
Finitary Models of Language Users

In this chapter we consider some of the models and measures that have

been proposed to describe talkers and listeners to describe the users of

language rather than the language itself. As
m
was pointed out at the

beginning of Chapter 12, our language is not merely the collection of our

linguistic responses, habits, or dispositions, just as our knowledge of

arithmetic is not merely the collection of our arithmetic responses, habits,

or dispositions. We must respect this distinction between the person's

knowledge and his actual or even potential behavior; a formal characteri-

zation of some language is not simultaneously a model of the users of that

language.
When we turn to the description of a user, a severe constraint is placed

on our formulations. We have seen that natural languages are not ade-

quately characterized by one-sided linear grammars (finite automata), yet
we know that they must be spoken and heard by devices with bounded

memory. How might this be accomplished ? No automaton with bounded

memory can produce all and only the grammatical sentences of a natural

language; every such device, man presumably included, will exhibit

certain limitations.

In considering models for the actual performance of human talkers

and listeners an important criterion of adequacy and validity must be the

extent to which the model's limitations correspond to our human limita-

tions. We shall consider various finite systems both stochastic and

algebraic with the idea of comparing their shortcomings with those of

human talkers and listeners. For example', the fact that people are able to

produce and comprehend an unlimited variety of novel sentences indicates

immediately that their capacities are quite different from those of an

automaton that compiles a simple list of all the grammatical sentences it

hears. This example is trivial, yet it illustrates the kind of argument we
must be prepared to make.

1. STOCHASTIC MODELS

It is often assumed, usually by workers interested in only one aspect

of communication, that our perceptual models for a listener will be

rather different from any behavioral models we might need for a speaker.
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That assumption was not adopted in our discussion of formal aspects

of linguistic competence, and it will not be adopted here in discussing

empirical aspects of linguistic performance. In proposing models for a

user of language a user who is simultaneously talker and listener

we have assumed instead that the theoretically significant aspects of verbal

behavior must be common to both the productive and receptive functions.

Once a formal theory of communication or language has been con-

structed, it generally turns out to be equally useful for describing both

sources and receivers; in order to describe one or the other we simply

rename various components of the formal theory in an appropriate

fashion. This is illustrated by the stochastic theories considered in this

section.

Stochastic theories of communication generally assume that the array

of message elements can be represented by a probability distribution and

that various communication processes (coding, transmitting, and receiving)

have the effect of operating on that a priori distribution to transform it

according to known transitional probabilities into an a posteriori distribu-

tion. The basic mathematical idea, therefore, is simply the multiplication of

a vector by a matrix. But the interpretation we give to this underlying
mathematical structure differs, depending on whether we interpret it as a

model of a source, a channel, or a receiver. Thus the distinction between

talkers and listeners is in no way critical for the development of the

basic stochastic theory of communication. The same neutrality also

characterizes the algebraic models of the user that are discussed in Sec. 2

of this chapter.

Purely for expository purposes, however, it is often convenient to

present the mathematical argument in a definite context. For that reason

we have arbitrarily chosen here to interpret the mathematics as a model of

the source. This choice should not be taken to mean that a stochastic

theory of communication must be concerned solely, or even principally,
with speakers rather than with transmitters or hearers. The parallel

development of these models for a receiver would be simply redundant,
since little more than a substitution of terms would be involved.

1.1 Markov Sources

An important function of much communication is to reduce the un-

certainty of a receiver about the state of affairs existing at the source. In

such task-oriented communications, if there were no uncertainty about

what a talker would say, there would be no need for him to speak. From
a receiver's point of view the source is unpredictable; it would seem to
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be a natural strategy, therefore, to describe the source in terms of prob-

abilities. Moreover, the process of transmission is often exposed to

random and unpredictable perturbations that can best be described

probabilistically.
The receiver himself is not above making errors; his

mistakes can be a further source of randomness. Thus there are several

valid motives for the development of stochastic theories ofcommunication.

A stochastic theory of communication readily accommodates an

infinitude of alternative sentences. Indeed, there would seem to be far

more stochastic sequences than we actually need. Since no grammatical
sentence is infinitely long, there can be at most only a countable infinitude

of them. In probability theory we deal with a random sequence that

extends infinitely in both directions, past and future, and we consider the

uncountable infinitude of all such sequences that might occur. 2 The events

with which probability theory deals are subsets of this set of all sequences.

A finite stochastic sentence, therefore, must correspond to a finite segment
of the infinite random sequence. A probability measure is assigned to the

space of all possible sequences in such a way that (in theory, at least)

the probability of any finite segment can be computed.
If the process of manufacturing messages were completely random, the

product would bear little resemblance to actual utterances in a natural

language. An important feature of a stochastic model for verbal behavior

is that successive symbols can be correlated that the history of the

message will support some prediction about its future. In 1948 Shannon

revived and elaborated an early suggestion by Markov that the source of

messages in a discrete communication system could be represented by a

stationary stochastic process that selected successive elements of the

message from a finite vocabulary according to fixed probabilities. For

example, Markov (1913) classified 20,000 successive letters in Puskhin's

Eugene Onegin as vowels v or consonants c, then tabulated the frequency

N of occurrences of overlapping sequences of length three. His results are

summarized in Table 1 in the form of a tree.

There are several constraints on the frequencies that can appear in such

a tabulation of binary sequences. For example, N(vc) = N(cv) I,

since the sequence cannot shift from vowels to consonants more often,

1, than it returns from consonants to vowels. In this particular example

the number of degrees offreedom is 2n
~a

,
where n is the length of the string

that is analyzed and 2 is the size of the alphabet.

The tabulated frequencies enable us to estimate probabilities. For

instance, the estimated probability of a vowel is p(v)
= N(v)/N == 0.432.

If successive letters were independent, we would expect the probability of a

vowel following a consonant p(v \
c) to be the same as the probability of a

2 We assume that the stochastic processes we are studying are stationary.
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vowel following another vowel p(v \
v), and both would equal p(v). The

tabulation, however, yields p(v
\
c)
= 0.663, which is much larger than

p(u), and p(v
\
v)
= 0.128, which is much smaller. Clearly, Russian

vowels are more likely to occur after consonants than after vowels.

