + O(hS)

(3.5)

The symmetry cancels out the first-order errors, making this a second-order
method, and is typically referred to as the second-order Runge-Kutta method.
This is still not ideal for practical use (when small errors are necessary over long
timescales). However, the second-order method encapsulates the basic idea of
Runge-Kutta: by taking the right combination of trial steps, we can cancel out
higher order error terms.

The fourth-order Runge-Kutta method is what we will be interested in. It
gives fourth-order accuracy without significant computational time. In doing
so, we will compute two midpoints, and use them to project towards the final
point. The equations for the fourth-order Runge-Kutta method are:

ki = hf(xn,yn)

ko = hf(xn+%h7yn+%kl)

ks = hf(xn + Qhayn + §k2) (36)
ky= hf(xp+h,y, +h)

Yni1= Yo+ + BB L OM).

This method requires four evaluations of the right-side equations of Equation
3.3, once at the initial point, twice at trial midpoints, and once at a trial
endpoint. Combined with some additional features I will describe below, this
method can be very powerful. However, if very high accuracy is required, we
will see that computation time can become an issue for Runge-Kutta. We will
compare computational time versus accuracy in Section 3.3.

3.1.2 Adaptive Stepsize

At the beginning of the integration, a stepsize (our h) must be specified. It does
not make sense that this stepsize should remain constant throughout the en-
tire integration. We should require smaller stepsizes when integrating through,
for example, a close encounter, where the planets’ gravitational effects domi-
nate their motion, compared to when they are orbiting their central star stably.
However, having a small stepsize throughout the entire integration is overkill,
because we will lose significant time waiting for the integration to compute up
to and after the close encounter, where nothing interesting would be going on.
Likewise, if our stepsize is too large, we could model our close encounter incor-
rectly (and even result in events like collisions, which may not have occurred had
we had a smaller stepsize, giving us incorrect results). Therefore, I implement
an adaptive stepsize in ResCap, allowing it, if I may use an analogy, to move
slowly through treacherous terrain, while speeding through smooth uninterest-
ing countryside. While doing this, I can still maintain a predetermined order of
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accuracy, which is continuously monitored at every step. Obviously, this leads
to additional computations per timestep, but the gain we will receive will be
well worth it.

The basic idea is that of step doubling. That is, we take each step twice,
once as a full step (to arrive at y,41.1), then once as two half steps (which is
naturally more accurate) to arrive at y,4+1,2. We then compare the difference of
the two equations,

A=yYni12 = Ynt+1,1, (3.7)

which we label as the truncation error. It is in A that we can measure our
accuracy, and adjust h accordingly. I will use a method developed by Fehlberg
(1969), which is based off this idea. He realized that Runge-Kutta methods of
order M (M > 4) require between M and M+2 function evaluations total. For
example, in a crude step doubling algorithm, the initial point for both the full
step and half steps is the same, and would only need to be computed once.
Fehlberg discovered a fifth-order method with six functions evaluations where
another combination of the six functions gives a fourth-order method. The
difference between the two estimates of y,+1 can be used, similar to our step
doubling method, to determine the truncation error.

The general form of a sixth-order Runge-Kutta formula is the following set
of equations:

kl = hf(xnvyn)
ky = hf(zn,+ ash,y, + baiki)

; (38)
ke = hf(xn+ ash,yn + be1ki + - + besks)
Ynt+1 = Yn +C1ki+ -+ cgke + O(hﬁ)

The embedded fourth-order formula is
Y1 =Yn + ik + -+ cike + O(R®), (3.9)

so that the truncation error is given as

6

A=y —yhp =y (ci— ki (3.10)

i=1

The values of ¢;, b;j, and a; have been calculated by Cash and Karp (1990) and
are given in the following table.

Now how does A relate to h? According to Equations 3.8 and 3.9, A scales
as h®. If we take step h; to produce an error Ay, then a step hg would have
given some other value Ag, which is easily estimated as

Ao [V

ho =i | 5

(3.11)

Let us define Ay as our desired error—determined at the start of the integration.
This equation is then used in three ways:
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Cash-Karp Parameters for Runge-Kutta
) a; bij C; C;‘
1 37 | 2825
378 | 27648
2| % i 0 0
3| 3 3 9 250 18575
10 10 10 621 | 48384
4 3 3 =9 6 125 13525
5 10 10 5 594 | 55296
—11 5 —170 35 277
511 54 2 27 27 0 14336
61 7 1631 175  _575 44275 253 412 1
8 | 55296 512 13824 110592 4096 | 1771 1

j= 1 2 3 4 5

o If Ay > Ay, we must decrease the stepsize and retry the present (failed)
step.

o If Ay < Ay, this equation tells us how much we can safely increase the
stepsize for the next step.

o If Ay = Ay, then our stepsize is working perfectly and no adjustment is
needed for the next step.

This algorithm allows ResCap to work slowly through complex regions while
sailing through easier regions of the integration.

3.2 Set-Up

ResCap is used to model resonance trapping in N-body systems. However, all
derivations and results from this point forward will be for three-body systems,
but it will be clear how the procedure can be easily generalized. The type
of resonance trapping I will be considering in these three-body systems is by
having the outer body migrate inward and getting captured into resonance with
an inner body. The procedure to control this migration will be described in
Section 3.4.

Before determining the initial conditions of the bodies, it is important to
understand what the parameters of ResCap are. It seems natural to begin by
defining our units.

3.2.1 Units

It is natural to non-dimensionalize our units when dealing with orbiting bodies.
Therefore, we need to convert from metric units (kg,m, s) to a new unit system
(M, L,T) by some map ¢. We do so by the following prescription.

e Scale the masses by the mass of the central star, M,. That is, define

M=M,=1.
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T~hen the masses of the inner and outer body become J\;[i = M;/M, and
M, = M,/M.,, respectively.

e In the integrations, a particular resonance is typically expected. Therefore,
the two planets will be set up so, after some migration takes place, the
outer body will pass the location where resonance trapping can occur,
i.e., where the ratio of the planets’ periods will give the desired ratio.?
This radii, r,.s, measured from the origin, is then what we will scale our
distances to, that is,

L=r.=1

Therefore, the coordinates of the three bodies are given as {#;,y;} =
{2 /TressYj/Tres}, where j € {x,1,0}.

e Set the gravitational constant to unity,
G=1.

