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Introduction 

The existence of planets outside our solar system is one of the greatest discoveries 

of the 20th century, with implications extending far beyond astronomy and astrophysics.  

The first extrasolar planet was detected in orbit around 51 Pegasi by Mayor and Queloz 

in 1995 (Mayor & Queloz 1995).  Today, more than one hundred planets are known to 

exist outside our solar system.  These planets are Jupiter- like gas giants and are found in 

more than ninety known extrasolar planetary systems, and of these systems, twelve are 

known to contain multiple planets, not unlike our home system.  Surprisingly, the 

overwhelming majority of these extrasolar planets are characterized either by highly 

eccentric orbits at large orbital distances, or circular orbits with extremely small orbital 

radii (as small as 0.02 AU, where an AU, or astronomical unit, is defined to be the mean 

distance between the Earth and the Sun). These observations are in marked contrast to 

our solar system, where multiple planets move in stable, coplanar, circular orbits about 

the sun and raises many interesting questions and challenges to the standard model of 

planetary system formation.  In this thesis, I show that the puzzling range of orbital 

properties found in extrasolar planets, specifically, the observed orbital eccentricity 

distribution in extrasolar planets, can be explained naturally by dynamical instabilities 

inherent in multiple-planet systems.  I also discuss the advantages and disadvantages of 

different numerical integration schemes for studying N-body dynamics.  Along the way, I 

point out interesting results from numerical experiments that may have important 

implications for the stability of multi-body systems and may deserve further study. 

Background 

In the standard model of planetary system formation (see e.g., Lin & Ida, 1997), 

Jupiter-like (or “jovian”) gas giants are thought to form from condensations of a gaseous 
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disk around a newly formed host star onto rocky cores that assemble through collisions 

between smaller particles, or “planetesimals.”  In the solar system, the terrestrial planets 

(those planets close to the sun with rocky surfaces) are made primarily of elements of 

high molecular weights, which condense into planetesimals close to the star due to their 

high escape velocities.  The jovian planets are made of elements of low molecular 

weights, primarily hydrogen and helium, and form from a gas accretion process onto a 

central core far from the host star (Jupiter is 5.2 AU from the sun).  Because the planets 

form from a circular protostellar disk, one naturally suspects that they should have 

coplanar, circular orbits.  This indeed is what we observe in the solar system.  However, 

the standard model of planet formation does not adequately explain how most of the 

extrasolar planets discovered can be gas giants with either extremely small orbital radii 

(as small as 0.05 AU) or high orbital eccentricities (ranging from 0.1 to > 0.9, whereas 

Jupiter’s eccentricity is only 0.05). 

 Gravitational interactions between planets and the resulting perturbation of 

planetary orbits have been proposed as a possible explanation for the observed orbital 

characteristics of extrasolar planets (Rasio & Ford 1996; Marzari & Weidenschilling 

1996).  In this scenario, jovian-type planets still form in the same way as described in the 

standard model.  However, after the initial formation phase, mutual gravitational 

interactions between the planets perturb their orbits and bring the planetary system into a 

period of chaotic evolution, during which the orbits become highly irregular, and which 

finally results in collision or ejection of the planets. If planets are ejected from the system, 

conservation of energy requires that the remaining planets be brought in closer to the host 

star.  The final outcome may be that if the remaining planet assumes an orbit that plunges 

extremely close to the star, which tends to be highly eccentric due to conservation of 
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angular momentum, tidal interactions between the planet and star could result in the 

circularization of its orbit very close to the star.  If the planets collide, they merge to form 

a larger body in a nearly circular orbit (Ford et al 2001).   

 For the case of a system of two planets, there exist analytical criteria concerning 

the stability of the planetary orbits (Gladman 1993).  For example, the Hill stability 

criterion (Gladman 1993) states that two planets are stable against close encounters if 

initially they move in circular coplanar orbits whose semimajor axes, 1a and 2a , differ by 

more than HR32 , where RH is the Hill radius of the planets, equal to 

3/1
21 ]3)[( Mmma + , where 2)( 21 aaa +=  is their mean distance from the star of 

mass M, and 1m , 2m  are the planetary masses. However, for a system of three planets or 

more, there exist no analytical criteria for stability.  Thus to study the stability and 

evolution of these systems, numerical methods are required. 

