Markets for New Technology

Robert M. Coen Professor Emeritus of Economics

Northwestern Alumnae Continuing Education

February 16, 2017

Smith Was Pessimistic About Future of Market Systems

Deadening effects of division of labor

Capital accumulation retarded by declining profits

Wages driven down to subsistence level

Enriched lazy landlords not an engine of progress

Did not foresee technical progress

Technological Advances of 1st Industrial Revolution

1712	steam engine	Thomas Newcomen
1764	spinning jenny	James Hargreaves
1770's	improved steam engine	James Watt
1780's	power loom	Edmund Cartwright
Early 18th	coke-fired furnace	Abraham Darby
Early 18th	steamboat	Robert Fulton
Early 18th	steam locomotive	Richard Trevithick
1820	road surface	John McAdam
1837	telegraph	William Cooke, Charles Wheatstone
1850's	mass production of steel	Henry Bessemer
1866	telegraph cable laid acros	s Atlantic

Technological Advances of 2nd Industrial Revolution 1870-1914

Gas and water supply

Sewage systems

Electrification

Telegraph, telephone, radio

Railroads

Internal combustion engine and automobile

Production line

Technological Advances of 3rd Industrial Revolution? 1940-??

Television

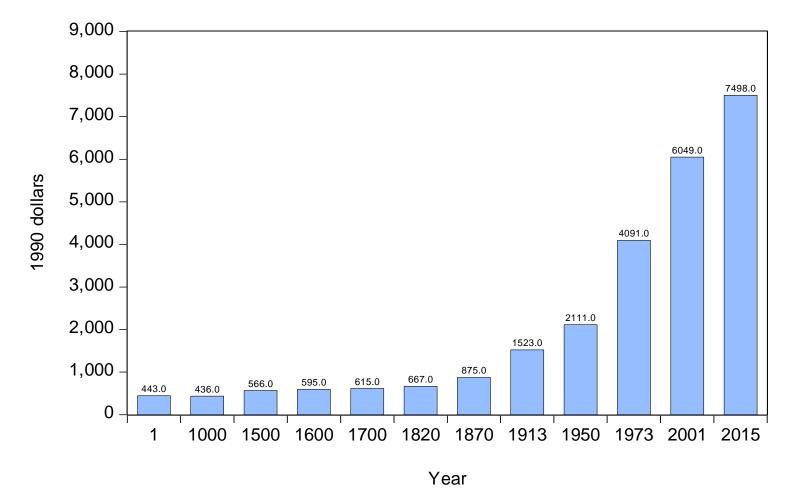
Jet air travel

Transistors and semiconductors

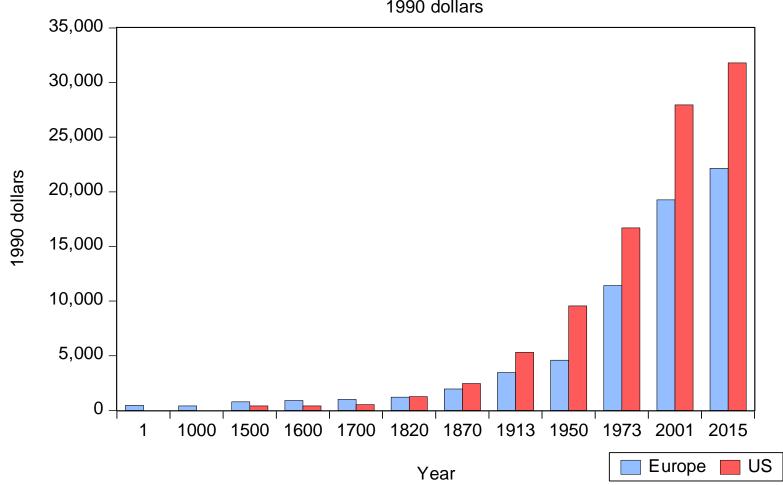
Space exploration

Satellite and cellular communications

Large-scale computers


Personal computers

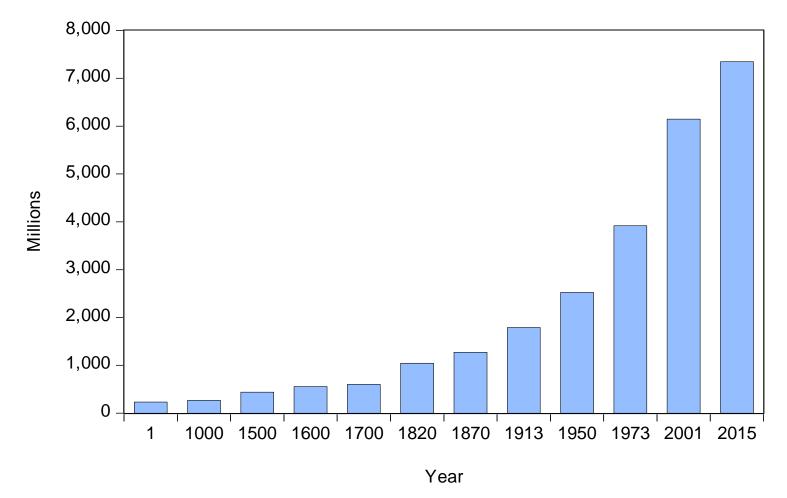
Genetic engineering


AI and robotics

World Per Capita GDP, 1-2015

1990 dollars

Sources: A. Maddison, The World Economy: Historical Statistics, OECD, 2003; 2015 estimated using World Bank data


European and US Per Capita GDP, 1-2015

1990 dollars

Sources: A. Maddison, The World Economy: Historical Statistics, OECD, 2003; 2015 estimated using World Bank data

