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ABSTRACT

Since the announcement of the triple planet system orbiting Upsilon An-
dromedae (v And) by Butler et al. in 1999, the best-fit orbital parameters of
the system have varied significantly with additional observations over the years.
Using the most recent radial velocity data we have performed thousands of nu-
merical integrations to survey the allowed parameter space for stable orbital
configurations. For all allowed solutions, we find that the eccentricity of the
outer planet (planet d) oscillates between about 0.25 and 0.35, while the mid-
dle planet (planet c) periodically returns to a very nearly circular orbit every
6700 years. Several mechanisms have been proposed to explain the unexpectedly
large eccentricities of known extrasolar planets, but as yet there has been little
direct observational evidence to support any one theory. The configuration of
v And provides evidence that planet-planet scattering must be responsible for
the large eccentricities observed in this system. The planets initially started on
circular orbits, as expected from our current understanding of planet formation,
but chaotic evolution caused planet d to be perturbed suddenly into a higher
eccentricity orbit, subsequently causing planet c’s eccentricity to oscillate as it
is observed at present. The impulsive perturbation resulted most likely from a
close encounter with another planet, now lost from the system.

1. Introduction

In the ten years since the discovery of the first extrasolar planet around 51 Peg (Mayor
& Queloz 1995), a total of 155 extrasolar planets have now been identified, in 136 planetary
systems (Schneider 2005). In 1999 the planetary system around Upsilon Andromedae (v
And) was the first triple planet system to be found and, as such, has provided a unique
and truly invaluable foundation on which to study the formation and dynamics of multiple
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planet systems. Until 1995 all theories of planetary formation and dynamics were developed
with our own Solar System as the sole model. However, particularly after the discovery of
multiple planet systems like v And, our increasing awareness of the many ways in which
properties of known extrasolar planets differ from those in the Solar System has catalyzed
significant reevaluations of these theories and subsequently revolutionized our understanding
of this area of Astrophysics. The study of extrasolar planets addresses significant problems
regarding not only the origins of planetary systems, but also the conditions surrounding the
hospitality of life on Earth, as well as outside the Solar system, and thus may lend insight
into just how common or unique humanity’s place in the universe may be.

This thesis is organized as follows: In the remainder of this section we discuss the limita-
tions of the observational data with specific attention to the v And system. We also discuss
how orbital information not yeilded by observation can, however, potentially be recovered
through numerical integration. In section 2 ! we discuss considerations and approaches to
our own examination of the v And system. Section 3 details the results of our numerical
integrations. Specifically, we find constraints on the unknown angles of inclination, which
are used to determine upper mass limits for the planets, and we discuss evidence for planet-
planet scattering in the system. Finally in Section 4 we consider the ramifications of our
findings on the evolutionary history of the system.

1.1. Detection Methods and Limitations

The process of detecting planets can be somewhat tricky and unfortunately leads to
biases in the characteristics of planets discovered. Telescopic resolution imposes a severe
limitation on detection by direct imaging or astrometry, and thus only a few extrasolar
planets have been found or confirmed using these methods. Searches for planets have also
been carried out by continuously monitoring hundreds of stars in hopes of detecting the
transit of a planet, indicated by a brief and minute decrease in the brightness of the star
at regular intervals. Given the small probability that a planet’s orbit would cause it to
cross precisely within our line of sight to the star, this also remains an inefficient method of

1Sections 2 through 4 are based on the paper: Ford, E.B., Lystad, V., & Rasio, F.A. “Planet-Planet
Scattering in Upsilon Andromedae,” 2005, Nature, 343, 873. My contributions to this work were centered
primarily on the numerical integrations of the v And system. Starting from the initial conditions generated
from the radial velocity curve, I ran more than 7000 integrations with each set of 1000 having distinct spec-
ifications for initial angles of inclination, as well as the 1500 integrations for systems including hypothetical
planets e and f, along with planets ¢ and d, all starting on circular orbits. I then wrote programs to aid in
the statistical analyses of these systems and generated plots for interpretation and presentation.



searching for extrasolar planets.

Currently Doppler spectroscopy is the favored detection method in large-scale planet
searches, though it is not without its own disadvantages. With Doppler spectroscopy ob-
servers measure periodic shifts in a star’s spectrum, yielding a radial velocity curve produced
by the small gravitational perturbations of an orbiting planet (or planets). Fourier trans-
forms applied to the radial velocity curve isolate the individual orbits in a multiple-planet
system. Each radial velocity curve is fitted approximately by a Keplerian sinusoid, which
takes the form

V = Klcos(f +w) + e cosw]

where f is the planet’s true anomaly (see Table 1 for a complete discription of orbital
elements), w is the argument of pericenter, e is the orbital eccentricity, and K is the semi-
amplitude. For a planet of mass m orbiting a star of mass M, with a semimajor axis a, the
semi-amplitude of the radial velocity curve is given by

P msini [G(M, + m)
M, +m\ a(l—e?)

The time of pericenter passage Tperi and the period P of the orbit can also be found directly
from the radial velocity curve.

Radial velocity curves only give one component of the orbital motions, along the line of
sight. Thus, the inclination with respect to the line of sight ¢ (where edge-on corresponds
to 4 = 90°) and the longitude of pericenter 2, which gives the inclination perpendicular to
1, cannot be measured directly. From Kepler’s third law

a’ P\?
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the radial velocity curve only provides a lower limit on the planetary mass by fixing the

value of msini. Numerical integrations of planetary orbits can place upper limits on the
true masses by requiring the system to remain stable on timescales comparable to the lifetime
of the central star (see §1.2.4). Since systems tend to go unstable more often with increasing
planetary masses, there is generally a maximum i, as well as a maximum relative inclination
ire- 1t is worthwhile to note that the relative inclination between any two planets, denoted
by subscripts 1 and 2, is equal to

Irel, 12 = COS 11 COS ig + Sin 41 sin iy cos(€2; — €2y)

(Malhotra 2002). In the case that £; = €, this equation reduces to iye112 = i1 — 2.
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The semi-amplitude of the radial velocity curve is a direct consequence of the gravita-
tional forces acting between the star and the planet,

GM.m

F = >

r

where G is the gravitational constant, M, is the mass of the central star, m is the mass of
the planet, and r is the distance separating the star and the planet. Since this force increases
with larger m and smaller r, planets with more mass and little separation from the central
star are therefore much easier to detect through a star’s radial velocity curve. Despite its
limitations and biases, Doppler spectroscopy remains the most efficient method for detecting
extrasolar planets.