Summary of Observational Data 

The detection of planets outside the Solar System continues to be one of the most 

exciting recent developments in astronomy and astrophysics.  It is expected that the 

discovery of these extrasolar planets will lead to significant improvements in our 

understanding of many processes related to planet and star formation, as well as deeper 

questions such as the existence of extraterrestrial life in the Universe.  Figures 1 and 2 

summarize the orbital properties of 107 extrasolar planets known today.  For a more 

detailed summary with properties of the host star, see http://www.obspm.fr/encycl/.  It is 

expected that new discoveries will continue to arrive every few months. The majority of 

these planets (all but one) were detected in radial velocity surveys using spectroscopic 

methods (Marcy et al. 1997; Korzennik et al. 1997; Mayor & Queloz 1998; Cochran et al. 

1997; Butler et al. 1998). Other techniques such as transit photometry (Borucki & 
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Summers 1984) and astrometry (Gatewood 1996; Pravdo & Shaklan 1996), including 

interferometric astrometry (Colavita & Shao 1994) have been used to make additional 

detections and confirm the discovery of planets in radial velocity surveys.  

Unexpected Observations  

The properties of the extrasolar planets are puzzling (see Fig. 1 & Fig. 2).  Most 

are Jupiter­mass objects in very tight circular orbits or in wider eccentric orbits. The 

standard model for planet formation in our Solar System cannot explain their orbital 

properties (see, e.g., Lissauer 1993; Boss 1995; and discussion in the Background 

section). According to this standard model, planetary orbits should be nearly circular, and 

giant planets should be found at large distances (> 1 AU) from the central star, where the 

temperature in the protostellar nebula is low enough for icy materials to condense (Boss 

1995, 1996). These simple predictions of the standard model for the formation of the 

Solar System are at odds with the observed parameters of most detected extrasolar 

planets. About half of the planets come within 1 AU of the central star.  Sixteen planets 

(e.g. HD 187123, 51 Peg, t  Boo, ? And, HD 217107) are in extremely tight circular orbits 

with periods of only a few days.  Eighteen planets (e.g., ? Cnc, Gl 86, HD 195019, and    

? CrB) have nearly circular orbits with somewhat longer periods, on the order of tens of 

days. Other companions with wider orbits (e.g., HD 168443, Gl 876, HD 114762, 70 Vir, 

HD 210277, 16 Cyg B, & 14 Her, etc.) have very large eccentricities (between 0.1 and 

0.9) as compared to planets in the solar system. A number of different theoretical models 

have been proposed to explain the unexpected orbital properties of these extrasolar 

planets.   This thesis will invoke the mechanism of natural dynamical instabilities and 

show that it can account for the observed eccentricity distribution in extrasolar planets.  

First, I briefly review the proposed mechanisms. 
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The four major mechanisms proposed to date to account for the orbital properties 

of extrasolar planets are 1) secular perturbations in a hierarchical triple system, 2) 

interaction with a gaseous disk, 3) resonant scattering of a planetesimal disk, and 4) 

dynamical instabilities in systems with multiple planets. 

Secular Perturbations in Hierarchical Triple Systems 

If the orbit of a wide binary star system is inclined relative to a planet’s orbit by 

more than ∼ 40o, the relative inclination of the binary star can couple to give a large 

secular increase in the eccentricity in the planet’s orbit (Ford, Kozinsky, & Rasio, 2000; 

Holman, Touma, & Tremaine 1996; Mazeh, Krymolowski, & Rosenfeld 1996).  The 

amplitude of the perturbation depends on the relative inclination of the orbits, but is 

independent of the mass of the binary star companion.  Once placed on a highly eccentric 

orbit, the planet may plunge into the star and be destroyed, or its orbit may circularize 

around the star through tidal dissipation.  One should note that this mechanism cannot 

work for all planets, because many planets are known to be around a single star only and 

this mechanism cannot work without a binary companion star. 