Newman (1951) has reported further data on the written form of several

languages and has confirmed this general tendency for vowels and con-

sonants to alternate. (It is unlikely that this result would be seriously

affected if the analyses had been made with phonemes rather than with

written characters.)

Table 1 Markov's Data on Consonant-Vowel Sequences in Pushkin's

Eugene Onegin

N(vvv) = 115) =
N(vvc) = 989] .

;

\. N(v) = 8,638

N(vcv) = 42121

*r/ x o^l N(vc)=7534
N(vcc) = 3322!

-N = 20,000
N(cvv) = 9891 -

xr/ x ***} N(CV)=1534
N(cvc) = 65451

[ #(c) = 1 1,362

N(ccv) = 33221

*<*)- 505J
"*>-3827j

Inspection ofthe message statistics in Table 1 reveals that the probability
of a vowel depends on more than the one immediately preceding letter.

Strictly speaking, therefore, the chain is not Markovian, since a

Markov process has been defined in such a way (cf. Feller, 1957) that all

of the relevant information about the history of the sequence is given when
the single, immediately preceding outcome is known. However, the

Markovian representation is readily projected to handle more complicated
cases. We shall consider how this can be done.

But first we must clarify what is meant by a Markov source. Given a
discrete Markov process with a finite number of states vQ9 . . .

,
VD and a

probability measure
/LL,

a Markov source is constructed by defining
y {v& > VD} to be the vocabulary; messages are formed by con-

catenating the names of the successive states through which the system
passes. In the terms used in Sec. 1.2 of Chapter 12 a Markov source is a

special type of finite state automaton in which the triples that define it are
all of the form

(z,y, and in which the control unit has access to the con-
ditional probabilities of all state transitions.

In Sec. 2 of Chapter 1 1
,
a state was defined as the set of all initial strings

that were equivalent on the right. This definition must be extended for
stochastic systems, however. We say that all the strings that allow the same
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continuations with the same probabilities are stochastically equivalent on
the right; then a state of a stochastic source is the set of all strings that are

stochastically equivalent on the right.

Ifwe are given a long but arbitrary sequence of symbols and wish to test

whether it comprises a Markov chain, we must proceed to tabulate the

frequencies of the possible pairs, triplets, etc. Our initial (Markovian)

hypothesis in this analysis is that the symbol occurring at any given time

can be regarded as the name of the state that the source is in at that time.

Inspection of the actual sequence, however, may reveal that some of the

hypothesized states are stochastically equivalent on the right (all possible
continuations are assigned the same probabilities in both cases) and so

can be parsimoniously combined into a single state. This reduction in the

number of states implies that the state names must be distinguished from
the terminal vocabulary. We can easily broaden our definition of a Markov
source to include these simplified versions by distinguishing the set of

possible states {SQ , Sl9 . . .
,
Sm} from the vocabulary (u ,

vl9 . . .
,
VD}.

Since human messages have dependencies extending over long strings
of symbols, we know that any pure Markov source must be too simple for

our purposes. In order to generalize the Markov concept still further,

therefore, we can introduce the following construction (McMillan, 1953):

given a Markov source with a vocabulary F, select some different vocab-

ulary W and define a homomorphic mapping of V into W. This mapping
will define a new probability measure. The new system is a projection of a

Markov source, but it may not itself be Markovian in the strict sense.

Definition I . Given a Markov source with vocabulary V = {v , . . . , i;^},

with internal states SQ ,
. . .

,
Sm , and with probability measure p, a new

source can be constructed with the same states but with vocabulary W
and derivedprobability measure //, where Wj e W ifand only if there is a

v
i
G V, and a mapping 6 such that 0(uJ = wr Any source formedfrom

a Markov source by this construction is a projected Markov source.

The effect of this construction is best displayed by an example. Consider

the Markov source whose graph is shown in Fig. 1 and assume that

appropriate probabilities are assigned to the indicated transitions, all

other conceivable transitions having probability zero. The vocabulary
is V = {1,2,3,4}, and each symbol names the state that the system
is in after that symbol occurs. We shall consider three different ways
to map V into an alternative vocabulary according to the construction in

Definition 1 :

1. Let 0(1)
=

0(4)
= v and 0(2) = 0(3) = c. Then the projected system

is a higher order Markov source of the type required to represent the

probabilities of consonant-vowel triplets in Table 1. Under this con-

struction we would probably identify state 1 as [vv], state 2 as [vc], state 3
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Fig. 1 . Graph of a Markov source.

as [cc], and state 4 as [cv], thus retaining the convention of naming states

after the sequences that lead into them, but now with the non-Markovian

stipulation that more than one preceding symbol is implicated. In the

terminology ofChapter 12, we are dealing here with a fc-limited automaton,
where k = 2.

2. Let (9(1)
=

(9(2)
= a and 6(3) = 6(4) = b. Then the projected system

is ambiguous : an occurrence of a may leave the system in either state 1

or state 2; an occurrence of b may leave it in either state 3 or state 4.

The states cannot be distinctively named after the sequences that lead into

them.

3. Let 6(1)
= -1, 6(2) = 6(4) = 0, and (9(3)

= +1. With this

projection we have a non-Markovian example mentioned by Feller

(1957, p. 379). Ifwe are given a sequence of independent random variables

that can assume the values 1 with probability , we can define the moving
average of successive pairs, Xn = (Yn + Yn+I)/2. The sequence of values
ofXn is non-Markovian for an instructive reason

; given a consecutive run
of Xn

= 0, how it will end depends on whether it contains an odd or an
even number of O's. After a run of an even number of occurrences of
Xn
= the run must terminate as it began; after an odd number the run

must terminate with the opposite symbol from the one with which it started.