Out unit of time is determined by these three scalings. Rearranging Ke-
pler’s third law (Eqn 1.3), omitting the 472, we have

: (3.12)

which has units of seconds and is written in terms of our three parameters
we wish to rescale. Therefore, in our new units, we define our “unit” of

time as
3/2

=~ Tres
T= . 3.13
€I (3.13)
In the majority of these simulations, r,..s will be 1 AU, and M, will be a
solar mass. Substituting into the above equation, we get that

T = 6.0231 - 10° sec.

Therefore, we rescale the original time ¢ by T. From now on, when I refer
to a “timestep,” I am referring to 1 T'.

These three conversions define our map (kg,m,s) 2, (M,,7res,T) to non-
dimensional units. It is common to refer to the non-dimensional units with
an overhead tilda, e.g. .

3.2.2 Frame of Reference: Initial Conditions

The initial conditions of the three bodies depends on the frame of reference.
For ResCap, I have selected the center of mass frame of reference, that is, the

2We will see how this is determined in the next subsection.
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center of mass is at the origin. The initial conditions are then determined in
the following way.?

As mentioned above, each simulation is set up with a particular resonance in
mind. This provides us with an additional constraint that will help determine
the initial conditions. Resonances are typically written of the form

_P

p+gq
where p and ¢ are nonnegative integers. For example, a 2:1 resonance would
have p = ¢ = 1. Resonance gives a relation between the orbital periods, which

then gives a relation between the semi-major axes using Kepler’s third law, that
is if

T; P
— = —— =R, 3.14
T, p+aq (3.14)
then we have that
il
3 —
575 = R. (3.15)
Qo
This gives the following relation:
a; = R23 . a,. (3.16)

regardless of our choice of units. Now we originally said we were going to scale
the distance so the location of this resonance is for the outer planet is 1. So
the above equation immediately gives us the initial semi-major axis of the inner
planet as simply @; = ®2/3. The mean motion velocity can then be determined
by using the relation 7 = 2 /T,

N, = —=— = 27 — = . .
T; 2m a3/2 R

Here, I have returned to using the original form of Kepler’s third law, where the
sum of the masses is not approximated as the central mass.* Before I deduce the
initial conditions of the inner planet, I must introduce two more parameters. It
may be desirable to place the planets outside the resonance locations by making
small adjustments to their position coordinates. For example, I will typically
place the outer planet slightly out of the resonance location by making this small
adjustment. This can be done manually by adding a “shift” term to the initial
position coordinates. I then state that the initial position (with the central body
at the origin) of the inner planet is

~ 2/3 -
€Ty = R / + Li adjusts

¥ = 0+ gi,adjust (318)

3For a derivation of all the formulae used in this section, consult Murray and Dermott’s
Solar System Dynamics, Ch. 2.

4This is a personal preference, we could have continued to use the approximated version
without harm as long as the planets’ masses are small relative to the central object.
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I have selected the inner planet to lie on the z-axis (This is arbitrary for two-
bodies, given any other initial position, a simple rotation could place the planet
on the z-axis).

For the outer body, the initial position is similarly determined, but another
parameter needs to be introduced. While the location of two bodies is rota-
tionally invariant, this is not true for three bodies. The third body could be
anywhere on its orbit relative to the inner planet.® Typically, this parameter is
randomized between 0 and 27, and determines the location on the orbit relative
to the inner planet. Here, we are measuring the angle, ¢, relative to the positive
z-axis. Then the initial position of the outer planet is given by

~ (1 + io,adjust)“— - eg)

Lo = 1+ e, cos ¢ cos 9,
~ (1 + go adjust)(l - 6¢2)) .

. = ; . ; 3.19
Y 1+e,cos¢ sin g ( )

where e, is the desired initial eccentricity of the outer planet.® It is not hard
to see that this is nothing more than the polar parameterization of an ellipse
projected onto the x and y-axis. We have now calculated the initial positions
of the system with the central object at the origin.

We now can calculate the center of mass of the system. Since we are setting
the center of mass to be located at the origin, we can readily solve the equations

M*i'* + M’Li'z + Moi'o
M* + Mz + Mo
and similarly for y, to determine the initial position of the star in the center of
mass frame,

=0, (3.20)

_ Moo + M
M, '
However, Equations 3.18-3.19 assume the star is at the origin, so we append Z.

and ¢, to the initial positions of the planets, to maintain the correct relative
distance. For example,

(3.21)

Ty =

B = R 4 &y agiust — B = R + Fiaajust + T (3.22)

We can now calculate the initial velocities of the three objects. For the inner
planet, its initial velocity is given as
f}i,z = 0
- n;a;
By = (1 +e)
1—e

DO

1—e 570

, (3.23)

[\

i

5Unless for the particular simulation we are beginning the simulation with the planets in
resonance, which then we may wish to start the two planets both along the z-axis.

SIf we wanted to give the inner planet an initial eccentricity, we could arrive at a similar
equation.
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and similarly for the outer planet,

Vo g = ——F——=5IiNng

v = —————=(cosp+e,). 3.24
o,y m( 0) ( )
From this, we can use the fact that we want to center of mass to remain
stationary at the origin to determine the initial velocity of the star. That is, we
solve the equations ~ 5 5
M0y j + M0 j + My, 5 =0, (3.25)
where j € {z,y}. We have determined the initial conditions of the system. By
inputing the initial masses, eccentricities, and any additional adjustments in the
position of the bodies, the initial conditions can be determined.

3.2.3 The Equations of Motion

This initial value problem requires 12 initial conditions, two position coordi-
nates and two velocity coordinates per body. Therefore, we need 12 differential
equations. Six of these will be trivial, and the remaining six will simply be New-
ton’s law: six equations to describe the change in position, and six to describe
the change in velocity. They can be summarized as the following, regardless of
choice of units:

dz;
S
vz M M;io ;
djt = 7,3] (Xj41 —x5) + 7,3j (Xjy2 —xj) + f1, (3.26)
J,j+1 J,3+2

where j € {*,4,0}, and {j,j+1,j+2} is a cyclic permutation of elements of the
set {*,49,0}. The r; ;41 factor is the vector magnitude of the relative distance
between the j and j+1 bodies. Similarly for 7; j+2. The term f7 is an additional
term where migration will be incorporated for the j-th body in the x-direction,
else it is set to zero. The form of this term will be derived in Section 3.4. There
is an identical set of equations for the y-direction.

Additionally, some integrations will ask for mass accretion, that is, to allow
the mass of the bodies to change over time. We then include three additional
equations J

M

o = 1@ y5,0) (3:27)
where f is a function that can depend on the location of the body plus any
additional parameters, . The simulations that will use these equations will
allow the mass to grow linearly, so that f is a constant.