Interaction with a Gaseous Disk 

Dissipation of orbital energy through viscous drag in the protoplanetary nebula is 

a second possible mechanism for producing short-period planets and inducing orbital 

eccentricity through resonant interactions. (The orbital energy E of a planet is given 

by
2

GMm
E

a
= − , where G is the universal gravitational constant, M is the mass of the star, 

m is the mass of the planet, and a is the semimajor axis of the planet’s orbit.  A decrease 

in E implies a reduction in a.)  This idea of orbital migration was proposed by William 

Ward (1988), and a detailed discussion of the geometry of resonances and how they give 

rise to an increase in orbital eccentricity during orbital migration can be found in Ward 
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1988.  Since the orbital migration of the planet tends to accelerate with decreasing 

distance from the star (gravity follows the inverse square law!), the dissipation must 

switch off at some critical distance from the star or the planet may be tidally disrupted or 

swallowed by the star.  Possible mechanisms for stopping the inward migration include 

Roche lobe overflow and tidally coupled dissipation to a rapidly rotating star (Trilling et 

al. 1998; Lin et al. 1996).  Another possibility is that migration halts when the planet gets 

to the inner edge of a disk limited by a magnetosphere around the star (Lin et al. 1996). 

Resonant Scattering in a Planetesimal Disk 

Resonant interactions with a disk of planetesimals (planetary embryos) is another 

possible source of orbital migration.  However, this mechanism requires a very high-mass 

protoplanetary disk for a Jupiter mass planet to migrate inwards all the way to ∼  0.1 AU 

(Murray et al, 1998).  The advantage of this mechanism is that inward migration is 

naturally halted at short distances from the star when the majority of perturbed 

planetesimals collide with the star rather than escape on nearly parabolic orbits.  Wide, 

eccentric orbits can also be produced for planets more massive than ∼ 3 Jupiter mass.  

Because of the large mass of the disk required for this mechanism to operate, it is likely 

that a second or third planet would also be formed in the disk.  It is not understood how a 

second or a third planet would affect this scenario. 

Dynamical Instabilities in Systems with Multiple Planets 

The fourth mechanism is based on dynamical instabilities; it operates for systems 

that start out containing multiple giant planets of comparable masses (Rasio & Ford, 

1996).  This is the mechanism that this project investigated.  The orbits of the planets 

could become unstable naturally through mutual secular gravitational interactions.  This 

can lead to a dynamical instability and close encounters between the two planets 
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(Gladman 1993; Chambers, Wetherill, & Boss, 1996).  The strong interactions during 

close encounters can lead to the ejection or collision of the planets.  If the pericenter 

distance of the inner planet is sufficiently small, its orbit can later circularize at an orbital 

separation of a few stellar radii (Rasio, Tout, Lubow & Livio 1996).  This mechanism can 

produce eccentric orbits naturally: if one planet is ejected, the others may be left in 

eccentric orbits in order to conserve angular momentum (Ford et al. 2001). 

Numerical Methods  

As no analytical solutions to the equations of motion exist for systems with more 

than 2 interacting bodies (the quasi-analytic limit being the restricted three-body 

problem), I employed numerical integration of the equations of motion for the three-

planet systems modelled, with the star-planet interactions as the dominant forces and the 

effects of the three planets on one another solved exactly and combined with the orbits 

produced by the star-planet interaction, using the Mixed Variable Symplectic (MVS) 

algorithm described in Chambers 1999.  The calculations were performed using version 6 

of the Mercury N-body integrator package written by John Chambers (1999).  Mercury 

includes as one of its major features a hybrid symplectic integrator that combines an 

efficient variable-timestep algorithm, known as Bulirsch-Stoer (BS) integration, with 

MVS integration, and is capable of handling close encounters between massive bodies, 

i.e., Jupiter-sized planets.  The most important feature of the BS algorithm for N-body 

simulations is that it is capable of keeping an upper bound on the local errors introduced 

due to taking finite timesteps by adaptively reducing the step size when interactions 

between the particles increase in strength.  This, in addition to other properties of this 

method, (see e.g. Press et al. 1993 for a detailed discussion,) makes it the ideal algorithm 

for handling close encounters between planetary bodies.  The MVS algorithm, a method 
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based on Hamiltonian dynamics, is roughly two orders of magnitude faster than 

traditional integration techniques (such as Runge-Kutta or Bulirsch-Stoer) while still 

preserving the energy-conserving property of the system, provided that the assumption of 