1.2. Background Data and Theory
1.2.1. Querview of Extrasolar Planetary Data

Most known planets are quite massive (msin i is usually a few M, where 1M is definied
to be the mass of Jupiter) and have small semimajor axes relative to the planets in our Solar
System. A major question facing theorists is how to explain the existence of these so-called
“hot Jupiters” at such remarkable proximity to the central star. Furthermore, the known
extrasolar planets on orbits < 0.15 AU tend to have small orbital eccentricities due to tidal
circularization by their central star (Rasio et al. 1996), however the majority of extrasolar
planets in fact have quite large eccentricities. Of the 155 planets known to date (Schneider
2005), the 104 planets with semimajor axes greater than 0.15 AU (large enough to avoid the
effects of tidal circularization) have an average eccentricity of 0.35. This is in stark contrast
to the eccentricities found in our own Solar System; all are below 0.1, with the exception
of Mercury and Pluto. The largest eccentricity among the gas giants in the Solar System is
Saturn’s at e = 0.054.

1.2.2. Standard Theory for Planetary Formation

The observed properties of the orbits of extrasolar planets are especially puzzling when
considered in the context of the standard core accretion model for giant planet formation in
our Solar System (see, e.g., Lin & Ida 1997; Laughlin & Chambers 2001). In this model giant
planets form from the same protostellar disk as the central star, by gradually accumulating
planetesimals into a ~ 10Mg core (where 1Mg is defined to be the mass of the Earth). This
phase is followed by a period of gravitational accretion of a gaseous envelope from material
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in the surrounding protostellar nebula (Pollack et al. 1996), consequently leaving a gap in
the disk along the path of the planet’s circular orbit. According to this theory, giant planets
should only be found at distances greater than about 4AU from the central star, where the
temperature in the protostellar nebula is low enough to allow icy materials to condense (Boss
1995). Thus, it was quite unexpected that the vast majority of extrasolar planets have large
eccentricities and orbit so close to their central stars, given that they are so massive.

1.2.8. Data on v And

In 1999 v And was announced to be the first known multiple-planet system (Butler et
al. 1999). The central star, upsilon Andromedae, is an F8 V star with a mass between
1.2 — 1.4M,, and an age of about 2-3 Gyr (Ford, Rasio, & Sills 1999). Since its discovery,
this triple planet system has been the focus of many theoretical studies to investigate its
stability and dynamics (see e.g. Laughlin & Adams 1999; Lissauer & Rivera 2001; Barnes
& Quinn 2001) as well as the possible presence of secular resonance between the outer two
planets (planets ¢ and d) (see e.g. Stepinski, Malhotra, & Black 2000; Chiang, Tabachnik,
& Tremaine 2001). Partly as a consequence of ongoing interest in this system, the California
and Carnegie Planet Search team has now taken over 350 radial velocity measurements,
making this system among those with the most tightly constrained orbital parameters.

Table 2 shows the most up-to-date orbital parameters derived from the entire Lick
Observatory data set, kindly provided by Debra Fischer (private communication 2004), for
all three planets in the system: planets b, ¢, and d, in order of increasing periods. These
values may be compared with those in Table 3 of the previously most up-to-date published
orbital parameters, now two years old (Fischer et al. 2003). Note in both tables that the
eccentricities of planets ¢ and d are both quite large relative those of the gas giants in our
Solar System, as is consistent with eccentricities of most other extrasolar planets.

In the 2003 parameters, and indeed in all previously published sets of orbital parameters,
the longitudes of pericenter for planets ¢ and d, w, and w,, appeared to be quite close to
each other, at times with the 1-o uncertainties overlapping. On the surface this remarkable
proximity seemed least surprising if the two planets were in secular resonance (also called
apsidal resonance), meaning specifically that the difference in longitudes of pericenter |w, —
wy| oscillate with small amplitude. (Following the usual nomenclature, we say the planets
are librating as long as |w, — wy| is oscillating, regardless of amplitude; if instead |, — |
passes through all angles from 0 to 360°, we say they are circulating. In the librating
configuration, the libration amplitude is the maximum value of |w, — wy|.) Furthermore,
in order for the planets to be locked in secular resonance, their orbits would have to lie in
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nearly the same plane; thus the proximity of w, and varpigy also implies near coplanarity
of the orbits. Comparing the values in Table 2 with those in Table 3, the current value of
|to. — w4/ is still relatively small, though notably not as small as previously observed.

In addition to the orbital properties of the v And system revealed through the radial
velocity curve of the central star, the absence of transits implies that i, < 83° (Henry et
al. 2000). Additionally, Hipparcos astrometry data reveals that i > 11.5° (Mazeh et al.
1999), thus indicating that the mass of planet d is < 5 times the observed lower limit. These
measurements will help to constrain the masses of all the planets in v And if the system is
found by theoretical arguments to be nearly coplanar.

1.2.4. Previous Studies of v And

According to standard theory of planet formation, since the planets form out of the
same disk as the central star, it can be assumed that the ages of the planets must be similar
to that of the star. The system must necessarily be stable on these timescales; certainly if
it were not, then it would not have survived to be observed at present. For fixed semimajor
axes, multiple-planet systems tend to go unstable more quickly as the masses of the planets
increase (Gladman 1993). Thus, through numerical integration for the lifetime of the star, it
is possible to find upper mass limits, as well as upper limits on relative inclinations between
planets. However, as we will show, this does not necessarily indicate that the history of the
planetary system must have been entirely uneventful.

Many research groups to study this system previously have given values for these limits.
However, as more observations of the system are made and the best-fit parameters are
adjusted accordingly, the values for these limits vary. For example in 1999, Laughlin &
Adams found that ¢ was unlikely to fall below about 40°, thus restricting the planets’ masses
to < 1.5 times the measured minimum values. They also found that the system favors
relative inclinations between the outer two planets of about 15 — 20°. By contrast, Lissauer
& Rivera (2001) find, that the system is stable for up to 4 times the minimum planetary
masses and that it is most stable for nearly coplanar configurations.

Several previous studies of the v And system report the presence of secular resonance
between planets ¢ and d, meaning specifically that the system is librating with small ampli-
tude. For example, Chiang, Tabachnik, & Tremaine (2001) find that almost all stable orbital
configurations with initial conditions within the allowed observational errors exhibit secular
resonance. Further, they claim that the system is dependent on the presence of secular res-
onance in order to remain stable for the duration of their integrations. While not all groups
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to study the v And system found the stability of the system to be so highly correlated with
secular resonance, many believed such a resonant configuration was in fact the best expla-
nation for the apparent small separation between w, and w,;. Some groups even searched
specifically for initial orbital configurations that would produce secular resonances with the
smallest possible libration amplitude (see, e.g., Lissauer & Rivera, 2001).

By contrast, Stepinsky, Malhotra & Black (2000) found that there is no secular resonance
in the system. Barnes & Quinn (2001) claim that, although planets ¢ and d are in secular
resonance for some allowed configurations, the stability of the system does not depend on
the presence of this resonance, and therefore that the observed proximity of the longitudes
of pericenter for planets ¢ and d is most likely coincidental. It seemed that the debate over
the presence of secular resonance in the v And system would have no simple resolution; the
methods behind the claims of every group may have been perfectly sound, but the reliability
of any results ultimately depends on the accuracy of the radial velocity measurements.