3.2.4 Additional Parameters of ResCap

There are several additional parameters that need to be determined prior to
integrations. These, however, do not need to be adjusted for every simulation.
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Error Control

Three parameters must be determined for the error control program, outlined
above. The value of Ag, the allowed error per timestep, must be stated. Ad-
ditionally, the initial value of h must be given, hg, which I will take to always
be equal to 10714, Therefore, the error control program can slowly increase h
if Ay < Ap in Equation 3.11, but it is small enough so that if the program
starts in a complicated regime, it is ready to use small timesteps. Finally, the
minimum allowed timestep h.,;, must be given, which I will take to be 0. If one
wished to be cautious and avoid possible underflows, one may want to set this
to 10739, We will determine what value of A to use in Section 3.3.

Printing Data: The Flow of ResCap

The length of the integration is determined as follows. Rather than running one
long integration, ResCap runs multiple smaller runs in succession. For example,
ResCap will solve the equations of motion for T = 0 to T' = 1000 yr. From
there, it prints the data from that integration. It will then clear its memory
and input the final conditions of the previous run as the initial conditions of the
next run, and use that to integrate from 7' = 1000 to 7" = 2000 yr, continuing
until the integration is complete.

As the reader, you may wonder how my error program handles this, because
no matter what h happened to be at the end of run, it will be reset to hg at the
start of the next integration. This is the reason I have chosen hy to be equal
to 1074, If an integration ends in a complicated region, it will start the next
integration using a small timestep, so that it does not attempt to work through
a complicated region using too large a stepsize. However, if the integration
ended in a non-complicated region, the error program will simply build the size
of h back up from hgy, with no loss of accuracy and a minimal increase to the
total computation time.

Four parameters are required to determine how data is printed and the
length of the integration. The size of each integration 7;,. must be specified.
The size of this value is arbitrary, as long as it is not too large. Very large values
risks the computer running out of memory before the simulation is complete.
If that occurs, the program will break and you will lose all of the data from
that particular integration. I will use Tj,. = 10000 timesteps unless otherwise
specified. The initial time determines what the integration labels the starting
point. I will always use ¢; = 0. The number of integrations will determine the
length of the integration. For example, if you wanted 100 integration runs, then
ResCap will integrate to ¢y = 10000 - 100 = 10 yr.

When each smaller integration is complete, ResCap runs a data program that
takes the 12 variables at each timestep (15 if we are including mass accretion),
and makes several calculations that are printed to a data file. These can include
the semi-major axis of each planet, the energy of the system, etc. This method
also allows us, in the case of a collision or other event where ResCap would
break, to have data up until that event.
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Finally, since the timestep can be increasingly small (<< 1), all the data
points are not necessary. By specifying t,,:, you state that in the data file,
ResCap will print one data point every t,,: timesteps. By increasing ¢+, you
can greatly reduce the size of the data file, but making its value too large risks
losing valuable information. Unless specified, I will use tpn; = 1.

Collision Detection

Currently a collision detection algorithm is being developed to allow for the
possibility of physical collisions to occur without ResCap breaking. It will not
be necessary for the current results, but will allow for additional tests on the
configuration of planetary systems in discs. The general idea is as follows. At
each timestep, ResCap will measure the relative distances between the point
masses. If the relative distance is within a predetermined value, it will log that
a collision occurred. It will then replace the two particles with a single particle
that has the same mass and linear momentum as the original pair. Modeling has
shown that collisional fragmentation does not occur on large scales (< 10%),
and remmant ejections are not significant to the subsequent evolution of the
system (Alexander & Agnor 1998).

3.3 Initial Tests

If we allow the f7 terms in Equations 3.26 to be 0 for all j, we have a conservative
system. I will use conservative systems to test ResCap in order to ensure that
everything is working properly before we begin to include migration and external
effects. Also, using a conservative system, we can test the error buildup in both
the total energy and total angular momentum at various Ag. Additionally,
we will compare the computational time required to achieve such accuracies to
determine the value of the error parameter, Ay.

The Center of Mass

A good initial test is to make sure the center of mass remains close to the origin.
We cannot expect it to be fixed at the origin due to roundoff errors, but should
expect the velocity of the center of mass to by incredibly small. T will define
the system to be a solar star and two Jupiter-mass planets, placed on circular
orbits. Figure 3.1 plots the x and y components of the center of mass’s velocity
for two integrations: one with the location of the planets arbitrarily selected,
and one where they are in a 2:1 resonance. As we see, the velocity never exceeds
changes greater than 107! over long timescales. Every integration would give
a different result,” but each would be on the same order of magnitude, whether
in resonance or not.

"Remember, the location of the outer planet on its orbit is randomized, so we would expect
the motion to be different on these small scales.
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Figure 3.1: The y and x components (in LT1, top and bottom panels, respec-
tively) of the center of mass’s velocity in a conservative system. We see that it
remains neglibigble, and fluctuates due to small oscillations and roundoff errors.
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Orbital Parameters Remain Fixed

Additional tests include using both a simple two-body system and a configura-
tion from our Solar System. For the two-body system, there are no perturbations
on the binary system from additional objects, so we should expect the orbital
parameters of the planet to remain fixed over long timescales. Below in Figure
3.2 is a (somewhat uninteresting) plot of a Jupiter-mass planet orbiting a solar
star. I have given the planet an initial non-zero eccentricity. In the upper panel,
we see that the semi-major axis does not change over time, while the lower panel
shows the eccentricity remains fixed. The changes in the semi-major axis and
eccentricity are no greater than one part in 10*. Additionally, I plot Jupiter and
Earth and allow the integration to run for 5-10° yr. We see in Figure 3.3 that
the orbital parameters do not change over long timescales. The plots on the left
panels show that the semi-major axes and the ratio of the orbital periods are
stable, while the plots on the right panels show that the eccentricities (initially
zero) remain fixed to one part in 103.