strictly dominant star-planet interaction over planet-planet interaction is satisfied, and 

that the timestep of the integration remains constant (Chambers 1999).  (It is worth noting 

that MVS is a fixed timestep integration scheme, a property that is critical to the energy 

conserving property of MVS, and hence its speed.  However, as I shall show below, this 

also limits its usefulness.)  The first assumption clearly fails when any pair of planets 

enters into a close encounter with each other, when planet-planet interaction can 

approach or even exceed star-planet interaction in magnitude.  This defect can be 

remedied by patching together the MVS solution of the equations of motion with the 

solution by Bulirsch-Stoer for the close encounter portion, and then switching back into 

MVS upon completion of the close encounter (Chambers 1999).  Because Bulirsch-Stoer 

is a variable timestep integration scheme, it is then necessary to bring the timestep back 

to the original step size used for the MVS portion of the integration.  This is 

accomplished with smoothing functions developed by Chambers that were found to work 

very well in his test cases (Chambers 1999).   For these reasons, the hybrid MVS-BS 

integration method was initially chosen for this project, for to complete a statistical 

exploration of the parameter space of the three-planet problem within the limits of 

available computing resources, high integration speed was essential.  On an Intel Pentium 

1.7 GHz Linux machine, a typical simulation of a system of three planets with initially 

circular orbits using hybrid MVS-BS takes about 30 minutes of CPU time for a simulated 

system evolution time of 109 years, whereas it takes traditional BS more than 30 hours to 

complete the same simulation.  Furthermore, this number is highly variable from system 
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to system and can grow exponentially with the system size.  Thus, it was hoped that by 

using this hybrid MVS-BS scheme, the accuracy of the simulations could be improved 

during the close encounter phase, while taking advantage of the large timesteps allowed 

by the MVS algorithm in order to save CPU time during normal evolution of the system.  

However, during the actual numerical experiments, it was discovered that even with 

MVS coupled with Bulirsh-Stoer, the energy errors still grew unacceptably large 

(sometimes growing to a few times the initial energy of the system) shortly after a close 

encounter occurred. It was observed that in the majority of cases, this was often 

accompanied by ejections of at least one planet.  These observations were disconcerting 

and puzzling.  After careful examination of the events leading up to the large growth in 

energy errors in a large number of these systems with a variety of initial conditions, it 

was discovered that the energy errors arose from the fixed timestep nature of the MVS 

algorithm.  The problem was essentially one of poor sampling of the orbits near the 

periastron.  When interactions between planets increase the eccentricity of the orbits 

(which was found to be the tendency), the increased eccentricity leads to a reduced 

periastron distance, (since q = a (1-e), where q is the periastron distance of an orbit) and 

the fixed timestep limitation of the MVS method naturally causes a decrease in the 

accuracy of the integration scheme as the portion of the orbit where a planet interacts 

most strongly with the star, i.e., near the periastron, becomes poorly sampled.  Put 

another way, because the time the planet spends around the periastron is reduced, fewer 

integration steps are taken around the periastron as a result of the constant timestep, even 

though one should really take more timesteps when the orbit is closer to the star, as there 

is now a much stronger interaction between the star and the planet, and each step 

introduces a larger correction to the motion of the planet.  However, MVS is not capable 
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of taking this into account because of its fixed timestep requirement.  As a result, there is 

a drastic decrease in the accuracy of the integration and a marked increase in energy 

errors.  This limitation of the MVS algorithm also provides an explanation for the much 

larger number of ejections observed when the hybrid MVS-BS scheme was used as 

compared to the results obtained when the variable timestep BS scheme was used.  To 

understand this, imagine that a simulated planet is making a high-eccentricity approach to 

a star, and its orbital motion is corrected periodically by MVS as it makes its approach.  

When the planet is far from the star, the corrections are small, and it moves rather 

smoothly toward the star.  But as it gets closer, the corrections to its orbit begin to grow 

in magnitude and now it starts to follow a jagged path.  Near the periastron, the 

corrections to its orbit become large enough that the planet may overshoot its true 

periastron before the next correction is introduced.  By the time the next correction is 

applied, the planet has already gone on much farther from the star, and the resulting 

correction to its motion is reduced and its return trajectory from the star is now on a less 

eccentric orbit.  The planet has now achieved a spurious orbit with a much larger 

periastron distance than its true orbit.  The result is an accumulation of energy errors and 

widening orbit, leading up to ejection of the planet after multiple passes around the star. 