Thus it is necessary to remember how the system got into each run of O's

and how long the run has been going on. But, since there is no limit to

how long a run of O's may be, this system is not Jk-limited for any k. Thus
it is impossible to produce the moving average by a simple Markov source
or even by a higher order (^-limited) Markov process (which still must have
finite memory), but it is quite simple to produce it with the projected
Markov source constructed here.

By this construction, therefore, we can generalize the notion ofa Markov
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source to cover any kind of finite state system (regular event) for which a

suitable probability measure has been defined.

Theorem I. Any finite state automaton over which an appropriate prob-

ability measure is defined can serve as a projected Markov source.

Given any finite state automaton with an associated probability measure,

assign a separate integer to each transition. The set of integers so assigned
must form the vocabulary of a Markov source, and the rule of assignment
defines a homomorphic mapping into a projected Markov source. This

formulation makes precise the sense in which regular languages can be said

to have Markovian properties.

All of our projected Markov sources will be assumed to operate in real

time, from past to future, which we conventionally denote as left to right.

Considered as rewriting systems, therefore, they contain only right-

branching rules of the general form A > a, where A and B correspond to

states of the stochastic system. The variety of projected Markov sources

is, of course, extremely large, and only a few of the many possible types
have been studied in any detail. We shall sample some of them in the

following sections.

These same ideas could have been developed equally well to describe a

receiver rather than a source. A projected Markov receiver is one that will

accept as input only those strings of symbols that correspond to possible

sequences of state transitions and that, through explicit agreement with

the source or through long experience, has built up for each state an

estimate of the probabilities of all possible continuations. As we have

already noted, once the mathematical theory is fixed its specialization as a

model for either the speaker or the hearer is quite simple. We are really

concerned with ways to characterize the user of natural languages; the

fact that we have here pictured him as a source is quite arbitrary.

1.2 A:-Limited Stochastic Sources

One well-studied type of projected Markov source is known generally as

a higher order, or ^-limited, Markov source, which generates a (k + 1)-

order approximation to the sample of text from which it is derived. The

states of the fc-limited automaton are identified with the sequences of k

successive symbols leading into them, and associated with each state is a

probability distribution defined over the D different symbols of the

alphabet. If there are D symbols in the alphabet, then a fc-limited stochas-

tic source will have (potentially) D
k different states. A O-limited stochastic

source has but one state and generates the symbols independently.

If k is small and if we consider an alphabet of only 27 characters (26
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letters and a space), It is possible to estimate the transitional probabilities

for a ^-limited stochastic source by actually counting the number of

(k + l)-tuplets of each type in a long sample of text. If we use these

tabulations, it is then possible to produce (k + l)-order approximations
to the original text by drawing successive characters according to the

probability distribution associated with the state determined by the string

of k preceding characters. It is convenient to define a zero-order approxi-
mation as one that uses the characters independently and equiprobably;
a first-order approximation uses the characters independently; a second-

order approximation uses the characters with the probabilities appropriate
in the context of the immediately preceding letter; etc.

An impression of the kind of approximations to English that these

sources produce can be obtained from the following examples, taken

from Shannon (1948). In each case the (k + l)th symbol was selected

with probability appropriate to the context provided by the preceding k

symbols.

1. Zero-order letter approximation (26 letters and a space, independent
and equiprobable): XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGHYDQPAAMKBZAACIBZLHJQD.

2. First-order letter approximation (characters independent but with

frequencies representative of English): OCRO HLI RGWR NMIELWIS
EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL.

3. Second-order letter approximation (successive pairs ofcharacters have

frequencies representative ofEnglish text) : ON IE ANTSOUTINYS ARE
T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY- TOBE SEACE CTISBE.

4. Third-order letter approximation (triplets have frequencies repre-
sentative of English text): IN NO 1ST LAT WHEY CRATICT FROURE
BIRS GROCID PONDENOME OF DEMONSTURES OF THE
REPTAGIN IS REGOACTIONA OF CRE.

A ^-limited stochastic source can also be defined for the words in the

vocabulary V in a manner completely analogous to that for letters of the

alphabet A. When states are defined in terms of the k preceding words,
the following kinds of approximations are obtained :

5. First-order word approximation (words independent, but with

frequencies representative of English): REPRESENTING AND
SPEEDILY IS AN GOOD APT OR CAME CAN DIFFERENT NAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY
COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation (word-pairs with frequencies
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representative of English): THE HEAD AND IN FRONTAL ATTACK
ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS
POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED.

The following two illustrations are taken from Miller & Selfridge (1950).

7. Third-order word approximation (word-triplets with frequencies

representative of English): FAMILY WAS LARGE DARK ANIMAL
CAME ROARING DOWN THE MIDDLE OF MY FRIENDS LOVE
BOOKS PASSIONATELY EVERY KISS IS FINE.

8. Fifth-order word approximation (word quintuplets with frequencies

representative of English): ROAD IN THE COUNTRY WAS INSANE
ESPECIALLY IN DREARY ROOMS WHERE THEY HAVE SOME
BOOKS TO BUY FOR STUDYING GREEK.

Higher-order approximations to the statistical structure of English have

been used to manipulate the apparent meaningfulness of letter and word

sequences as a variable in psychological experiments. As k increases, the

sequences of symbols take on a more familiar look and although they
remain nonsensical the fact seems to be empirically established that they
become easier to perceive and to remember correctly.

We know that the sequences produced by /^-limited Markov sources

cannot converge on the set of grammatical utterances as k increases

because there are many grammatical sentences that are never uttered and

so could not be represented in any estimation of transitional probabilities.

A ^-limited Markov source cannot serve as a natural grammar of English

no matter how large k may be. Increasing k does not isolate the set of

grammatical sentences, for, even though the number of high-probability

grammatical sequences included is thereby increased, the number of low-

probability grammatical sequences excluded is also increased correspond-

ingly. Moreover, for any finite k there would be ungrammatical sequences

longer than k symbols that a stochastic user could not reject.