3.3.1 Errors: Determining A

We can now test the error buildup for ResCap in order to determine the value
of Ay to be used for ResCap. Also, we must make sure that the accuracy
is independent of the particular integration. What I mean is that no matter
what we are simulating, whether the planets are close together or far apart,
we should arrive at similar error buildups. We can test this by setting up
three-body systems at various resonances. The resonances will determine how
close the planets are to each other, and therefore the strength of the mutual
perturbations. I will set the masses of both planets to be Jupiter-mass planets,
so that the mutual perturbations are not strong enough to cause the system to
go unstable. I will then allow ResCap to integrate for 5 - 10* timesteps, with
Ag set to 107¢, where « is a positive integer between 10 and 18. The error
buildup for energy and angular momentum is linear, so I will then extrapolate
the error to larger timescales (107 yr). For these simulations I will use, in order of
increasing separation, the 3:2, 2:1, and 3:1 resonance. Additionally, I will use two
configurations where the planets are not in a particular resonance, one placing
the planets slightly above the 3:1 resonance, and one with large separation (the
ratio of the periods is ~ 9.5.) The results are plotted below in Figures 3.4 and
3.5. We see that for a given Ag, the error buildups for energy and angular
momentum stays within one order of magnitude of each other regardless of the
system configuration. This justifies that the accuracy parameter is independent
of the configuration of the system in the integration, as desired. A linear fit is
observed for Ag < 10716, but both energy and angular momentum experience
a divergence from this linear fit beyond that point. Recall Figure 3.1, where
the scale was on the order of 10~1°. Therefore, the measurements beyond 10~15
are a result of the small oscillations in the motions of the system, and cannot
be taken seriously. Therefore, if we want to demand high accuracies, but not
high enough so that we are dealing with the small oscillations of the system, we
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Figure 3.2: The semi-major axis (in AU, top panel) and the eccentricity of a 1
M planet around a 1 Mg, star. (bottom panel).
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should restrict ourselves to the regime where

—log,4(Ap) < 16. (3.28)

13

12 — 3:2 Resonance =

r  2:1 Resonance B

11 -~ 3:1 Resonance =

°
.

—log(AE)

| | | | |
10 12 14 16 18

—log(a,)

Figure 3.4: Error buildup for the total energy, AE, after 107 timesteps.

However, demanding exceedingly high accuracies can lead to increased com-
putational time. In order to select the accuracy parameter, I will log the com-
putational time ResCap takes to integrate two Jupiter-mass planets in 2:1 reso-
nance for 10° timesteps at various Ag. For each run, the print statement will be
ignored, so we are comparing only the time it takes to integrate the equations
of motion. The additional time necessary for printing is minimal for these inte-
grations, and can be safely ignored in the comparison. The results are plotted
below in Figure 3.6. We see there is an expodential increase in the computa-
tion time for each additional power of Ay that we demand. However, we can
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Figure 3.5: Error buildup for the total angular momentum, AA, after
timesteps.
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keep long integrations under 20 hours as long as we restrict —log;,(Ao) < 14.
Therefore, I will select Ag = 10~ as my accuracy parameter for ResCap.
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Figure 3.6: Computational Time versus the accuracy parameter, Ag. The left
axis measures the time (in seconds) to calculate 5-10° timesteps. The right axis
(in hours) extrapolates this to the amount of time it would take to run for 107
timesteps.

3.4 Migration

The additional terms fJ in Equations 3.26 control the migration of the planets.
For these integrations, I will be allowing the outer planet to be the only planet
that migrates. My justification is that these simulations will assume that the
massive planet is large enough (typically of Jupiter size) so that it has opened
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a gap in the protoplanetary disc. Therefore, the scarce presence of gas within
this gap has a negligible effect on the inner planet. The outer planets will
typically be of Earth-mass size, and so are not small enough to have opened an
appreciable gap.

The migration will be incapsulated by two terms, a migrational term and an
eccentricity damping term. The migrational term is the standard friction term
proportional to the velocity of the planet,

Apig = —QV, (3.29)

where « is a positive constant with units of s~!. It will be convienient for us to
write o as 1/tpg, a value we will call the migration timescale. The eccentricity
damping term is proportional to the radial direction of the planet, and is meant
to circularize eccentric orbits. It is of the form

(v-r)r

Aece = — 2ﬁ )
r

. (3.30)

Again, we will write 3—a constant with units of s~!-as 1/t..., which we call the
damping timescale.

The form of ¢,,,;4 and ... will be of interest to us. For these integrations, we
will use two particular models. One model, hereafter the constant value model,
will fix the values of t,,;4 and .. throughout the integration. The values will
be selected to mimic previous models of protoplanetary discs. This is a general
form of modeling friction in discs, and is not restricted to any particular mass
range. The other model was developed in Papaloizou & Larwood (2000), which
directly takes into account various parameters of the disc. In particular these
timescales are important when the eccentricity of the planet exceeds the aspect
ratio of the disc, H/r, where H is the disc height. It is in these situations they
have shown that eccentricity can help to prevent further inward migration, and
can actually lead to outward migration. The form of the timescales are the
following:

i) = 9900 [ ] (57 ()
8 (1%2)1 (10XU)_1/2 (3.31)
tece(yrs) = 25x10% |1+ i (He/aﬂ (1;1/06;)2
- (588 gzcm—2)_1 (1]\]@)_1 (f,:U)fm, (3.32)

where ¥ is the density of the disc. You can see when e exceeds the aspect
ratio of the disc in the t,,;4 formula, the denominator of the [ ] factor becomes
negative. These formulae, however, assume that the planet is of planetesimal
size, and therefore are only valid under the rough upper limit of 100 Mg.



Chapter 4

Results

ResCap was developed in order to better understand resonant interactions in a
protoplanetary disc and to gain a more general understanding of which param-
eters have dominant roles for the long-term evolution and stability of planetary
systems. In this chapter I will summarize some of the results that I have been
obtained with ResCap.

4.1 Migration and Eccentricity Damping

Recall the form of the friction term that will govern the migration of the outer

planet:

v 5 (v-r)r
tmig thecc '

f=- (4.1)
The first term controls the rate at which energy is dissipated from the outer
planet, and hence controls the rate of inward migration. Let us explore this term
some more. I will eventually adopt a value of 20,000 yr for #,,;,. While it should
be no surprise that smaller ¢,,;, corresponds to faster migration, recall that
resonance can slow the rate of inward migration. How much does migration slow,
and what factors determine this? Consider a 2:1 resonance with two Jupiter-
mass planets. 1 place the outer planet slightly beyond the 2:1 resonance and
allow it to migrate (without eccentricity damping) and capture the inner planet.
The two planets then migrate as a coupled system. The outer planet’s semi-
major axis for various values of ¢,,;4 is plotted below in Figure 4.1. Comparing
the slope prior to resonance trapping to the slope after capture, the rate of
migration slows by roughly a factor of three, independent of the value of ¢,,;,.