This fixed timestep limitation of hybrid MVS-BS was a serious problem as I was 

interested in high-eccentric ity, possibly star-grazing, orbits, which tend to have small 

periastron distances.  In order to maintain the accuracy and integrity of the numerical 

experiments, the hybrid MVS-BS approach had to be abandoned, and a more traditional 

integration scheme, namely, Bulirsch-Stoer was adopted.  Fortunately, the speed of the 

Bulirsch-Stoer integration scheme can be increased by a factor of two if the forces acting 

between the bodies can be assumed to be conservative, as is the case for Newtonian 
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gravity.  The form of Bulirsch-Stoer integration taking advantage of this assumption is 

called conservative Bulirsch-Stoer.  Conservative Bulirsch-Stoer, while slightly faster 

than traditional BS and is equally accurate, cannot make up completely for the gain in 

speed in hybrid MVS-BS.  The rest of this thesis will discuss results obtained using the 

conservative Bulirsh-Stoer integration scheme. 

Results 

 Extensive studies have been done on systems containing two planets (see e.g., 

Ford et al. 2001; Rasio & Ford 1996; Marzari & Weidenschilling 1996).  However, two-

planet systems have certain special properties that more general N-body systems do not 

have.  These properties include the separate conservation of energy and angular 

momentum in the subsystems consisting of a planet and a star (Gladman 1993; Ford et al. 

2001).  Thus, there is a limit to the range of results obtainable with these systems and the 

general applicability of those results.  In order to extend our understanding of N-body 

dynamics to more general systems, I have chosen to investigate systems containing three 

planets, where special properties such as the subsystem conservation of energy and 

angular momentum no longer apply, and hence represent a qualitatively different type of 

system.  The simplest case of three planets with identical masses but varying orbital 

parameters was investigated in detail in this project.  The results obtained are discussed 

below. 

Close Encounter Time Scale 

In general, systems of multiple- interacting bodies are chaotic.  Formally, the 

stability of an N-body system can be characterized by the Lyapunov coefficient, which is 

defined to be the time it takes for trajectories in phase space to diverge.  This value has 

been calculated for the solar system, and it is estimated to be on the order of 108 years 
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(see e.g., Lecar, 2001; Murray & Holman, 1999; Malhotra, 1998; and Lecar, 1996).  

However, as there is no evidence for significant orbit-crossing in the history of the solar 

system, and none are predicted to occur for billions more years in the future (apparently 

the solar system has been stable for billions of years, or we would not be here to study it), 

another criterion for characterizing the stability of a multi-planet system is needed.  A 

good measure of the stability of a three-planet system for the dynamical properties under 

study is the time to first close encounter, or TCE, and can be defined to be the time it takes 

from the start of the evolution of a system to the first close encounter between any pair of 

planets.  The precise definition of the distance between planets at which point a close 

encounter is considered to take place is immaterial (Chambers 1999), but in the following 

numerical experiments, it was arbitrarily taken to be 3 HR× , a distance that is slightly 

smaller than the Hill stability criterion for systems with two planets (recall Hill’s criterion 

states that for stability in a two-planet system, 2 3 HR∆ ≥ , where ∆  is the separation 

between a pair of planets).   To investigate the stability of three-planet systems as a 

function of the initial orbital spacing between the planets, the TCE for two representative 

sets of systems of three identical Jupiter-mass planets, with fixed period ratios, nearly 

circular initial orbits (e = 0.05 for all three planets), with the inner most planet having an 

initially 1 or 5 AU semimajor axis, and randomized initial orbital phases and small orbital 

inclinations (uniformly distributed between 0 and 5o), have been calculated using the BS2 

integration scheme.  The orbits were integrated up to the first close encounter, or for 1 

billion years of simulated evolution time, whichever occurred first. The results are 

summarized in Figures 3 & 4.  As can be seen clearly in the figures (note the logarithmic 

scale in time), the average TCE grows approximately as an exponential as the period ratio 