Even though a A>limited source is not a grammar, it might still be

proposed as a model of the user. Granted that the model cannot isolate

the set of all grammatical sentences, neither can we; inasmuch as our

human limitations often lead us into ungrammatical paths, the real test

of this model of the user is whether it exhibits the same limitations that

we do.

However, when we examine this model, not as a convenient way to sum-

marize certain statistical parameters of message ensembles, but as a seri-

ous proposal for the way people create and interpret their communicative
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utterances, it is all too easy to find objections. We shall mention only
one, but one that seems particularly serious: the ^-limited Markov
source has far too many parameters (cf. Miller, Galanter, & Pribram,

1960, pp. 145-148). As we have noted, there can be as many as Dk

probabilities to be estimated. By the time k grows large enough to give
a reasonable fit to ordinary usage the number of parameters that must be

estimated will have exploded; a staggering amount of text would have to

be scanned and tabulated in order to make reliable estimates.

Just how large must k and D be in order to give a satisfactory model?
Consider a perfectly ordinary sentence: Thepeople who called and wanted
to rent your house -when you go away next year arefrom California. In this

sentence there is a grammatical dependency extending from the second
word (the plural subject people) to the seventeenth word (the plural verb

are). In order to reflect this particular dependency, therefore, k must be at

least 15 words. We have not attempted to explore how far k can be

pushed and still appear to stay within the bounds of common usage, but
the limit is surely greater than 15 words

;
and the vocabulary must have at

least 1000 words. Taking these conservative values of A: and D, therefore,
we have Dk = 1045 parameters to cope with, far more than we could esti-

mate even with the fastest digital computers.
Of course, we can argue that many of these 1045 strings of 15 words

whose probabilities must be estimated are redundant or that most ofthem
have zero probability. A more realistic estimate, therefore, might assume
that what we learn are not the admissible strings of words but rather the

"sentence frames" the admissible strings of syntactic categories.

Moreover, we might recognize that not all sequences of categories are

equally likely to occur; as a conservative estimate (cf. Somers, 1961),
we might assume that on the average there would be about four alternative

categories that might follow in any given context. By such arguments,
therefore, we can reduce D to as little as four, so that Dk becomes 415 = 109

.

That value is, of course, a notable improvement over 1045 parameters, yet,
when we recall that several occurrences of each string are required before
we can obtain reliable estimates of the probabilities involved, it becomes

apparent that we still have not avoided the central
difficulty an enormous

amount of text would have to be scanned and tabulated in order to provide
a satisfactory empirical basis for a model of this type.
The trouble is not merely that the statistician is inconvenienced by an

estimation problem. A learner would face an equally difficult task. If
we assume that a ^-limited automaton must somehow arise during child-

hood, the amount of raw induction that would be required is almost
inconceivable. We cannot seriously propose that a child learns the values
of 109

parameters in a childhood lasting only 108 seconds.
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1.3 A Measure of Selective Information

Although the direct estimation of all the probabilities involved in a

A>limited Markov model of the language user is impractical, other statistics

of a more general and summary nature are available to represent certain

average characteristics of such a source. Two of these with particular

interest for communication research are amount of information and

redundancy. We introduce them briefly and heuristically at this point.

The problem of measuring amounts of information in a communication

situation seems to have been posed first by Hartley (1928). If some

particular piece of equipment a switch, say, or a relay has D possible

positions, or physical states, then two of the devices working together

can have D2
states, three can have .D3 states altogether, etc. The number of

possible states of the total system increases exponentially as the number

of devices increases linearly. In order to have a measure of information

that will make the capacity of 2n devices just double the capacity of n

of them, Hartley defined what we now call the information capacity of a

device as log D, where D is the number of different states the total system

can get into. Hartley's proposal was later generalized and considerably

extended by Shannon (1948) and Wiener (1948).

When applied to a communication channel, Hartley's notion of capacity

refers to the number of different signals that might be transmitted in a unit

interval oftime. For example, let N(T) denote the total number of different

strings exactly T symbols long that the channel can transmit. Let D be the

number of different states the channel has available and assume that there

are no constraints on the possible transitions from one state to another.

Then N(T) = DT
,
or

_ ^

which is Hartley's measure of capacity. In case there are some con-

straints on the possible transitions, N(T) will still (in the limit) increase

exponentially but less rapidly. In the general case, therefore, we are led

to define channel capacity in terms of the limit:

r m
channel capacity = hm . (1)

T-"oo T

This is the best the channel can do. If a source produces more information

per symbol on the average, the channel will not be able to transmit it all

not, at least, in the same number of symbols. The practical problem,
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therefore, is to estimate N(T) from what we know about the properties of

the channel.

Our present goal, however, is to see how Hartley's original insight has

been extended to provide a measure of the amount of information per

symbol contained in messages generated by stochastic devices of the sort

described in the preceding sections of this chapter. We shall confine our

discussion here to those situations in which the purpose of communication

is to reduce a receiver's uncertainty. The amount of information he

receives, therefore, must be some function of what he learns about the

state of the source. And what he learns will depend on how ignorant he

was to begin with. Let us assume that the source selects its message by

any procedure, random or deterministic, but that all the receiver knows in

advance is that the source will choose among a finite set of mutually exclu-

sive messagesMl9M2 ,
. . . 9MDwih probabilitiesp(MJ,p(M^) 9

. . . ,p(MD\
where these probabilities sum to unity. What Shannon and Wiener did

was to develop a measure H(M} of the receiver's uncertainty, where the

argument M designates the choice situation:

M2 ,
. . .

,
MD \

p(Ma), -
, p(MD)J .

When the particular message is correctly received, a listener's uncertainty

about it will be reduced from H(M) to zero; therefore, the message

conveyed H(M) units of information. Thus H(M) is a measure of the

amount of information required (on the average) to select Aff
when faced

with the choice situation M.
We list as assumptions a number of properties that intuition says a

reasonable measure of uncertainty ought to have for discrete devices.