Additionally, it was also quickly recognized after the discovery of the three planets in
the v And system that the gravitational interaction between the outer two planets causes
significant eccentricity evolution on secular timescales (~ 10* years). In particular, in some
early solutions, the middle planet appeared to have its eccentricity varying periodically with
large amplitude, from a maximum near the present value to a minimum near zero (Stepinsky,

Malhotra, & Black 2000).

2. Methods
2.1. Stability Criteria

For planetary systems containing two planets, the stability of the system for all time can
be determined using analytical criteria (Hill 1878). Specifically, the Hill stability criterion
in the limit of small eccentricities indicates that, as long as the separation between the
semimajor axes of two planets satisfies

2
\Gl - G2| > —Ry,

V3

where Ry is the Hill radius of the planets defined to be

Ry = a1+a2 m1+m2 1/3
= 2 3M, ’

where subscripts specify parameters for each planet, then the two planets will remain stable

against close encounters. Unfortunately no analytical stability criterion exists for systems
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containing more than two planets; in fact systems of more than two planets are always chaotic
and formally unstable. In general, the stability of N-body systems must be determined
through direct numerical integration.

2.2. Leading Theories for Eccentricity Excitation

Several mechanisms have been proposed to explain the high eccentricities observed in
extrasolar planetary systems. The most prominent of these theories are discussed below
along with their potential applicability to the v And system.

Gravitational Perturbation by a Companion Star — Most stars are actually part of a
binary or multiple star system. This first theory proposes that in such systems, the planets
orbiting one star could be gravitationally perturbed by the companion star, exciting large
eccentricities in the planetary orbits. These encounters could induce modulation of eccen-
tricities on long time scales ( 10® years). In fact, the planet orbiting 16 Cyg B has already
been shown by Holman, Touma, & Tremaine (1997) to have chaotic variations in eccentricity
resulting from such perturbations by a stellar companion. Furthermore, when the relative
inclination between the planet and the companion star is 2> 40° and the ratio of the orbital
periods is small (around O(1072) to O(1073) (in this case the orbits are called “hierarchi-
cal”), the Kozai mechanism can also excite a planet’s orbital eccentricity through secular
perturbations (Kozai 1962; Takeda & Rasio 2005). Even though the central star of the v
And planetary system does have a stellar companion, perturbations from the companion are
dynamically negligible (Chiang & Murray 2002). This theory is also not one of the more
appealing in general because only a handful of stars known at present to harbor planetary
systems also have stellar companions (see Schneider 2005).

Interactions with a Planetary Disk — For planets having an initial eccentricity exceeding
~ 0.01, Goldriech & Sari (2002) describe how Linblad resonances in the gas disk can excite
the planet’s eccentricity, in spite of damping effects from corotation resonances. It has also
been suggested that convergent migration in a gas disk, a scenario in which the orbit of one
planet approaches that of another, can trap two planets into mean motion resonance (mean-
ing the ratio of the orbital periods is near the ratio of two small integers). This subsequently
results in pumping of the eccentricities. However, since none of the planets in v And, nor all
but a few planets in any other extrasolar planetary systems, lie in mean motion resonances,
this theory also fails to explain the ubiquitously large observed orbital eccentricities among
known extrasolar planets. In another scenario involving divergent migration through a gas
disk (meaning that the periods of two planets move away from eachother) Chiang, Fischer,
& Thommes (2002) discussed how orbital eccentricities are excited by multiple crossings
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through mean motion resonances. However, they also show that the present configuration
of the v And system does not resemble that of a system in which planets have undergone
such resonance crossings. Therefore this scenario cannot explain the large eccentricities of
planets ¢ and d.

For the most recent orbital parameters at the time, Chiang and Murray (2002) demon-
strated specifically for v And that eccentricity growth could be accomplished steadily over
long time scales (> 10* years) through adiabatic perturbations via torques from an exterior
gas disk. For a two planet system, models show that the perturbations from the disk also
leave the system in secular resonance by damping the amplitude of libration to zero. This
theory is particularly appealing because it is a natural extension of so-called “migration
scenarios” for forming hot Jupiters (Ward 1986).

Planet-Planet Scattering — One of the earliest mechanisms proposed to induce large ec-
centricities in extrasolar planets was planet-planet scattering (Rasio & Ford 1996; Weiden-
schilling & Marzari 1996). For any system initially consisting of three planets, an impulsive
perturbation on the middle planet would arise naturally from a close encounter with the
outer planet. The consequential dynamical interactions between the two cause a scatter-
ing event in which the outer planet is resultantly ejected from the system. Such a sudden
impulsive perturbation imparts a finite eccentricity to the middle planet (Malhotra 2002).
Subsequent secular evolution of the system causes the eccentricity of the inner planet in
the initial configuration to oscillate between a fairly large value and a value of nearly zero.
Secular perturbation theory (Murray & Dermott 1999) predicts the two planets would be
left with longitudes of pericenter either circulating or librating with a large amplitude, close
to 90°. Applying this scenario to the v And system, planet ¢ would have been the inner
planet, planet d would have been the middle planet, and the outer planet would have been
an additional planet that is now lost from the system as a result of the scattering. Because
of its small distance from the central star and nearly circular orbit, planet b would play a
negligible role.

2.3. Numerical Methods

In all integrations performed for this project, we used a fixed time-step multivariable
symplectic (MVS) integrator in the software package Mercury (Chambers 1999), version 6.1.
The MVS integrator is particularly helpful for our integrations since it is fast for relatively
large time steps, while maintaining good energy conservation, O(1078), for essentially reg-
ular orbits. The truncation error introduced by symplectic integrators is only that of a
Hamiltonian perturbation, and thus the integrator exactly conserves approximate integrals
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of motion (Chambers 1999).

Planet b is sometimes neglected in numerical integrations simulating resonance the v
And system (see, e.g., Laughlin & Adams 1999). Its proximity to the central star, small
eccentricity (most likely a result of tidal circularization), as well as its comparatively large
separation from planets ¢ and d, make it much less likely to play a significant role in the
evolution of the v And system. Furthermore, its inclusion can cause integrations to become
quite computationally expensive. The short period requires a symplectic integrator to pro-
ceed with time steps of only a small fraction of each included planetary orbit in order to
prevent energy errors from growing unacceptably large. However, because of the chaotic evo-
lutionary nature of planetary systems, we include planet b in all of our integrations, unless
otherwise stated. The time steps used for integrations including planet b are set at 0.5 days,
or roughly 10% the period of planet b.

All simulations, unless noted otherwise, are integrated to a maximum of 10® years or
until the onset of instability occurs, defined here to be a close encounter of two bodies
within 0.5 Hill radii (see Gladman 1993). This maximum integration time is unfortunately
at least three orders of magnitude below the estimated age of the star (Ford, Rasio, & Sills
1999), on which time scales any systems must be stable if they are to be considered true
solutions. However, due to limited computational resources, our maximum integration time
was the largest reasonable to allow for a reliable statistical examination of the parameter
space allowed by observational data. In §3 we show that truncating integrations after 10°
years most likely does not cause in a significant number of systems to be incorrectly identified
as solutions.