The timescale for planet migration is the disc viscous timescale, which Ward
(1997) determined to be

3v 3 5 _5 a H/a\?
o2 —53x1
27 = (H/a) Sk =53x10 (4>< 103) (0.05

39
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Figure 4.1: Various rates of migration for a 1 M; planet. The location where
the planet is in a 2:1 resonance with the 1 M inner planet (not plotted) is at
1 AU.
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where v is the viscosity, H is the disc height, Q2 is the Keplerian angular velocity,
and « is a constant. This is similar to the result in Papaloizou and Larwood
(2000). However, much can be understood by allowing this to be a simple
constant. Observations of T Tauri discs have shown that o ~ 1072, and H/a =
0.05 (Bryden et al. 2000; Kley 2000; Papaloizou et al. 2001). Using a = 1 AU
for Earth-mass planetesimals, we get ¢y, ~ 20,000 yr. Unless specified, when
I use the constant value model, I will use ¢,,;3 = 20,000 yr. Also, ry..s will be
assumed to be set to 1 AU.

Figure 4.1 shows that the factor by which migration is slowed does not
depend on the value of %,,;4. Let us further compare this factor with the mass
of the outer planet. Again, I will use a Jupiter-mass inner planet, but fix ¢,,4
at 20,000 yr. The results are shown in Figure 4.2. We see that the mass of
the outer planet, where the friction is applied, does affect the rate of migration
for the “coupled system.” If M, << M;, then the rate at which energy is
dissipated is significantly less than would be the case if the outer and inner
planets had comparable mass. A plot of the ratio of these migration rates can
be observed in Figure 4.3. The migration change factor is large when My << M;
and approaches unity as M, — M,;. This shows a strong relation between the
change in the migration rate and the outer planet for masses less than a mass
of the inner planet.

The eccentricity damping term is meant to circularize eccentric orbits in
contrast to resonances, which can induce eccentricities in both bodies. Figure
4.4 shows a simple example with two Jupiter-mass planets locking into a 2:1 res-
onance (without eccentricity damping in Equation 4.1). While the eccentricities
remain small, once resonance is hit, there is a sudden increase in eccentricity.
Without damping, this would grow continuously until instability occurred.

In addition to the migrational effects tidal interactions can have on the
planets, these interactions can also affect the planets’ orbital eccentricities (e.g.,
Goldreich & Tremaine 1980; Artymowicz 1992, 1993; Papaloizou et al. 2001).
A planet interacts with the disc in the vicinity of its Lindblad and corotation
resonances—where the mean motion and secular resonances occur simultaneously.
The nearby corotation resonances of the planet produce the greatest effect on é.
Likewise, the Lindblad resonances excite eccentricity in the planet (Goldreich
& Sari 2002). In the presence of disc material the net effect is eccentricity
damping.

Now, how do we define t...? For the constant value model, we will use the
form tece = Ktpig, where K is a positive constant (< 1). The justification for
this can be seen by comparing the equations from Goldreich & Tremaine (1980),
where A is the width of the gap formed by the planet, with A << a,

é M Ya? a\4
- = 0.11 —] Q 4.
’e’ 0-116 <0.32M@> (0.32M®> (A) ’ (4.3)
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Figure 4.2: Rates of migration after resonance trapping for several masses of
the outer planet. The location where the planet is in a 2:1 resonance with the
inner planet (not plotted) is at 1 AU.
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Figure 4.4: Two Jupiter-mass planets locking into a 2:1 resonance. Their semi-
major axes are plotted (in AU) on the top-left panel. The ratio of their orbital
periods is plotted in the bottom-left panel. Once trapped at ~ 2000 yr, the
initially circular orbits gain eccentricity (shown in the right panels).
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a M Ya? a\3
‘a‘ = 107 (0.32M®> (0.32M®> (K) & (44)

and noting that é = ya. This form of eccentricity damping has the convenient
property that the eccentricities reach equilibrium values after capture in reso-
nance for arbitrarily long timescales. This occurs when the damping balances
the excitation due to resonant interaction between the planets.

Consider the 2:1 and 3:2 resonances. We will examine the parameter space
for M, € {1Mg,10Mg,100Mg,1M;}, K € {1,0.1,0.01}, and t,,;, = 20,000
yr, measuring the final eccentricities gained by the planets after resonance trap-
ping has occurred. The criterion for this is to have ResCap record the final
eccentricity once é no longer changes to within 1% its value. The results are
shown in Figure 4.5. Several trends are clear:

e Lower mass outer planets are unable to produce high eccentricities in the
inner planet, regardless of the value of K.

e Massive outer planets tend to produce higher eccentricities in the inner
planet.

e Larger values of K typically produce higher final eccentricities in both
planets.

e The final eccentricities for the inner planet in the 3:2 resonance are gen-
erally a factor of three smaller than the final eccentricities of the inner
planet in the 2:1 resonance. Similarly for the outer planet.

4.2 Can Eccentricity Save Planets?

One problem facing theories of planet formation is runaway migration. All
theories suggest that most planets formed in discs will migrate until they either
collide with the star or are ejected through strong gravitational perturbations.
Papaloizou & Larwood (1999) investigated how small eccentricities alter the
effects of the Lindblad and corotation resonances on the protoplanet. Their
results culminated with Equations 3.31. We now compare this model for t,,;4
and t... with the constant value model.

For the simulations using Papaloizou and Larwood’s model, T adopt the
following values for the density and scale height of the disc (Thommes 2005):

I 1000(%)71 gom™2
H = 0.03(12U)5/4r, (4.5)

where r is the radial distance from the star. For the constant value model,
I use tece = 0.1ty Figure 4.6 is a clear example of the difference between
this model and the constant value model. Notice that resonance pumps up



CHAPTER 4. RESULTS 46

0.8 IRERR IR T 0.8 T T 1117 T T T
- K=0.1 1 - 1
- K=1.0 1 le—— |
0.6 — - 0.6 — -
El [ 7 El [ 7
204 :\-\, . 2041 .
V) L B W) L B
L 4 Fe o 4
Le — 4 i L - o]
0.2 |- I 0.2 |- -
O T\‘ Il \\\\H‘ L1 \\H\‘ Il 7\ O T\‘ L1 \\H\‘ L1 \\\H‘ Il 7\

1 10 100 1 10 100

MO MD

012 L‘ T T TTTTT T T TTTTT \7\ 04 L‘ T T TTTTT LA L]
0.1 - - i 1
- /] 0.3 - -
0.08 |- . - 1
£ L ] £ r ]
¢ 0.06 /1 Fo2p -
0.04 |- . i ]
: ] 0.1 .
0.02 |~ = i ]
0 il Ll Ll L 0 L;,wa—frrrm'// Ll L

1 10 100 1 10 100

M

o

Figure 4.5: The final eccentricities for various values of K in tece = Ktpmig. The
mass of the inner planet is fixed at 1M, and M, is the z-axis. Left Panels:
Final eccentricities for the 3:2 resonance for the outer and inner planet (top
and bottom panels, respectively). Right Panels: Final eccentricities for the 2:1
resonance for the outer and inner planet (top and bottomn panels, respectively).
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be reached.
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eccentricity until migration reverses and the outer planet migrates out of the
resonance (top-left panel). At this point, the resonance can no longer pump up
eccentricity, and damping brings it back down (top-right panel), reversing the
migration direction again.