Then, following a heuristic presentation by Khmchin (1957), we shall

use those assumptions to develop the particular H of Shannon and

Wiener.

Our first intuitive proposition is that uncertainty depends only on what

might happen. Impossible events will not affect our uncertainty. If a

particular message Mt
is known in advance to have p(M^ = 0, it should

not affect the measure H in any way ifM
i
is omitted from consideration.

Assumption !. Adding any number of impossible messages to M does not

change H(M):

H(
M ' MP! M

H=H(
MI MI

o / \P(MI), . . .
, P(MD),

Our second intuition is that people are most uncertain when the alter-

native messages are all equally probable. Any bias that makes one message
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more probable than another conveys information in the sense that it

reduces the receiver's total amount of uncertainty. With only two alter-

native messages, for example, a 50 : 50 split presents the least predictable

situation imaginable. Since there are D different messages in M, when they
are equiprobable p(Mz) = l/D for all L

Assumption 2. H(M) is a maximum when all the messages in M are

equiprobable:

J M15 ..., MD \ <H (

Mi> '> MA
\p(MJ, . . .

, p(Mj
^

\1/D, , . .
, l/D/.

Now let L(D) represent the amount of uncertainty involved when all

the messages are equiprobable. Then we have, by virtue of our two

assumptions,

l/D, ..., l/D,

Mls ..., Mw
U/D + 1, ..., 1/D + l

Therefore, we have established the following lemma:

Lemma I. L(D) is a monotonic increasing function of D.

That is to say, when all D of the alternative messages in M are equiprob-

able H(M)i$ a nondecreasing function of D. Intuitively, the more different

things that can happen, the more uncertain we are.

It is also reasonable to insist that the uncertainty associated with a

choice should not be affected by making the choice in two or more steps,

but should be the weighted sum of the uncertainties involved in each step.

This critically important assumption can be stated:

Ass u m pt io n 3 . H(M) is additive.

Let any two events ofM be combined to form a single, compound event,

which we designate as Mx U M2 and which has probabilityp(M1 u M2)
=

p(M1) + p(M2). Thus we can decompose M into two parts :

/i U M2 ,

M' = '

and

/
Mx ,

M" =

A choice from M is equivalent to a choice fromM 1

followed (ifM1 U M2

is chosen) by a choice from M". Assumption 3 means that H(M) depends
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on the sum of H(M') and H(M"). In calculating H(M) 9 however, H(M")
should be weighted by p(M^) + p(M^ because that represents the prob-

ability that a second choice will be required. Assumption 3 implies that

H(M) = H(M'}

If this equation holds whenever two messages ofM are lumped together,
then it can easily be generalized to any subset whatsoever, and it can be
extended to more than one subset of messages in M.

In order to discuss this more general situation, we represent the messages
in M by M& where i is the first selection and j is the second. The first

selection is made from A :

1 AK . . .
, Ar

A =

where

and the second choice depends (as before) on the outcome of the first;

that is to say, the second choice is made from

I ,
^ BS

B A,- =

The Bj have probabilities p(By
-

\
A^ that depend on A

i9 the preceding
choice from A. The two choices together are equivalent to are a decom-

position of a single choice from M, where

A
i
B

j
=

and

Now, by Assumption 3, H(M) should be the sum ofthe two components.
But that is a bit complicated, since H(B

\

A
z) is a random variable depend-

ing on f. On the average, however, it will be

E{H(B
| 4)} = | p(4) H(B

|
^) = H(B

\
A). (2)

In this situation, therefore, the assumption of additivity means that

H(M) = H(AE) = H(A) + H(B
\
A). (3)

Of course, if A and B are independent, Eq. 3 becomes

H(AB) = H(A) + H(B\ (4)
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and, if the messages are independent and equally probable, a sequence of s

successive choices among D alternatives will give

(5)

We shall now establish the following lemma:
Lemma 2. L(D) = k log D, where k > 0.

Consider repeated independent choices from the same number D of

equiprobable messages. Select m such that for any positive integers Z), s, t

Dm < 5* < Dm+I
(6)

m log D < f log s < (m + 1) log D

t logD t
^ }

From Eq. 6, and the fact that L(D) is monotonic increasing, it follows that

L(D
m
) < LOO <

and from Eq. 5 we know that

m L(D) < * L(5) < (m

Combining Eqs. 7 and 8, therefore,

log

Since m is not involved, / can be chosen arbitrarily large, and

= L(D)

log s log D

Moreover, since D and ^ are quite arbitrary, these ratios must be constant

independent of D; that is to say,

^^ =
fc, so L(D) = fc log Z).

log D
Of course, log D is nonnegative and therefore [since L(D) is monotonic

increasing]* A: > 0. This completes the proof of Lemma 2.

Ordinarily k is chosen to be unity when logarithms are taken to the

base 2,

L(D) = Iog2 D, (9)

that is to say, the unit of measurement is taken to be the amount of

uncertainty involved in a choice between two equally possible alternatives.

This unit is called a bit.
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Next consider the general case with unequal, but rational, probabilities.
Let

g

where the gi
are all positive integers and

2 Si
=

g-
i

The problem is to determine H(A). In order to do this, we shall construct

a second choice situation (B
\

A
t) in a special way so that the Cartesian

product M = A x B will consist entirely of equiprobable alternatives.

Let (B
\
A^ consist ofgi messages each with probability l/git Therefore,

H(B
|
Ad = H '= L(ft) = c log ft. (10)

U/ft, . . . , I/ft/

From Eqs. 2 and 10 it follows that

log

= c log g + c 2 X4) log p(At) . (11)
i

Consider next the compound choice M = A x B. Since

p(Ai
B

j)
= p(^*)X^

I
4) = - ' - = ~

,

it must follow that for this specially contrived situation there are g equally

probable events and

H(A *B) = H(AB) = L(g) = c log g, (12)

When we substitute Eqs. 11 and 12 into Eq. 3 we obtain

c log g = H(A) + c log g + c 2 p(Ai) log X4-)-

We have now established the theorem:

Theorem 2. For rational probabilities,

(13)

Since Eq. 13 can be interpreted as the mean value E{logp(AJ}> the
measure of uncertainty thus turns out to be the mean logarithmic prob-
abilitya quantity familiar to physicists under the name entropy. It is as
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though we had defined the amount of information in message A i to be

-logX^)> regardless of what the probability distribution might'be for

the other messages. The assumption that the amount of information

conveyed by one particular message is independent of all the other possible

messages is what Luce (1960) has called the assumption of independence
from irrelevant alternatives; he remarks (Luce, 1959) that it is characteris-

ticeither explicitly or implicitly of most theories of choice behavior.