Stopping the integrations after the first close encounter between two bodies prevented
energy errors due to the fixed time step of the MVS integrator from becoming unacceptably
large. Close encounters in a multiple planet system are also generally reliable indicators that
the system will eventually become unstable, as indicated by one of three events: the collision
of two planets, the collision of a planet with the central star, or the ejection of a planet from
the system. However, even after close encounter, there is still no guarantee as to how long
it will take for one of these events to occur.

2.4. Initial Conditions

We model the observations as resulting from three planets on independent Keplerian
orbits. We use a Bayesian framework (Gelman et al. 2003) to constrain the orbital elements
and masses with the radial velocity observations, as well as the “stellar jitter” (radial velocity
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variations due to stellar phenomena such as convection, star spots, and rotation). We assume
priors uniform in the logarithms of orbital periods, velocity semi-amplitudes, and the stellar
jitter. We assume uniform priors for the eccentricities and the remaining angles. The effects
of stellar oblateness and general relativistic precession were neglected.

We use the techniques of Markov chain Monte Carlo (MCMC) and the Metropolis-
Hastings algorithm with the Gibbs sampler to sample from the posterior probability dis-
tribution for the masses and orbital parameters (Ford 2005). Our Bayesian analysis closely
follows the methods developed for single-planet systems with no stellar jitter by Ford (2005),
here we only discuss the generalizations to the algorithm that were necessary to apply it to
multiple-planet systems and allow for an unknown stellar jitter. Each state of the Markov
chain includes five fit parameters for each planet (orbital period, P, velocity semi-amplitude,
K, orbital eccentricity, e, argument of pericenter, w, and mean anomaly at the specified
epoch, M,), the unperturbed stellar velocity, C, and the magnitude of the stellar jitter, o;.
The jitter is assumed to be Gaussian candidate transition functions, which are centered on
the parameter values from the current state in the Markov chain. The scales of the candi-
date transition functions were chosen based on a preliminary Markov chain so as to result in
acceptance rates of nearly 40%. The computational efficiency of MCMC can also be signif-
icantly affected by correlations between variables. To improve the computational efficiency
we added candidate transition functions, which were based on several auxiliary variables
based on combinations of the fit parameters. These auxiliary variables are esinw, ecosw,
W+ M,, w— M,, P?3(1+¢), and P%3(1 —e), for each planet, as well as w, + w,, and w, & wy
(where wp, we, and wy are the arguments of pericenter for planets b, ¢, and d, respectively).
The acceptance ratio was deterimined according to the Metropolis-Hastings algorithm to
reflect our choice of priors described in the previous paragraph. The use of this enlarged set
of candidate transition functions significantly improved the mixing and hence efficiency of
our Markov chains. It is important to note that our sampling procedure does not make any
assumptions about the posterior distribution for the orbital elements or masses. Therefore,
our approach allows us to take into account correlations between various orbital parameters,
in contrast to previous simpler analyzes.

We have computed five Markov chains, each of which contains over one million states.
We have performed several checks to verify the reliability of our Markov chains. The accep-
tance rates were between 0.37 and 0.45 for trial stages generated by the candidate transition
functions for each auxiliary variable in each chain. We have also verified that the resulting
distributions show excellent agreement across all five chains. For example, the Gelman-Rubin
test statistic, R, approaches 1 from above as a Markov chain approaches convergence. While
sets of Markov chains with R less than 1.1, or even 1.2, are frequently used for inference, for
the Markov chains used in this analysis, R was less than 1.001 for each fit parameter and
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auxiliary variable, and for the predictions of the radial velocity at 40 future epochs. Thus
we are very confident in the reliability of our Markov chains.

The results from them form the basis for our dynamical analyzes. When considering
non-coplanar cases, we independently drew the inclinations from isotropic distributions and
the longitude of ascending node from a uniform distribution. For each state in the Markov
chain, we calculate the planet masses and semimajor axes iteratively and treat them as
Jacobi elements. Finally, we have performed more than 7000 direct N-body integrations
of systems sampled from our Markov chains in order to thoroughly investigate the allowed
parameter space. For these integrations, we chose a variety of initial epochs varying by
several times the orbital period of planet d. By comparing the x? of the fit determined by
the analytic and N-body models, we have determined that our results are not affected by
including the effects of mutual planetary perturbations in the fitting procedure. The N-body
numerical integrations were done in sets of 1000; for each set the unknown inclination angles,
1 and 2, were varied randomly within specific ranges. Table 4 lists specifications of ¢ and
(2, along with the some of the results (discussed further in the next section) for each set of
1000 integrations.

3. Results
3.1. Constraining Inclinations from Stability Requirements

In order for the system to remain stable over the full 10° year integration, we find that
the inclination with respect to the line of sight, ¢, must be < 30°. This implies that the
masses for a coplanar system must be no more than about twice their minimum value, since
m = Mgps/ Sin(30°) = 2 X Mpps.

Systems are usually unstable for relative inclinations > 40°. Note that systems with
relative inclinations > 140° are also dynamically stable. Although, such retrograde orbits
are unlikely on theoretical grounds, our conclusions are robust to this possibility. (Since
it averages over the orbits, secular perturbation theory is also valid for retrograde orbits.)
Interestingly this value is close to the Kozai angle (Kozai 1962). However, because the orbits
of planets ¢ and d are not hierarchical, the periods are in fact comparable, the perturbative
Kozai mechanism is not likely to be so relevant in this system.

In Figure 1 we show a histogram of the time to first close encounter t.., for two sets of
1000 integrations, where the initial angles of inclination were determined randomly, with the
only other constraint on the data in the lower panel that the relative inclinations between v
And c and d were < 30° (these correspond to set #7 in the top panel and set #6 in the lower
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panel as described in Table 4). Since t., was between 10® and 10° years for about 85% of
integrations in both panels, the integration time appears to be sufficient to find a majority
of systems that will go unstable on timescales > 10° years. If systems became unstable at a
high rate beyond integration times of > 10° years, we would expect to see an upward trend
in the percentage of systems that go unstable as integration time increases.

3.2. Evidence for Planet-Planet Scattering

Throughout the full range of allowed inclination angles we find qualitatively similar
behavior for the secular evolution of the system.

There is less correlation between secular resonance and stability in our results than in
some previous studies (see discussion in §1.2.4). Table 4 shows the total number of librating,
circulating, and unstable systems according to the initial conditions for each set of 1000
integrations. For the coplanar, edge on simulations, roughly half are found to be librating
and half are found to be circulating. Among stable configurations in each set of integrations
the number of systems found to be librating and circulating are usually comparable.