This eccentricity mechanism can serve as a means to prevent the planets
from migrating into the star on short timescales. Once the outer planet leaves
resonance, the planets no longer move as a coupled system and energy is not
dissipated from the inner planet, which prolongs its orbital lifetime. Figure 4.7
compares the migration rates for 1 Mg, 10 Mg, and 50 Mg in the top-left,
top-right, and bottom-left panels, respectively. We see that for massive planets,
Papaloizou and Larwood’s model caused the migration to be so rapid that the
2:1 resonance was skipped and the planet later locked into the 3:2 resonance.
Overall, the migration rate was not slowed, but rather increased! For the 10 Mg
planet, we see that the rate of migration in the non-constant model eventually
equals the constant value model and is unable to serve as a means to slow
migration. However, for Earth-mass planets, the migration rate is significantly
slowed. Therefore, this model serves as a way to prevent migration of smaller
protoplanets and small Earth-size planets in discs where a giant planet has
formed a gap. However, comparing with our solar system, we see the small
Earth-like planets are inside the orbit of the gas giants. By what mechanisms
could the planets “switch places?” Dynamical instability proposes itself as one
such answer, which will be explored in Section 4.4.

4.3 Mass Limits on Resonance Trapping

For the majority of this chapter, I have been using the 2:1 resonance, with
several comparisons to the 3:2 resonance. My selection was not arbitrary. For
the previous results, the comparisons relied on the fact that resonance capture
had occurred. We never had to be concerned with the outer planet passing the
resonance location during its migration. The 2:1 and 3:2 resonances are first-
order resonances, that is, ¥ = (p + 1) : p. They have the characteristic that
resonance trapping occurs readily as long as (1) the migrating planet is not mas-
sive enough, or (2) the planet is not migrating too fast through the resonance
location. We explore part of this parameter space here in the low-eccentricity
regime. For these simulations, I will use the constant value migration model,
with feee = 0.1%,,34. The setup is as follows: The planets are arranged so the
outer one is outside the resonance, allowing a distance between 0.1-0.2 AU to
migrate until it reaches the resonance location. Then, a catalog will be made
whether resonance capture occurred. If capture occurred, the outer planet is in-
creased by a half order of magnitude (1, 5, 10, 50, 100, 500, ...) in Earth-masses,
and the process will continue until trapping does not occur. Additionally, when
capture does not occur, it is be logged whether it passed the resonance loca-
tion, or whether dynamical instability caused the system to dissipate. The inner
planet will remain a Jupiter-mass planet throughout. In addition, eccentricity
will be initially given to the outer planet in some of the integrations. I will
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Figure 4.6: Orbital migration of a 10 Mg planet using Papaloizou and Larwood’s

model for t,,;, and tecc.

Top-Left Panel: A plot of the semi-major axes (in

AU) of the planets. The 2:1 resonance serves as a barrier: once the planet
is in resonance, eccentricity pumping occurs (top-right panel) and results in
outward migration. Without resonance to excite eccentricity, damping reduces
the eccentricity of the planet until the migration reverses direction.
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Figure 4.7: The semi-major axis of the outer planet during resonance trapping
with a 1 M inner planet (not shown), using either the constant value model
or Papaloizou’s model for the migration and eccentricity timescales. The mass
of the outer planet is 1 Mg, 10 Mg, and 50 Mg for the top-left, top-right, and
bottom-left panels, respectively.
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take the initial eccentricities to be either zero or 0.2. Since damping is present,
the eccentricity at resonance is between 0.1 and 0.15. The resonances we will
consider will be the 2:1, 3:2, 4:3, 5:4, 3:1, 5:3, 4:1, 5:2, and 7:4. The results are
summarized in Table 4.1. Several trends are immediate:

e The first-order resonances are more stable than the second or third-order
resonances at low eccentricities.

e For all the first-order resonances, the maximum mass is limited by dy-
namical instability. We only see the outer planet passing the resonance
location in the 3:1 (second-order), and third-order resonances.

e Eccentricity greatly limits the mass limit of every resonance except the
5:2. Failure for any resonance captures to occur in, for example, the 3:1
resonance, relied on the fact that the eccentricity of the outer planet is still
small. Simulations have shown that planets with high (> 0.6) eccentricities
are capable of being captured into the 3:1 or 4:1 resonance. We will see
some examples below.

M,=1Mg, M; =1 My,
€o 2:1 3:2 4:3 | 5:4 | 3:1 5:3 4:1 | 5:2 7:4
0 | 10000* | 1000* | O* | O* 0 1000% | 0O 0 | 1000
0.2 50%* 0* 0* | 0* 0 0* 0 10 0*

Table 4.1: For a given resonance and eccentricity, the minimum mass (in Mg)
where resonance trapping did not occur. A ‘*’ signifies that resonance trapping
failed due to dynamical instability, rather than the planet migrating past the
resonance location.

4.4 Dynamical Instability: A Way to Make Ec-
centric Planets?

Rasio & Ford (1996, 2007) have shown that dynamical instability can produce
large eccentricities consistent with observed extrasolar planets. Knowing how
often and under what conditions this occurs would help to better understand
the process of planet formation and in determining whether systems are stable
or not. It is important to determine how often this occurs along with the
necessary conditions necessary to produce close interactions with the planets.
This part of the study is currently still on going, but a few results are already
apparent. Particular resonances allow for dynamical instability more readily
than others. This can be analyzed analytically. Compare the 3:2 resonance with
the 2:1 resonance. First, the 3:2 resonance brings the planets closer together in
comparison with the 2:1, so large-mass planets would have a better chance to
mutually perturb each other. This can be shown from the discussion in Chapter
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3: for resonances of the form ® = (p + 1) : p, the separation in the semi-major
axis, Aa is estimated as

21

= g]?ao.