Finally, in order to make H(B) a continuous function ofthe probabilities,
we need a fourth assumption of continuity. Since it is felt intuitively that

a small change in probabilities should result in a small change in H(M}>
this final assumption needs little comment here. It will not play a critical

role in the discussion that follows.

Next, we want to use H to measure the uncertainty associated with the

projected Markov sources. Suppose we have a stationary source with a

finite number of states A l9 . . .
, A n , with an alphabet Bl9 . . . , BD , and

with the matrix of transitional probabilities p(Bt
\

A
t). When the system

is in state A i9
the choice situation is

.BA
i
=

P(BD

By Theorem 2 the amount of information involved in this choice must be

H(B | AJ = -c I p(B, | 4) log p(B,
|
A}>.

3

This quantity is defined for each state. In order to obtain an average value

to represent the amount of information that we can expect for the source,

regardless of the state it is in, we must average over /:

= -'22 X^. By) log P&i
|
4) = H(B

\
A). (14)

i 3

Now we can regard H(B \
A) as a measure of the average amount of infor-

mation obtained when the source moves one step ahead by choosing

a letter from the set {Bt}. [In the special case in which successive events in

the chain are independent, of course, H(B
\
A) reduces to #(#).] A string

ofN successive choices, therefore, will yield NH(B \
A) units of information

on the average.

In general, H(AB) < H(A) + H(B)\ equality obtains only when A
and B are independent. This fact can be demonstrated as follows : the

familiar expansion

f = l + x + + +... 9 (x > -1),
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can be used to establish that e* > 1 + x. If we set t = 1 + x
9 this

inequality can be written as

f - 1 > loge t, (t > 0).

Now put / = p(A:)p(Bj)/p(A iB^:

P(A
?A

P(
? - l > lo%* P^ + ^ge p(B,)

-
log, p(Ai

B
i\

P(Ai&j)

and take expected values over the distribution p(A i
B

3) :

^) log.
ii i i

+
i i

-IIp(Ai
B

i)logeP(Ai
B

i),

3 i

SO

1 - 1 > -H(A) - H(B) + H(AB),

which is the result we wished to establish:

H(A) + H(B)^H(AB). (15)

If we compare Eq. 15 with the assumption of additivity expressed in

Eq. 3, we see that we have also established the following theorem:

Theorem 3. H(S) > H(B
\
A). (16)

This important inequality can be interpreted to mean that knowledge
of the choice from A cannot increase our average uncertainty about the

choice from B. In particular, if A represents the past history of some

message and B represents the choice of the next message unit, then the

average amount of information conveyed by B can never increase when
we know the context in which it is selected.

It is important to remember that H is an average measure of selective

information, based on the assumption that the improbable event is always
the most informative, and is not a simple measure of semantic information

(of. Carnap & Bar-Hillel, 1952). An illustration may suggest the kind of

problems that can arise: in ordinary usage It is a man will generally be

judged to convey more information than It is a vertebrate, because the
fact that something is a man implies that it is a vertebrate, but not vice
versa. In the framework of selective information theory, however, the
situation is reversed. According to the tabulations of the frequencies of

English words, vertebrate is a less probable word than man, and its selection
in English discourse must therefore be considered to convey more informa-
tion.
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Because many psychological processes involve selective processes of one

kind or another, a measure of selective information has proved to be of

some value as a way to characterize this aspect of behavior. Surveys of

various applications of information measures to psychology have been

prepared by Attneave (1959), Cherry (1957), Garner (1962), Luce (1960),

Miller (1953), Quastler (1955), and others. Not all applications of the

mean logarithmic probability have been carefully considered and well

motivated, however. As Cronbach (1955) has emphasized, in many
situations it may be advisable to develop alternative measures of informa-

tion based on intuitive postulates that are more closely related to the

particular applications we intend to make.

1.4 Redundancy

Since H(B) > H(B
\
A), where equality holds only for sequentially

independent messages, any sequential dependencies that the source

introduces will act to reduce the amount of selective information the

message contains. The extent to which the information is reduced is a

general and interesting property of the source. Shannon has termed it the

redundancy and has defined it in the following way.

First, consider the amount of information that could be encoded in the

given alphabet (or vocabulary) if every atomic symbol were used inde-

pendently and equiprobably. If there are D atomic symbols, then the

informational capacity of the alphabet will be L(D) = Iog2 D bits per

symbol. Moreover, this value will be the maximum possible with that

alphabet. Now, if we determine that the source is producing an amount

H(M) that is actually less than its theoretical maximum per symbol,

H(M)/L(D) will be some fraction less than unity that will represent the

relative amount of information from the source. One minus the relative

information is the redundancy:

(H(M)\
1 -

1 . (17)
logD/

The relative amount of information per symbol is a measure of how

efficiently the coding alphabet is being used. For example, if the relative

information per symbol is only half what it might be, then on the average

the messages are twice as long as necessary. Shannon (1948), on the basis

of his observation that a highly skilled subject could reconstruct passages

from which 50% of the letters had been removed, estimated the efficiency

ofnormal English prose as something less than 50 %. But, when Chapanis

(1954) tried to repeat this observation with other subjects and other pas-

sages, he found that if letters are randomly deleted and the text is shortened
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so that no indication is given of the location of the deletion few people
are able to restore more than 25 % of the missing letters in a short period
of time. However, these are difficult conditions to impose on subjects. In

order to estimate the coding efficiency of English writing, we should first

make every effort to optimize the conditions for the person who is trying to

reconstruct the text. For example, we might tell him in advance that all

spaces between words and all vowels have been deleted. This form of

abbreviation shortens the text by almost 50 %, yet Miller and Friedman

(1957) found that the most highly skilled subjects were able to restore

the missing characters if they were given sufficient time and incentive to

work at the task. We can conclude, therefore, that English is at least

50% redundant and perhaps more.