The evolution over secular timescales of the coplanar, edge-on system for the current
best-fit orbital parameters is shown in Figure 2. The eccentricity of planet d remains always
between 0.25 and 0.35. While the eccentricity of planet c¢ is large at present time (t = 0),
note that it returns periodically to a nearly circular orbit with e, < 0.01, roughly every 6700
years.

In many systems it appears that the longitudes of pericenter for planets ¢ and d are
“switching” between librating and circulating, which is a phenomenon not documented in
previous studies. However, it is not clear if these systems are truly switching in and out
of librating configurations. For these systems the maximum separation of longitudes of
pericenter, i.e. |w, — |, often occurs when the eccentricity of planet ¢ is near its minimum;
a representative example is shown in Figure 3. When its eccentricity is very nearly zero, the
orbit of planet c is almost circular causing the position of the pericenter to become less well-
defined than for larger eccentricities. Because the data loses some of its physical significance
at times of near zero eccentricity, it is difficult to determine whether planets ¢ and d are
actually in a librating configuration. Fortunately, we did not find a large number of such
ambiguous systems in proportion to the total number of integrations. Thus for our purposes,
librating systems were defined to be any for which the maximum change in separation of
longitudes of pericenter, A|w, — wy|, never exceeded 240° from one data point to the next;
otherwise the system was classified as circulating.
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Small minimum eccentricities are a property of all solutions consistent with the obser-
vational data, as opposed to suggestions previously that this was a characteristic only of
some solutions (Lissauer & Rivera 2001). In Figure 4 we have determinded the probability
distribution for the minimum eccentricity of planet c for both coplanar, edge-on systems and
for orbits with random orientations to the line of sight, but requiring dynamical stability;
this implies relative inclinations < 40°. This result can be understood from lowest-order
secular perturbation theory (Malhotra 2002; Murray & Dermott 1999), where the eccentric-
ity vector of each planet can be described as the sum of three rotating eigenvectors in the
(ecosw, esinw) plane. The eigenvector representing the effects of planet b on planet ¢ has
a very small amplitude and thus can be neglected. For the particular configuration of v
And , the two dominant eigenvectors describing planet ¢ have very nearly the same length.
If the eigenvector with the faster rotation (in other words, the eigenvector with the higher
eigenfrequency) has a slightly larger length than the other, the vector sum will be rotating
around 360°, indicating that the longitudes of pericenter for planets ¢ and d are circulating.
Instead, if the eigenvector with the faster rotation has a slightly smaller length than the
other, the vector sum will be oscillating with an amplitude close to 90°, corresponding to
secular resonance between planets ¢ and d. Whenever the two vectors are anti-aligned, the
magnitude of their sum, which is equal to the eccentricity of the planet, is very close to zero;
when they are aligned, the eccentricity is maximum.

Our numerical integrations also suggest that the allowed solutions all lie very close
to the boundary between librating and circulating configurations (see Figure 5). Indeed,
the division between librating (triangles) and cirulating (squares) system in the figure falls
within the 1-0 uncertainties for the separatrix derived from the classical second-order secular
perturbation theory, when planet b is neglected. As a consequence of the proximity of this
observed planetary configuration to the separatrix, all librating systems have large libration
amplitudes, as shown by Figure 6. The median libration amplitude is close to 80°. This result
may also help to explain why the presence of secular resonance in the v And system has
been such a long-standing controversy. Clearly if the best-fit parameters had fallen slightly
to the left or to the right of the current measurements, the system would have appeared to
be almost entirely to one side of the separatrix. Subsequent numerical integrations would
suggest that either most solutions exhibit evidence of libration, or that most solutions have
the pericenters of planets ¢ and d circulating, according to the side of the separatrix on which
the observations had placed the best-fit parameters.
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3.3. Scattering Models

Our analysis clearly confirms that the v And system is evolving exactly as would be
expected after an impulsive perturbation to planet d (Malhotra 200). The initial sudden
change in eccentricity for planet d would naturally be produced by a close encounter with
another planet that got ejected from the system as a result.

3.3.1. Omne Additional Planet

Using our knowledge of planet-planet scattering from several previous studies (e.g. Rasio
& Ford 1996; Ford, Havlickova, & Rasio 2001), we have determined plausible initial condi-
tions for the original, unstable system. We have adopted a simple two-planet configuration
for computational convenience in which two planets on circular orbits perturb eachother
significantly, with the other planets distant enough to be negligible.

The early dynamical evolution of such a system including one additional planet (for
clarity we refer to the extra planet as “planet €”) set initally beyond the orbit of planet d,
is illustrated in Figure 7. Planet b was not included, since it plays an insignificant role. All
planets were set on nearly circular orbits at the start of the integration. The initial periods
of planets ¢, d, and e were 241.5 days (equal to the present period of planet c), 2100 days
and 3333 days. The masses of planets ¢ and d were set at their current observed minima,
and the mass of planet e was set at 1.9M; so that planets d and e were near their dynamical
stability limit, which is known and sharply defined (Gladman 1993).

As shown in Figure 7, planet e interacted strongly with planet d for a brief period
lasting ~ 10® years, while planet ¢ maintained a small eccentricity. After the ejection, the
remaining two planets are left in a dynamical configuration closely resembling that of the v
And system as it is observed at present (cf. Figure 2). Note that the timescale to completely
eject planet e from the system (~ 9000 years in this particular simulation) is much longer
than the timescale of the initial strong scattering. After the brief period of strong interaction,
the perturbations on the outer planet are too weak to affect significantly the coupled secular
evolution of planets ¢ and d. Thus the “initial” eccentricity of planet c¢ for the secular
evolution is determined by its value at the end of the strong interaction phase, rather than
at the time of the final ejection.



— 16 —

3.3.2. Two Additional Planets

We performed a total of 1500 integrations where two additional planets, “planet e”
and “planet f” in order of increasing distance from the central star, were placed outside
the initial orbit of planet d. Seven hundred of these integrations were set so that planets d
and e were near the dynamical stability limit (case 1), and seven hundred were set so that
planets e and f were near the dynamical stability limit (case 2), with the remaining two
planets sufficiently far from all the other planets so as to be negligible. One hundred more
integrations were performed with planets e and f farther outside of the dynamical stability
limits for all included planets (case 3).

With the addition of two planets to systems already including planets c and d, we see
a more chaotic evolution than with only one additional planet, as expected. For systems
in case 1, we originally anticipated that planets d and e would perturb eachother strongly,
but the gravitational force of planet f on e would help to remove planet e quickly from the
vicinity of planet d after imparting a finite eccentricity to it. In case 2, we expected a similar
scenario where mutual perturbations between planets e and f result in a short period of
strong interaction between one of these two outer planets and planet d. Eventually in either
case, planet e or f would be ejected from the system, leaving planets ¢ and d in their presently
observed configurations. The initial conditions for the systems in case 3 are the most natural
since each pair of adjacent planets is farther from their stability limits. However, for this
reason case 3 is also the least efficient in producing scattering events because it is less clear
how long it may take for strong gravitational interactions to develop between any pair of
planets, if they develop at all.