is increased.  Furthermore, the two plots exhibit the same reduction in TCE at period ratios 
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around 1.90, presumably due to resonant interactions between the planets, which may 

either increase or decrease the stability time scale, depending on the specific resonant 

interaction involved (see Murray & Dermott 2000, for a detailed discussion of different 

types of resonances). These results are consistent with those of Chambers (1999).  Also 

apparent from these plots is the large scatter in TCE as the initial orbital conditions are 

varied.  The scatter can give rise to TCE’s that differ by as much as four orders of 

magnitude for the same period ratio.  This reflects the chaotic nature of these multiple-

planet systems and suggests that in addition to the orbital spacing between planets, other 

factors, such as the relative orbital phases of the planets are also important in determining 

the stability of these systems.  Nevertheless, the trend of an exponential growth in 

instability timescales with increasing initial orbital separation is clearly demonstrated.  

These relationships can be helpful in determining the plausible range of initial semimajor 

axes for future studies by enabling one to select model systems that have stability 

timescales that correspond to theoretically predicted or observationally constrained 

values.   

There is one important, but not immediately apparent feature of the stability/close 

encounter time plots that may deserve further study in the future.  When the TCE 

calculations were performed, both plots were truncated at a period ratio equal to 2.0.  

This was compelled by a limitation in available computing time (as the period ratios 

approached 2.0, the integration time grew from hours to days, unwelcome but consistent 

with the increase in TCE).  At period ratio equal to 2.0, the model systems suddenly 

became stable on time scales ≥ 109 years (no close encounters occurred during any of 

these runs).  This was a rather unexpected result; as even though the close encounter time 

is expected to grow exponentially, the scatter in TCE should have produced some systems 
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with TCE ≤ 1 billion years.  However, none such systems were observed.  Integrations of 

systems with period ratios greater than 2.0 (up to 2.5) showed the same result.  This 

suggests that some sort of protection mechanism against close encounters begins to 

operate when period ratios grow beyond 2.0.  Two possible explanations are immediate.  

First, the sudden increase in stability may be due to another resonance that operates at or 

near 2.0.  But it should be noted that increasing the period ratio from 2.00 to 2.50 showed 

no apparent change in system stability.  If we keep in mind that the large scatter in TCE 

should produce at least some systems with TCE ≤ 1 billion years, and that the longest TCE 

in the systems with ainner = 1 AU is 10 million years, two orders of magnitude short of the 

maximum integration time, one will suspect that resonance may not be the true 

explanation.  There is another possible and more interesting explanation.  It may be 

possible that as the period ratios are increased past 2.00, the model systems begin to 

approach that of a 2-planet system with the third planet acting as a small perturbation on 

the two-planet system, for which the Hill stability criterion may apply in an approximate 

sense.  The conditions for stability for the two-planet system may be approximately 

satisfied, and thus producing a sudden increase in stability.  As the Hill stability criterion 

is a sufficient condition for stability for two planet systems, this suggests that there may 

exist a more general stability criterion that reduces to the Hill stability criterion in the 

limit of small perturbation by a third body.  Hill- type stability thus remains a plausible 

mechanism and merits careful study in the future.  In addition, these results suggest that 

for practical purposes, there may exist an empirical stability boundary even in three-

planet systems, where no analytical criterion for stability has been proposed. 

Distribution of Final Semimajor Axis and Eccentricity of the Inner Most Planet 
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The final semimajor axes and eccentricities of the planet that was found to be the 

closest to the star are plotted in Figure 5 for a representative set of 500 integrations using 

the same initial conditions as for the 5-AU systems discussed above.  Interesting structure 

seems to emerge in the population of systems and divides the population into four distinct 

groups: 1. a collection of systems that lie along the bottom of the plot, showing a strong 

tendency of the final semimajor axes to cluster around 2.7 AU, and is independent of the 

eccentricity (Type I); 2. a region between 4 and 6 AU that shows a decreasing slope in 

semimajor axis with increasing eccentricity (Type II);  3. a more or less uniform 

distribution of semimajor axes between 6 AU and 15 AU (Type III);  4. a sparse 

population of systems that occupy final semimajor axes ≥  20 AU (Type IV).  Even 

though the exact origins of these structures are not known and merits further study, in 