Why do we bother with such crude bounds? Why not compute re-

dundancy directly from the message statistics for printed English? As
we noted at the end of Sec. 1.2, the direct approach is quite impractical,

for there are too many parameters to be estimated. However, we can put
certain rough bounds on the value of H by limiting operations that use

the available message statistics directly for short sequences of letters in

English (Shannon, 1948). Let/?(^.) denote the probability of a string x
i

of k symbols from the source and define

G*=--rk
where the sum is taken over all strings x

i containing exactly k symbols.
Then G> will be a monotonic decreasing function of k and will approach
H in the limit.

An even better estimate can be obtained with conditional probabilities.

Consider a matrix P whose rows represent the Dk
possible strings xi

ofk

symbols and whose columns represent the D different symbols a^ The

elements of the matrix are p(all
\
x^, the conditional probabilities that a

s

will occur as the (k + l)st symbol given that the string x
i
of k symbols

just preceded it. For each row of this matrix

measures our uncertainty regarding what will follow the particular string

x
t . The expected value of this uncertainty defines a new function,

fw-i = -22 P(*i) P(<*s I
*<) loS2 P(<*s

|
Xi), (19)

i 3

where p(x^ is the probability of string x . Since p(x^p(as
\

xi)
=XaW)

we can show that

FM = (k+ l)Gk+l
- kGk

1
- Gk) + Gk .
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Therefore, as Gk approaches H9 Fk must also approach H. Moreover,

IL , *
'

so we know that

Ok > Fk .

Thus Fk converges on H more rapidly than Gk as increases.

Even F (and similar functions using the message statistics) converges

quite slowly for natural languages, so Shannon (1951) proposed an

estimation procedure using data obtained with a guessing procedure. We
consider here only his procedure for determining an upper bound for H
(and thus a lower bound for the redundancy).

Imagine that we have two identical ^-limited automata that incorporate

the true probabilities of English strings. Given a finite string ofk symbols,

these devices assign the correct probabilities for the (k + l)st symbol.

The first device is located at the source. As each symbol of the message
is produced, the device guesses what the next symbol will be. It guesses

first the most probable symbol, second the next most probable, and so on,

continuing in this way until it guesses correctly. Instead of transmitting

the symbol produced by the source, we transmit the number of guesses

that the device required.

The second device is located at the receiver. When the number j is

received, this second device interprets it to mean that theyth guess (given

the preceding context) is correct. The two devices are identical and the

order of their guesses in any context will be identical; the second machine

decodes the received signal and recovers the original message. In that way
the original message can be perfectly recovered, so the sequence of numbers

must contain the same information therefore no less an amount

of information as the original text. If we can determine the amount of

information per symbol for the reduced text, we shall also have determined

an upper bound for the original text.

What will the reduced text look like? We do not possess two such

fc-limited automata, but we can try to use native speakers of the language

as a substitute. Native speakers do not know all the probabilities we need,

but they do know the syntactic and semantic rules which lead to those

probabilities. We can let a person know all of the text up to a given point,

then on the basis of that and his knowledge of the language ask him to

guess the next letter. Shannon (1951) gives the following as typical of

the results obtained:

THERE#IS#NO#REVERSE#ON#A#...
11151 121121 1151 17 1112132122...
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The top line is the original message; below it is the number of guesses

required for each successive letter.

Note that most letters are guessed correctly on the first trial approxi-

mately 80% when a large amount of antecedent context is provided. Note

also that in the reduced text the sequential constraints are far less impor-

tant; how many guesses the nth letter took tells little about how many will

be needed for the (n + l)st. It is as if the sequential redundancy of the

original text were transformed into a nonsequential favoritism for small

numbers in the reduced text. Thus we are led to consider the quantity

*+i
= - 2 fcG') Iog2 &0)> (20)

i=l

where qk(j) is the probability of guessing the (k + l)st letter of a string

correctly on exactly theyth guess. Ifk is large, and if our human subject is a

satisfactory substitute for the ^-limited automaton we lack, then Ek

should be fairly close to H.

Can we make this idea more precise? Suppose we reconsider the

Dk x D matrix P whose elements p(aj \
x^ are the conditional probabili-

ties of sybmol a^ given the string x
t

. What the ^-limited automaton will

do when it guesses is to map a
s
into the digit 6(a^ for each row, where the

character with the largest probability in the row would be coded as 1,

the next largest as 2, and so on. Consider, therefore, a new Dk x D
matrix Q whose rows are the same but whose columns represent the first

D digits in order. Then in every row of this new matrix the conditional

probabilities q[0(a^) \

x
t] would be arranged in a monotonically decreasing

order of magnitude from left to right. Note that we have lost nothing in

shifting from P to Q ;
6 has an inverse, so Fk can be computed from Q just

as well as from P.

Now suppose we ignore the context a^; that is to say, suppose we

simply average all the rows of Q together, weighting them according to

their probability of occurrence. This procedure will yield qk(j\ the average

probability of being correct on they'th guess. From Theorem 3 we know
that Fk < Ek . Therefore, Ek must also be an upper bound on the amount
of information per symbol.