For case 1, our results show, contrary to our expection, that while either planet e or f
was ejected from the system in 326 of the 700 simulations, planets ¢ and d both survived the
full 10® year integration in only 24 of them; no systems were found to be stable. For case
2, 304 systems resulted in the eventual ejection of either planet e or f, but planets ¢ and d
survived in just 19 of these, while 31 systems remained stable. Case 3 yeilded 14 systems for
which either planet e or f was ejected, but only 3 systems in which planets ¢ and d survived.
Since all planets began on orbits more stable than the previous two cases, a larger fraction,
62 out of 100, remained stable for 10° years.

In Figure 8 we show the secular evolution of one of the 3 systems from case 3 in which
planet e was ejected, and planets ¢ and d survived. For this specific system, the initial
semimajor axes for planets ¢ and d were 0.91 AU and 4.59 AU, respectively. Planet e was
given a mass of 6.93M; and an initial semimajor axis of 8.84 AU; planet f was given a mass of
17.35M; and began the integration with a semimajor axis of 15.31 AU. This simulation is an
excellent example of the manner in which a scattering event may occur in a multiple-planet
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system. After more than 800,000 years of seemingly stable and regular evolution, planets
e and f suddenly begin to perturb eachother strongly. In the course of their interaction,
planet e was flung farther out into the system while planet f moved in closer to the central
star, at which time it perturbed planet d very quickly and continued to interact strongly
exclusively with planet e afterward, until planet e was eventually ejected from the system.
From the point at which the eccentricity and the semimajor axes of the planets began to
evolve erratically, indicating the onset of instability in the system, to the time that planet e
was ejected spans only ~ 15,000 years.

In about half of the 46 simulations for all 3 cases in which either planet e or f was
ejected and planets ¢ and d both survived, we find often that by the end of the integration,
planets f and d have switched positions; in other words, planet d became the farthest of the
three remaining planets (almost always with a semimajor axis exceeding 15 AU) and planet
f became the second farthest out (with a semimajor axis of ~ 3 —5 AU, about that of the
second planet from the central star in the v And system as it is observed at present). Thus,
future work will include a more thorough examination of the systems in which planets c or d
did not survive, in order to determine the frequency with which two planets switch positions
after a scattering event and leave the system in a configuration resembling closely that of v
And today.

Reproducing the exact parameters of any particular observed system always requires
“fine tuning” in an obvious sense. What is important here is that our mechanism can
naturally, without any fine tuning, provide the very short timescale required for the initial
perturbation that left planet d on an eccentric orbit and planet ¢ on an almost perfectly
circular orbit.

4. Summary and Discussion

By requiring that orbital configurations of the v And planetary system remain stable
for at least 10° years, we were able to constrain the relative inclination, i,¢;, as well as the
unknown angle of inclination with respect to the plane of the sky, 7. For the best-fit orbital
parameters in the coplanar case, the system is unstable when ¢ 2 30°. From this result,
we can conclude that the masses of the planets must be no more than twice the observed
minimum masses. The maximum allowed relative inclination between each pair of planets
is ~ 40°.

According to the most recent best-fit parameters allowed solutions lie close to and on
either side of the theoretical separatrix between circulating and librating systems. The
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approximate dividing line between circulating and librating systems from our numerical
integrations does in fact lie within the 1-o errors of this separtrix. This may explain the
reason previous studies of this system had difficulty establishing whether planets ¢ and d are
in a resonant, librating, or circulating configuration.

Dynamical instabilities between two planets set close to each other on initially circular
orbits have previously been found to produce the kinds of unexpectedly large eccentricities
observed in extrasolar planetary systems. Usually when one planet is ejected, the other
planet is left on a highly eccentric orbit (Rasio & Ford 1996; Weidenschilling & Marzari 2001).
However, these close encounters also produce a significant number of collisions, causing the
resultant planet to trace a nearly circular orbit, which are not proportionally represented
in the observed data (Ford, Havlickova, & Rasio 2001). The results presented here provide
evidence nonetheless that dynamical interactions must have resulted in the instability that
caused a scattering event to take place in the v And system. Our results therefore imply
that the evolutionary history of the system very well may be common, and thus explain why
extrasolar planets are so often observed to have large eccentricities. More work must be done
to determine how collisions might be avoided (Ford, Rasio, & Yu 2003).

While the simulation in Figure 7 illustrates a case in which v And had only one extra
planet, our results do not preclude the existence of even more planets at larger distances.
In fact, the presence of another planet in an even longer-period orbit could be responsible
for triggering the instability after a long period of seemingly “stable” evolution and help
raise more quickly the pericenter of planet e, similar to the simulation shown in Figure 8.
Although equally plausible, this is less computationally convenient since, with more than two
planets, the stability limit is not known analytically and not sharply defined, so numerical
experimentation would be needed to find a case that could produce a final state resembling
the current configuration of v And , possibly after a very long dynamical integration. The
secular evolution of the system should be reevaluated if future observations of v And were
to discover an additional planet in a long period orbit.

As discussed in previous papers, a variety of scenarios would naturally lead to two
planets approaching their dynamical stability limit (Rasio & Ford 1996; Ford, Havlickova,
& Rasio 2001). For example, planet e might be migrating inward through coupling with
an outer gaseous disk. Once the stability limit is reached, the system evolves quickly (on
the orbital timescale) until strong scattering occurs and one planet is ejected, while the gas
becomes irrelevent (as the viscous timescale is much longer). Furthermore, with more than
two planets added beyond the orbit of planet d, the timescale for growth of the instability
and the occurrence of a strong scattering can be arbitrarily long (Gladman 1993; Chambers
1996) and could easily exceed the 107 year timescale on which the gas is expected to be lost
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from the protoplanetary disk. If gas were still present when the scattering occurs, the final
outcome would be modified, but only the details of the dynamical evolution would change.
For example, if gas drag produces some damping effect on the eccentricity, then a slightly
stronger scattering may be needed to produce the same final eccentricity for the retained
planet.

Several mechanisms other than scattering, such as perturbation by a binary star (Hol-
man, Touma, & Tremaine 1997) and interaction with a gaseous disk (Goldreich & Sari 2003),
have been proposed to explain the large eccentricities of extrasolar planets. However, only
planet-planet scattering naturally results in an impulsive perturbation, as is necessary to
explain the current orbital configuration of the v And system. All other mechanisms operate
on much longer timescales and would also affect the eccentricity of planet c, erasing the
memory of its initial circular orbit.