Type I, III, and IV systems, the semimajor axes of the planets appear to be independent 

of the final orbital eccentricity.  This is a result that is reminiscent of the two-body 

problem, where it can be shown analytically that the semimajor axis is only a function of 

the total system energy, and is independent of the eccentricity, due to the separate 

conservation of energy and angular momentum.   Another possible explanation for the 

Type I structure seen in the a vs. e distribution is the existence of a resonance protection 

mechanism.  However, an examination of the other survivor of the systems shows little 

evidence for a simple integer relationship between the periods or semimajor axes for the 

outer survivor and inner survivor, and does not provide strong evidence for the existence 

of a resonance interaction.  The exact nature of these structures apparent in the 

relationship between a and e in three-planet systems deserves further investigation. 
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Absence of Apsidal Resonance 

Apsidal resonance is the phenomenon of phase-locking of the apsidal longitudes 

(the angular positions of the point of closest approach to the star of the planetary orbits as 

measured from some common reference direction in an inertial reference frame) of two 

orbits, such that the two planets have a common average rate of apsidal precession, and 

the angular difference of their apsidal longitudes, 1 2ϖ ϖ ϖ∆ ≡ −  (where 1ϖ and 2ϖ  are the 

longitudes of pericenter of the two planets, respectively) librates around 0o (Malhotra, 

2002).  In simpler terms, the periapses of the orbits of two planets undergoing apsidal 

resonance tends to line up with each other.  This behavior is observed in at least two 

systems with multiple planets in eccentric orbits (ν  Andromedae and HD 83443) and 

these systems are suspected of exhibiting secular apsidal resonance (Chiang, Tabachnik 

& Tremaine 2001; Wu & Goldreich 2002).  A plausible mechanism that gives rise to this 

behavior is proposed by Renu Malhotra (Malhotra, 2002).  It was shown that for two 

planets that are not undergoing other types of resonant interactions and whose orbits are 

nearly circularly and have small relative inclinations, an impulsive increase in the 

eccentricity of one planet, perhaps due to the ejection of a third planetary companion, can 

lead to the phenomenon of apsidal resonance.   

Since the ejection of at least one planet was commonly observed in the three-

planet systems modeled in this project, the ϖ∆ of these systems were computed for the 

two surviving planets in systems with zero initial eccentricity and small initial 

eccentricity (e = 0.05).  The results are summarized as a cumulative distribution in  

Figure 6.  The cumulative distribut ions of ϖ∆  is nearly linear, and hence show little 

preference for apsidal alignment (which would appear as a large fraction of the systems 

having small values of ϖ∆ ).  This suggests that the mechanism of an impulsive increase 
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in orbital eccentricity of one planet may not be a good candidate for explaining the 

observed eccentricity distribution in naturally occurring systems. 

Agreement in Eccentricity Distribution with Observations 

The most important results of these studies of three planet-systems is the 

agreement found in the eccentricity distributions that were produced by natural 

dynamical interactions in these simulated systems and the eccentricity distribution 

observed in extrasolar planetary systems (Figure 7).  As explained in the Background 

section, four mechanisms have been proposed to explain the eccentricity distributions in 

extrasolar planetary systems.  By far the simplest and most general of these is the 

mechanism of dynamical instabilities.  For systems of two planets, it had been shown that 

this mechanism can produce eccentricity distributions that are consistent with observed 

values (Ford et al. 2001).  It remained to be seen that the mechanism could still be 

invoked to produce eccentricity distributions consistent with observations in three-planet 

systems.  Agreement would add credence to the generality and applicability of the three-

planet model, as well as provide greater insight into the dynamics of general N-body 

systems.  To test the three-planet model, I calculated the eccentricity distributions for two 

representative populations of 500 three-planet systems, each with masses = 1 MJupiter, 

randomized orbital phases, zero and small eccentricity (e=0.05), small random 

inclinations (uniformly distributed between 0 and 5o), fixed period ratios of 1.73 to avoid 

any apparent resonances while maintaining a reasonable CPU time requirement ( ∼ 1 day 

of wall time per simulated system of three planets).  The results are plotted with the 

observed eccentricity distribution in extrasolar planets as cumulative distributions and 