World Population, 1-2015

Millions

Source: A. Maddison, The World Economy: Historical Statistics, OECD, 2003

			Rate of	f Growth o	of Per Cap	oita GDP	, 1-2015					
				Averag	je annual i	rate (%)						
			Time period									
		1	1000	1500	1820	1870	1913	1950	1973	2001		
		-1000	-1500	-1820	-1870	-1913	-1950	-1973	-2001	-2015		
World		0.00	0.05	0.05	0.54	1.30	0.88	2.92	1.41	1.55		
Europe		-0.01	0.13	0.14	0.98	1.33	0.76	4.05	1.88	1.00		
US				0.36	1.34	1.82	1.61	2.45	1.86	0.93		
Japan		0.01	0.03	0.09	0.19	1.48	0.88	8.06	2.14	0.77		
China		0.00	0.06	0.00	-0.25	0.10	-0.62	2.86	5.32	9.07		
Latin Am	erica	0.00	0.01	0.16	-0.03	1.82	1.43	2.58	0.91	1.62		
Africa		0.00	-0.01	0.00	0.35	0.57	0.92	2.00	0.19	2.34		
		ison, The Wo			Statistics, OE	ECD, 2003;						
	2001-201	15 estimated	using World	Bank data								

Decomposing GDP Per Capita

GDP Per Capita = GDP Per Hour Worked

- X Hours Worked Per Employee
- X Ratio of Employment of Population

Note: GDP Per Hour Worked is usual measure of "Labor Productivity"

Decomposing GDP Per Capita

GDP		GDP		Н		E
	=		Х		Х	
Ν		Н		Е		Ν

Hours Worked Per Employee falls over time

Ratio of Employment to Population also falls over time

Rising GDP Per Capita due to rising Labor Productivity

Why Did Labor Productivity Take Off After 1820?

Development of markets

Enclosure of commons

Political consolidation and centralization

Decay of religious spirit

Emergence of business infrastructure and tools

Rise of scientific curiosity and invention

Industrial Revolutions

Sources of Labor Productivity Growth

Increases in capital intensity -- equipping workers with more capital

Improvements in labor quality – improving workers' education, health

Technical progress – using labor and capital more efficiently

Specialization and division of labor Reallocating resources to their best use Better management New techniques and products

U.S. Labor	Productivity	Growth ar	nd Its Sou	irces, 194	8-2015				
	Private Nor	n-Farm Bu	isiness Se	ector					
	Avera	ge annual	l rate (%)						
	Time Period								
	1948	1973	1990	1995	2000	2007			
	-1973	-1990	-1995	-2000	-2007	-2015			
Labor productivity	2.9	1.4	1.6	2.9	2.6	1.2			
Sources:									
Labor quality	0.2	0.2	0.5	0.2	0.2	0.3			
Capital intensity	0.9	0.9	0.6	1.2	1.0	0.5			
Technical progress	1.9	0.4	0.5	1.5	1.4	0.4			
Source: Bureau of Labor S	tatistics								

Is the Productivity Slowdown Temporary or Permanent?

Can labor quality be improved at a higher rate?

Can technical progress be accelerated?

NO, Robert Gordon

The Rise and Fall of American Growth, 2016.

Great discoveries have already been made Computers, internet had only temporary impact 1995-2007 Falling behind in education

YES, Erik Brynjolfsson and Andrew McAfee

The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, 2014

Digital era is just beginning to have impact Broad applications of AI and robotics Traditional measure of GDP doesn't capture benefits Digitization is a "recombinant technology"

Some Landmarks of the "Second Machine Age"

1958 Defense Advanced Research Projects Agency (DARPA) founded Internet Automated voice recognition and language translation GPS Stealth technology

2002 DARPA First Grand Challenge \$1M prize to build autonomous vehicle (unclaimed)

2011 ImageNet Challenge Visual recognition contests annually

2011 IBM's Watson beats two best humans in TV game, Jeopardy!

2014 DeepMind's AlphaGo system defeats one of world's champs in Go

2015 DARPA Robotics Challenge

\$3.5M for robots that can drive alone, walk through rubble, trip circuit breakers, turn valves, climb stairs

	Se	elected Ind	dicators of In	ventive Inf	frastructu	re and Act	ivity	
			l link to ak					
			High tech					Scientific
	Broadband	Internet	exports (% of manu-			R&D exp	Researchers	and tech
	subscribers	users	factured	Patent ap	olications	(% of	in R&D	journa
	(per 100)	(per 100)	exports)	Residents	Non-res	GDP)	(per million)	articles
	2015	2015	2015	2014	2014	2013	2010	2013
Canada	36	89	14	4,198	31,283	1.69	4,649	57,797
China	19	50	26	801,135	127,042	2.01	903	401,435
France	41	85	27	14,500	2,033	2.24	3,868	72,555
Germany	37	88	17	48,154	17,811	2.83	4,078	101,074
Japan	30	93	17	265,959	60,030	3.47	5,153	103,377
Korea	40	90	27	164,073	46,219	4.15	5,380	58,844
Netherlands	42	93	20	2,294	288	1.96	3,229	30,412
UK	38	92	21	15,196	7,844	1.66	4,091	97,332
US	32	75	19	285,096	293,706	2.73	3,867	412,542
Source: World Bank.	World Development India	cators, 2017						

Maintaining an Environment Conducive to Technological Progress

Different policies for leader and laggers

Promote education for critical thinking

Establish research communities and centers

Encourage financial support of risky undertakings Venture capital, hedge funds, crowdfunding

Promote openness, decentralization, experimentation, mobility

Balance of big-business and small-scale efforts

Create competitions, prizes, awards for breakthroughs

Welcome the non-conformist, the outsider

END