Specifically, the possibility that the impulsive perturbation to planet d was delivered
by a massive exterior gaseous disk with a large viscosity was mentioned in a previous study
(Malhotra 2002). However, we can now show that this possibility is firmly excluded from this
system. If the eccentricity of planet d had been induced by an outer disk, the eccentricity
growth time would have to be considerably shorter than the secular timescale. In addition,
after the eccentricity grew to ~ 0.3, the perturbation must stop suddenly; otherwise the
eccentricity of the middle planet, planet ¢, would also start growing and its ”initial” value
would no longer be compatible with the minimum we derive in the secular solution.

Quantitatively, this is a very stringent requirement. We have performed additional
numerical integrations for the outer two planets, starting with their current masses and
orbital periods, but on circular orbits. In addition to the mutual gravitational perturbations,
we include a simple semi-analytic model of angular momentum dissipation acting on planet
d only. The dissipation rate, J, is constant for a time At and then disappears (completely
and instantaneously). We have performed multiple simulations holding the product JAt
fixed to reproduce the current eccentricity of planet d. If we impose the constraint that the
eccentricity of planet ¢ must remain < 0.01 (the current best-fit value of the minimum is
0.005) after At, then this model provides an upper limit of At < 100 years.

A timescale for eccentricity growth by viscous coupling to a disk as short as < 100 years
would require both an implausibly massive disk and a very high effective viscosity. The
possibility of eccentricity growth caused by interactions with a disk is rather controversial
(Papalouizou, Nelson, & Masset 2001), particularly for planets less massive than 10 —20M;.
Nevertheless, we have estimated the timescale for eccentricity using the only detailed theory
of eccentricity excitation by viscous coupling to a disk in the astrophysical literature (Gol-
dreich & Sari 2003). We find that a timescale for eccentricity growth as short as ~ 100 years
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would require a mass in the relevant part of the disk, ¥r? ~ 40M;, ten times more than
the mass of the planet, even with an implausibly large disk viscosity parameter, o ~ 0.1.
Instead, using more typical parameters (Goldreich & Sari 2003) (for a 1M planet at 1 AU,
with disk parameters r/h = 25, a = 0.001, and w/r = 0.5), it would require ~ 107 years for
the eccentricity to grow from 0.01 to 0.3. Eccentricity growth on this very long timescale
would instead lead to secular resonance between planets ¢ and d with a small amplitude li-
bration (Chiang & Murray 2002), which our results rule out. In addition, neither this theory
(Goldreich & Sari 2003) nor any other published theory of eccentricity excitation due to a
gas disk provides a mechanism for making the perturbation cease quickly (< 100 years) after
a phase of very rapid eccentricity growth.

Planet-planet scattering is truly unique in that it provides both a very short timescale
for eccentricity growth (the dynamical timescale on which the instability develops) and the
same very short timescale for removing the perturbation, since the extra planet is ejected as
a result of the scattering.

These results have additional implications for planet formation as well. Given the
difficulty of forming giant planets at small orbital distances, it is generally assumed that the
planets in the v And system followed the standard picture of orbital evolution (Lin D.N.C.
2000) and migrated inward to their current locations via interactions with the protoplanetary
disk. If this is correct, then the small minimum eccentricity of v And c also provides evidence
that its eccentricity at the end of migration had not grown significantly, in contrast to
the theory suggesting eccentricity excitation through torques applied by the gaseous disk
(Goldreich & Sari 2003). However, the possibility that the planets did in fact form near
their current positions as described in Bodenheimer, Hubickyj, & Lissauer (2000) rather
than undergoing migration through a disk cannot be excluded by our results.

I am immensely grateful for the extensive support and guidance of my advisor, Profes-
sor Frederic Rasio. I would like to acknowledge the gracious help of Dr. Eric Ford, who
along with Professor Rasio made this project possible. Much thanks to Debra Fischer for
providing the updated radial velocity data for the v And planetary system. I would also
like to acknowledge support from the NASA Undergraduate Summer Research Program at
Northwestern University through the Illinois Space Grant Consortium, as well as the NSF
Research Experiences for Undergraduates program.
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Table 1. Orbital Elements

Symbol Name Description

a semimajor axis half the length of the longest distance between two points of the orbital ellipse

b semiminor axis half the length of the shortest distance between two points of the orbital ellipse

e eccentricity equal to 1/1 — (b/a)? where a and b are the semimajor and semiminor axes of the orbital ellipse; thus e = 0 corresponds

to a perfect circle, while e = 1 corresponds to a straight line

f true anomaly the angle between the line from the central star to the pericenter and the line from the central star to the planet

7 inclination the angle between the plane of the orbit and a reference plane

w argument of the angle between the line from the central star to the longitude of ascending node and the line from the central star to
pericenter the pericenter

Q longitude of the angle between the line from the central star to a reference direction and the line from the central star to the point
ascending node on the orbit where the planet crosses from below the reference plane to above the reference plane

w longitude of equal to w + 2; note that this is a “dogleg” angle since w lies in the orbital plane and  lies in the reference plane
pericenter

Tperi time of the time at which the planet passes through the point on its orbit closest to the central star

pericenter passage
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Table 2. Up-to-Date Orbital Elements for the v And Planetary System

Planet P(d) e w(deg) msini(My)
b 4.617146(56)  0.016(11) 0.6777(79)
c 241.32(18)  0.258(15)  250.2(4.0)  1.943(35)
d 1301.0(7.0) 0.279(22) 287.9(4.8) 3.943(57)
Note. — Results of our new analysis of the v And radial velocity

data (Ford 2005). We have used the entire Lick Observatory data
set, kindly provided to us by D. Fischer. For conciseness, we present
only the means and standard deviations on the last two digits (indi-
cated in parenthesis) after marginalizing over all other parameters.
We list the orbital period (P) in days, the orbital eccentricity (e),
the argument of pericenter (w) in degrees, and the planet mass times
the sine of the inclination of the orbital plane to the line of sight
(msini) in units of Jupiter masses (M;). The argument of peri-
center for planet b is omitted because its orbit is nearly circular
and thus the exact position of the pericenter is not only difficult
to identify within a meaningful confidence interval, but also it loses
physical significance in this limit.
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Table 3. 2003 Orbital Elements for the v And Planetary System

Planet P(d) e w(deg) msini(My)
b 4.6171(01)  0.019(02) 0.71
c 241.2(0.5) 0.26(03) 249.1(9.3) 1.98
d 1283(12) 0.25(03) 264(18) 3.9
Note. — Previously most recent orbital parameters for the v

And system from Fischer et al. 2003. As in Table 1, for ease
of comparison we list the orbital period (P) in days, the orbital
eccentricity (e), the argument of pericenter (w) in degrees, and the
planet mass times the sine of the inclination of the orbital plane
to the line of sight (msin<) in units of Jupiter masses (M ).
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Table 4. Inclination and Results for Sets of 1000 Integrations

Set #  imax (deg)  imin (deg) lic —iq| (deg) Qe — Qg4 (deg)  Librating  Circulating  Unstable

1 90 90 0 0 580 420 0

2 11.5 168.5 0 0 372 409 219
3 90 90 0 random 48 173 779
4 82.5 97.5 0 random 34 173 793
5 60 120 0 random 63 134 803
6 random random < 302 random 82 365 553
7 random random random random 7 53 940

#Indicates the range in relative inclinations i.¢) ¢q, not separation of angles of inclination with respect to the line
of sight |ic — i4| for this set only.