Therefore, Aa decreases with increasing p. Additional relations for other reso-
nances can be determined. Continued simulations cannot produce any possible
configurations where an outer planet can move into a 2:1 resonance and become
dynamically unstable so that one of the planets survives in the end. Typically,
a collision occurs because the 2:1 resonance requires the mass of the planets to
become unrealistically large. However, the 3:2 resonance allows for such config-
urations. Figure 4.8 gives one such example of two Jupiter-mass planets in the
3:2 resonance becoming dynamically unstable. The outer planet switches places
with the inner planet, leaving the inner planet on an eccentric orbit.

The previous section gives several additional examples of dynamical insta-
bility creating eccentric orbits. With a 1 M inner planet, the 3:2 and 5:4
resonances are dynamically unstable. That is, planets in this resonance with a
Jupiter-mass planet are within the sphere of influence of the Jupiter, the regime
where dynamical instability can occur. This region is approximated by the Hill
sphere, which has radius

~ Mz + MO 1/3 a; + Ao
THill = (3M*> <2> (4.7)

Aa (4.6)

for circular orbits. Thus, if orbits fall within several Hill spheres of the body,
the gravitational influences can become large. For a Jupiter-mass orbiting a 1
Mg star at ~ 0.8 AU with a third planet located at ~ 1.2 AU, the Hill radius
is rgi ~ 0.03 AU. This may seem small, but if the body near 1.2 AU has an
eccentricity of 0.3, the semi-minor axis is a(1—e) = 0.84 AU, placing it very close
to the Hill sphere. T observed that most planets become gravitationally unstable
in the cases where the outer planet initially had non-zero eccentricity. Figure
4.9 is one such example. A 1 Mg planet with ~ 0.3 initial eccentricity (top-right
panel) is scattered from the inner planet and gets tossed into an inner orbit with
higher eccentricity (top-left panel). We see the planet is actually tossed close
to the 2:1 resonance, but now with the smaller planet on the inside (bottom-left
panel).

Another example is having planets get tossed into farther orbits. Figure
4.10 shows a 1 Mg planet becoming locked into a 5:4 resonance with a 1 M
inner planet. However, initial eccentricities and the small orbital separation of
the resonance caused the outer planet to be tossed farther out due to gravita-
tional interactions with the inner planet. The planet, with initial eccentricities
< 0.1, is tossed into the 4:1 resonance with eccentricities > 0.5! It is clear that
this mechanism is crucial in creating the high eccentricities observed in plane-
tary systems. Using ResCap, we will soon understand the frequency at which
these phenomena can occur and will be able to characterize the significance of
determining why we observe so many highly eccentric planets.



CHAPTER 4. RESULTS

52

3 ‘ T T T T T T T ‘ T T T T T T T
L ] 0.3 -
ol B L i
P ] 02 -
= | - L i

= 2

= | | o L i
© | | L i
1 L B L i
L ] 0.1 -
. \ i - 4
7‘ L L ‘ L L L ‘ L L ‘ L ] 7‘ L L ‘ L L L ‘ L L ‘ L =)

0 2000 4000 6000 0 2000 4000 6000

Earth years Earth years

5 7‘ T T T T T T T T L T T T T T T T T
4 7 0.3 F -
_3F . i 1
= L ] L |
N 1 S OR L 1
= L - L 4
2 j i | -
C 1 0.1 F .
L 7 r ]
a ] 0 -} \ \ \ 3

O L L L L L L L L

0 2000 4000 6000 0 2000 4000 6000

Earth years

Earth years

Figure 4.8: Two 1 M planets undergoing dynamical instability in the 3:2 reso-

nance. In the end, as seen in the top-left panel, the planets switch places, leaving
the (originally) inner planet with an eccentric orbit, as seen in the bottom-right
panel.
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Summary and Discussion

The recent observations of extrasolar planets strongly suggest that gravitational
interactions between forming planets and the disc in which they are embedded
are a key element in the understanding of planet formation. For example, theory
suggests that planet-disc tidal interactions allow orbital migration to place hot
Jupiters where we observe them today (Goldreich & Tremaine 1979, 1980; Lin
& Papaloizou 1979, 1993).

A substantial amount of work has been done in the last decade to gain
a stronger understanding of planet-disc tidal interactions. Three dimensional
numerical simulations incorporating magneto hydrodynamic turbulence rather
than anomalous viscosity prescriptions have begun and have shown magnetic
interactions with the disc can strongly affect migration, especially in the Earth-
mass range.

The results of this study are part of the pioneering steps to understand
migration processes on a global level. We are currently at a point where we can
study each stage of planet formation individually, but simulations taking into
account all of these processes cannot be done. This would require very complex
computations that cannot yet be performed on a reasonable timescale. Working
toward the day when those simulations will be possible, this study has helped
to better understand the following;:

e The evolutionary outcome, i.e., final orbital configuration of the system,
depends strongly on the properties of the protoplanetary disc and the
initial conditions. Understanding which of these properties are important
will allow us to predict the long-term evolution and stability of planetary
systems without the need for massive numerical simulations.

e The presence of high orbital eccentricities amongst extrasolar planets is
suggestive of a strong orbital relaxation or scattering process. For this to
happen, formation must occur on a timescale short enough that dynamical
interactions may take place subsequently. The gaseous environment of the
disc appears to inhibit such interactions until it is removed.
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Runaway migration is a problem facing current theories of planet formation:
theory suggests that most planets should migrate into the star on timescales
much shorter (10*—10° yr) than the lifetime of the protoplanetary disc (106—107
yr). I find that when the planets’ equations of motion take into account their
coupling to the disc (Papaloizou & Larwood 2000), the lifetime of Earth-size
planets trapped in mean motion resonances can be prolonged to the timescales
of the protoplanetary disc. Disc coupling acts to increase the rate of migration,
but the coupling between the orbit and the disc would be weaker for eccentric
orbits due to the larger relative velocity of the planet and the local disc material.
Therefore, small planets on eccentric orbits are fully decoupled from the disc are
not subjected to the strong frictional forces that would drag the planet into the
star. However, this does not help to prevent rapid migration for planets above
a few Earth-masses. Further investigations including orbital inclination within
a disc and N-body simulations (so to include scattering effects) will allow me to
deduce the role this coupling and mean motion resonance have on preventing
runaway migration.