summarized in Figure 7.  As is apparent upon first inspection, the agreement between the 

calculated values and observed values is encouraging.  This result suggests that the 
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observed eccentricity distribution in extrasolar planetary systems can be plausibly 

explained by dynamical instabilities, which develop very naturally in multi-body systems, 

and that the three-planet model is indeed a plausible model for the dynamical properties 

of extrasolar planetary systems. 
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Figure 1: Size Distribution of Extrasolar Planetary Systems (from 
http://exoplanets.org/massradiiframe.html). 
The names of the host stars are plotted along the vertical axis.  The semimajor axes of the 
inner most planets are plotted along the horizontal axis.  Blue dots indicate planets.  The 
text next to each dot gives the mass of the planet.  Extrasolar planetary systems exhibit a 
wide range of sizes.  Ten systems shown here have multiple planetary companions.     
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Figure 2: Dynamical Properties of Observed Extrasolar Planets. 
Each circle represents a planet.  Plotted along the horizontal axis are the semimajor axes 
of the planets in AU.  Plotted along the vertical axis is the eccentricity of planetary orbits.  
The area of each circle is directly proportional to the mass of the planet.  Solid circles 
represent planets in systems with more than one planet.  Note that the distribution of 
planets into two clusters of planets: those with small semimajor axes and low eccentricity, 
and those with large semimajor axes with high eccentricity. 
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Figure 3: Stability Time Scale for 5innera = AU 
This plot shows the close encounter time, TCE, for systems whose inner planet has an 
initial semimajor axis of 5 AU.  TCE here is defined to be the time to the first close 
encounter between any pair of planets, where the separation between the planets becomes 
less than3 HR× . 
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Close Encounter Time (1AU) vs Period Ratio
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Figure 4: Stability Time Scale for 1innera = AU 
This plot shows the close encounter time, TCE, for systems whose inner planet has an 
initial semimajor axis of 1 AU.  TCE here is defined to be the time to the first close 
encounter between any pair of planets, where the separation between the planets becomes 
less than3 HR× .  Note the striking resemblance to the TCE plot for 5innera = AU.  The two 
plots exhibit the same features, but TCE in the 1 AU plot is scaled down by roughly an 
order of magnitude. 
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Figure 5: Scatter Plot of Final Inner-Planet Semimajor Axis vs. Eccentricity 
The horizontal axis represents the eccentricity of the inner most planet at the end of a 
simulation.  The vertical axis shows the semimajor axis of this planet in AU.  Each dot 
represents a simulated system with identical initial orbital parameters, except for phase 
and inclination.  Note that there is a clear structure to the scatter plot, which may be 
roughly grouped into four regions. 1) A collection of systems along the bottom of the plot 
shows a strong tendency of the final semimajor axes to cluster around 2.7 AU, and is 
independent of the eccentricity.  2) A region between 4 and 6 AU shows a decreasing 
slope in semimajor axis with increasing eccentricity.  3) A more or less uniform 
distribution of semimajor axes between 6 AU and 15 AU.  4) A sparse population of 
systems that occupy final semimajor axis ≥  20 AU.
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Figure 6: Distribution of Difference in Apsidal Longitudes for Systems with Two         
Surviving Planets. 
Plotted along the horizontal axis is the absolute value of 1 2ϖ ϖ ϖ∆ ≡ − .  The vertical axis 
indicates the fraction of systems with apsidal- longitude difference ϖ≤ ∆ .   The red line 
represents values calculated for systems with zero initial eccentricity, and the blue line 
represents values calculated for systems with small initial eccentricity (e = 0.05).  The 
distributions are nearly uniform and exhibit little evidence for apsidal resonance. 
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Figure 7: Cumulative Distributions of Observed and Calculated Orbital Eccentricity for 
the Innermost Planet. 
The solid line represents the cumulative distribution of observed eccentricities in 
extrasolar planets.  The dashed and dotted lines correspond to results obtained from the 
numerical integration of the equations of motion.  The red line corresponds to systems 
with zero initial eccentricity, and the blue line corresponds to systems with small initial 
eccentricity (e = 0.05).  The agreement between the observed values and values predicted 
from the model systems is striking.   
 