Note. — Inclination specifications and results for sets of 1000 N-body numerical integrations. The maximum
and minimum inclinations with respect to the line of sight, ¢max and imin respectively, specify the range for initial
values, and are given in degrees. The separation between i, and ¢4, which are given in the next column in degrees.
It is important to remember that this separation is indicative of differences in actual masses and not equal to the
relative inclination between the planets, iye] cq = COS ic COS ig + Sin ic sin iy cos(2e — 24). Only the values of i affect
the actual planetary masses used in the integration; Q plays a role in the relative inclination of the orbits, but
has no bearing on the true masses, since the observed mass is msini. Angles that are stated as “random” are
generated randomly to be within the range of —180° to 180°. The last three columns indicate how many systems
out of the total 1000 integrated for the set were found to be either stable and librating (“Librating”), stable and
circulating (“Circulating”), or unstable, indicated by a close encounter of two bodies to within 0.5 Hill radii, before
the termination of the integration at 10% years (“Unstable”).
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Fig. 1.— Histogram of time to first close encounter. The data used for the top panel
was taken from the 1000 integrations of sets #7 in Table 3, where angles of inclination, %
and () are chosen randomly between —180° and 180° for both planets ¢ and d. The data
for the bottom panel was taken from the 1000 integrations of set #6 in Table 3 where
the angles of inclination were chosen randomly with the only addtional requirement that
irel,cd = COS i COS ig + sin i, sin 44 cos(2, — Q4) < 30°.
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Fig. 2.— Secular evolution of the triple-planet system around v And. The top panel shows
the semimajor axes (middle lines), as well as the pericenter and apocenter distances (lower
and upper lines respectively) for the outer two planets. The lower panel shows the evolution
of the orbital eccentricity for each planet. Note that both v And ¢ (dashed) and v And d
(dotted) have a signficant eccentricity at the present time (¢ = 0), but that the eccentricity
of ¢ returns periodically to very small values near zero. The results shown here were obtained
by direct numerical integration using the best-fit parameters.



— 929 —

0.3 Q A \ | \ J/‘\\ i \ A \ / \\
0.2 \\/ \k /\ /\ \\ /\f\ ]/\/

SR En
0.1 / \ ‘ | U |

0 —+——+H }u . e
100 |- —
<) 0+ —
\U L i
3 i |
~100 - —

‘ | ‘ | | ‘ | | ‘ | | ‘ | ‘
0 2x104 4x104 6x10% 8x104 10%
Time (year)

Fig. 3.— Top panel: Eccentricity versus time for v And ¢ (upper curve) and v And d (lower
curve). Bottom panel: Separation between longitudes of pericenter for v And ¢ and v And d
versus time. For the coplanar, edge-on (minimum masses) case, several systems that seemed
to exhibit libration at fairly large amplitudes, generally near 90°, initially appeared to be
switching between librating and circulating configurations. However, large excursions in the
separation of longitudes of pericenters can be explained by v And c¢’s periodic return to
eccentricities extremely close to zero, which causes the location of the pericenter to be less
well-defined.
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Fig. 4.— Probability distribution for minimum eccentricity of planet c. We draw initial
orbital elements for planets b, ¢, and d from their posterior probability distribution and
evolve each system according to classical second-order secular perturbation theory. We find
that all allowed orbital solutions have the eccentricity of planet c oscillating from a maximum
value slightly larger than the present value to very nearly zero. The solid curve corresponds
to coplanar orbits viewed edge-on. The dotted curve shows the result for orbits with random
orientations to the line of sight, but requiring dynamical stability. This implies relative
inclinations < 40°. Note that systems with relative inclinations > 140° are also dynamically
stable. Although such retrograde orbits are unlikely on theoretical grounds, our conclusions
are robust to this possibility; since the secular perturbation theory averages over the orbits
it is also valid for retrograde orbits.
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Fig. 5.— Observational constraints on the secular evolution parameters. The eccentricity
ratio is plotted as a function of the difference between arguments of pericenter for planets
¢ and d, all at present epoch. We show the 1-, 2-, and 3-0 contours for the posterior
probability distribution function marginalized over the remaining fit parameters. The thick
contours assume that the radial velocity variations are the result of three non-interacting
Keplerian orbits viewed edge-on, while the dotted contours include the mutual gravitational
interactions of the planets when fitting to the radial velocity data (only 1- and 2-0 contours
are shown). The thin solid line shows the separatrix between librating (upper left) and
circulating (lower right) solutions according to the classical second-order perturbation theory
(neglecting the inner planet b). The dotted lines on either side show the variation in the
location of the separatrix due to the uncertainty in the remaining orbital elements. The data
points show the results of our direct numerical integrations for the full three-planet system:
triangles (squares) indicate that the system was found to be librating (circulating). Noth
that, regardless of the assumptions, the separatrix runs right through the 1-o contours.
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Fig. 6.— Histogram of maximum libration amplitudes for stable, librating systems of three
sets of 1000 integrations. The histogram filled in with the solid line represents data from
set #1, the dashed line is data for set #2, and the dotted line is data for set #6 in Table
3. Note that all systems are librating with relatively large amplitudes of libration, and that
most are near 90°. The mean amplitude of libration for all stable librating systems was 80°.
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Fig. 7.— Dynamical evolution of a hypothetical planetary system similar to v And with one
additional planet. The top panel displays orbital eccentricities and the bottom panel shows
semimajor axes for planets c, d, and e. In both panels the secular evolution for planet c
is represented by the dashed line, planet c is the dotted line, and planet e is the solid line.
After a brief period of dynamical instability, one planet is ejected, leaving the other two in a
configuration very similar to that of v And ¢ and d. The innermost planet was not included,
as it plays a negligible role.
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Fig. 8.— Evolution of a hypothetical planetary system similar to v And with two additional
planets. The top panel shows orbital eccentricities and the bottom panel indicates semimajor
axes for planets ¢, d, e, and f, versus time. The system evolves in a seemingly quiet manner for
more than 800, 000 years, when in a span of ~ 15,000 years planets e and f interact strongly
with eachother and planet e is consequently ejected from the system. Planet f briefly perturbs
d in the course of its strong interaction with planet e, imparting a finite eccentricity to it.
Finally when e is ejected from the system, planet d is left with an eccentricity oscillating
with small amplitude, though in a lower range than the present observed orbital eccentricity,
and planet b’s eccentricity is left with a large amplitude of oscillation, returning periodically
to a nearly circular orbit. Note that planet f is left with a very small eccentricity after planet
e is ejected.