By modeling the frictional effects of a protoplanetary disc through a migra-
tion term and an eccentricity damping term, I am able to create systems with
planets both locked in mean motion resonance and with fixed eccentricities. By
imposing the condition that the timescale for eccentricity damping is less than
or equal to migration timescale, a/a (Goldreich & Tremaine 1980), I can build
eccentricities up to ~ 0.6 from initially circular orbits. Further “fine tuning”
of these parameters allow for the reproduction of characteristics in observed
systems such as GJ 876 (Lee & Peale 2002). However, what is important is
that resonance is a mechanism through which eccentric planets can be created,
serving to help explain the statistical observation that over half of observed
extrasolar planets have eccentricities above 0.2.

The probability for trapping into mean motion resonance depends on several
characteristics of the system. I have shown that the mass ratio plays a substan-
tial role in whether trapping occurs for first-order resonances. This is consistent
with Peale’s (2004) study of the 2:1 resonance, but extends the analysis to the
general class of first-order resonances. Additionally, I have shown resonance
trapping into second and third-order resonances requires some non-zero eccen-
tricity. However, less than 5% of my simulations were able to produce these sort
of resonances from migration alone; planet-planet scattering accounted for the
majority (> 70%) of second and third-order resonance captures.

Dynamical instabilities between two planets can produce the observed large
eccentricities observed in extrasolar planetary systems. In these situations, one
planet is either ejected or thrown into an orbit far from the dynamically unsta-
ble region. In either case, the surviving planets remain with highly eccentric
orbits (Rasio & Ford 1996; Weidenschilling & Marzari 2001). I have shown this
mechanism can produce planets locked in second or third-order resonances (e.g.,
3:1 or 4:1), which are difficult to produce through migration alone. This planet-
planet scattering provides very short timescales for both eccentricity growth and
for removing the strong perturbations. This occurs because a planet is either
ejected or the orbital separation between the planets becomes large.
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Dynamical instability has additional implications for planet formation. The
formation of hot Jupiters assumes the gas giants were formed farther out and
migrated inward through torques applied by the protoplanetary disc (Goldre-
ich & Sari 2003). However, if dynamical instabilities occurred after sufficient
migration, the perturbing bodies could be discarded, and gas giants could be
left on eccentric orbits close to their parent star. Further simulations of these
unstable systems will allow for a statistical comparison between the outcomes
and the currently observed distribution of eccentricities. Additionally, it will
allow us to compare this theory of hot Jupiter formation to theories suggesting
that the planets did indeed form near their current positions (Bodenheimer et
al. 2000).

I am grateful for the support and guidance of my advisor, Professor Frederic
Rasio. I would also like to acknowledge the help of Dr. Edward Thommes who,
along with Professor Rasio, has made this project possible. This work was
supported by NSF Grant AST-0507727 to Northwestern University.
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List of Notation

Definition of Orbital Elements

semi-major axis, a - half the length of the longest distance between two points
of the orbital ellipse

semi-minor axis - half the length of the shortest distance between two points
of the orbital ellipse

eccentricity, e - equal to \/1 — (b/a)?, where a and b are the semi-major and
semi-minor exes of the orbital ellipse, respectively; thus e = 0 corresponds
to a perfect circle, while e = 1 corresponds to a straight line

true anomaly, f - the angle between the line from the central star to the
pericenter and the line from the central star to the planet

inclination, ¢ - the angle between the plane of the orbit and the reference
plane

argument of pericenter, w - the angle between the line from the central star
to the longitude of ascending node and the line from the central star to
the pericenter

longitude of ascending node, {2 - the angle between the line from the cen-
tral star to a reference direction and the line from the central star to
the planet on the orbit where the planet crosses from below the reference
planet to above the reference plane

longitude of pericenter, w - equal to w + 2; note that this is a “dogleg”
angle since w lies in the orbital plane and € lies in the reference plane

time of pericenter passage, 7 - the time at which the planet passes through
the point on its orbit closest to the central star

mean anamoly, M - defined as n(¢t — 7), where n is the mean motion angular
velocity
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mean longitude, )\ - defined as M + w

General Notation Used

Mg, - a Solar-mass (1.98892 - 10%° kg)

M - a Jupiter-mass (1.8987 - 10?7 kg)

Mg - an Earth-mass (5.9742 - 10%* kg ~ 1/300 M)

G - the gravitational constant (6.673 - 10711 m3kg=!s72)

- the mass of the central object in a three-body system
; - the mass of the inner planet in a three-body system

- the mass of the outer planet in a three-body system

S

- a characteristic of the planet, where X could be the radius (R), the mass
(M), radial distance from the central star, etc.; the context will make it
clear

a, (3 - dimensionless constants
Q) - the Keplerian angular velocity of an object orbiting a M, star
Y. - the surface density of a protoplanetary disc

H - height of the protoplanetary disc

Notation Used in Chapter 1

F - the stellar flux from an observed star

Notation Used in Chapter 2
Te - grain velocity damping timescale
Ts - grain sedimentation timescale

f - dimensionless constants except in equation 2.14, where f signifies the equa-
tion of friction

T - in this chapter T is the toque on an object
Tyis - the viscous torque on a planet embedded in a protoplanetary disc

Tiide - the tidal torque on a planet embedded in a protoplanetary disc



APPENDIX A. LIST OF NOTATION

Notation Used in Chapter 3
O(hP) - encapsulates all terms of order h® and higher

A - the truncation error

Ag - the minimum allowed error per timestep in ResCap
h - the step size

¢ - the map from (kg,m,s)-units to (M,i,f)-units

R - defined as p/(p + q), where p and ¢ are integers

ff - the migration equation for the j-th body in the i-th direction

Notation Used in Chapter 4

f - the equation of friction
tmig - the migration timescale

tece = the eccentricity damping timescale

60

A - the width of the gap formed by the planet embedded in a protoplanetary

disc
K - the ratio between tmig and ...

rgqu - the Hill radius for a body M; orbiting a central star
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ResCap Source Code

The entire code is appended on the following pages. See comments within the
code for further details than that presented in Chapter 3.

res.c - the main code the includes the parameters, initial conditions, differential
equations, and flow mechanism of ResCap

The remaining code is adopted from Numerical Recipes (Press et al. 2002)
odeint.c - the fourth-order Runge-Kutta numerical integrator

nrutil.c ; nrutil.h - system files that control the flow of ResCap and error
handling

rkd.c - fourth-order equations that gathers information necessary for the error-
check program

rcke.c - error-check program measuring the truncation error

rkqs.c - step-size adjuster and step-advancement program
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