Moreover, this bound holds even when we use a human substitute for

out hypothetical automaton, since people can err only in the direction of

greater uncertainty (greater Ek) than would an ideal device. We can

formulate this fact rigorously: suppose the true probabilities of the

predicted symbols are pi but that our subject is guessing on the basis of

some (not necessarily accurate; cf. Toda, 1956) estimates piy derived

somehow from his knowledge of the language and his previous experience
with the source. Let Sp^ = S^i

=
1, and consider the mean value of the
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quantity a
t
= A//V From the well-known theorem of the arithmetic and

geometric means (see, e.g., Hardy, Littlewood, & Polya, 1952, Chapter 2),

we know that . , , . ^
(flO'i . . . (o^* <^ + . . . + JP^,

from which we obtain, directly

with equality only ifpi
=

/^. for all f. Taking logarithms,

which gives the desired inequality

-2 Pi loS A > -2 ft log ft. (21)

Any inaccuracy in the subject's estimated probabilities can serve only to

increase the estimate of the amount of information. The more ignorant
he is, the more often the source will surprise him.

The guessing technique for estimating bounds on the amount of selective

information contained in redundant strings of symbols can be performed

rapidly, and the bounds are often surprisingly low. The technique has

been useful even in nonlinguistic situations.

Shannon's (1951) data for a single, highly skilled subject gave 100
= 1.3

bits per character. For a 27-character alphabet the maximum possible
would be Iog2 27 = 4.73 bits per character. The lower bound for the

redundancy, therefore, is 1 (1,3/4.73) = 0.73. This can be interpreted
to mean that, for the type of prose passages Shannon used, at least 73

of every 100 characters on the page could have been deleted if the same

alphabet had been used most efficiently, that is, if all the characters were

used independently and equiprobably. Burton and Licklider (1955)

confirmed this result and added that Ek has effectively reached its asymp-
tote by k = 32; that is to say, measurable effects of context on a person's

guesses do not seem to extend more than 32 characters (about six words)
back into the history of the message.
The lower bound on redundancy depends on the particular passage

used. In some situations air-traffic-control messages to a pilot landing at

a familiar airport redundancy may rise as high as 96 % (Frick & Sumby,
1952; Fritz &Grier, 1955).

1.5 Some Connections with Grammaticalness

In Sec. 3 of Chapter 11 we mentioned the difficult problem of assigning

degrees of grammaticalness to strings in a way that would reflect the
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manner and extent of their deviation from well-formedness in a given

language. Some of the concepts introduced in the present chapter suggest

a possible approach to this problem.
3

Suppose we have a grammar G that generates a fairly narrow (though,

of course, infinite) set L(G) of well-formed sentences. How could we

assign to each string not generated by the grammar a measure of its

deviation in at least one of the many dimensions in which deviation can

occur? We might proceed in the following way: select some unit for

concreteness, let us choose word units and, for convenience, let us not

bother to distinguish in general between different inflectional forms (e.g.,

between find, found, finds). Next, set up a hierarchy # of classes of these

units, where ^ = ^15 . . .
, ^v ,

and for each i < N

%i = (CV, . . .
, C^\ where: a > a2 > . . . > ax = 1,

Cf is nonnull,

for each word w, there is a j such that

w E C/,
and C/ s Cy if and only ifj = k. (22)

#! is the most highly differentiated class of categories; %N contains but a

single category. Other conditions might be imposed (e.g., that ĉ
i
be a

refinement of ^i+j), but Condition 22 suffices for the present discussion.

^ is called the categorization of order i; its members are called cate-

gories of order L A sequence C
bi
\ . . .

,
Cbj of categories of order i is

called a sentence-form of order /; it is said to generate the string of words

Wj. . . . WQ if, for each j < q,
\^

j
e Cb \ Thus the set of all word strings

generated by a sentence-form is the complex (set) product of the sequence

of categories.

We have described ^ and G independently; let us now relate them.

We say that a set S of sentence-forms of order i covers G if each string of

L(G) is generated by some member of S. We say that a sentence-form is

grammatical with respect to G if one of the strings that the sentence-form

generates is in L(G) fully grammatical, with respect to (7, if each of the

strings that it generates is in L(G). We say that # is compatible with G
if for each sentence H> of L(G) there is a sentence-form of order one that

generates w and that is fully grammatical with respect to G. Thus, if^ is

compatible with G, there is a set of fully grammatical sentence-forms of

order one that covers G. We might also require, for compatibility, that

#! be the smallest set of word classes to meet this condition. Note in this

case that the categories of^ need not be pairwise disjoint. For example,

3 The idea of using information measures to determine an optimal set of syntactic

categories, as outlined here, was suggested by Peter Elias. This approach is developed
in more detail, with some supporting empirical evidence, in Chomsky (1955, Chapter 4).
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know will be in C^ and no in C/, where z 7^ /, although, they are phoneti-

cally the same. If two words are mutually substitutable throughout L(G),

they will be in the same category C,
1

, if it is compatible with G, but the

converse is not necessarily true.

We say that a string w is i-grammatical (has degree of grammaticalness

i) with respect to G,
*

if i is the least number such that w is generated by a

grammatical sentence-form of order z". Thus the strings of the highest

degree of grammaticalness are those of order 1, the order with the largest

number of categories. All strings are grammatical of order TV or less, since

<%N contains only one category.

These ideas can be clarified by an example. Suppose that G is a gram-
mar of English and that ^ is a system of categories compatible with it

and having a structure something like this :

^1 = ^hum = {boy, man, . .

.}

7V"ab
=

{virtue, sincerity, . .

.}

^cornp
=

(idea > belief, - }

= (bread, beef, . .
.}

= (book, chair, . . .}

Kx
= {admire, dislike, . .

.}

F2
= {annoy, frighten, . .

.} (23)

Vz
=

{hit, find, . .
.}

j/4
=

{sleep, reminisce, . .
.}

etc.

#hum uATab u...

Verb = Fi U F2 U . . .

etc.

#3 : Word.

This extremely primitive hierarchy ^ of categories would enable us to

express some of the grammatical diversity of possible strings of words.

Let us assume that G would generate the boy cut the beef, the boy reminisced,

sincerity frightens me, the boy admires sincerity, the idea that sincerity

might frighten you astonishes me, the boy found a piece of bread, the boy

found the chair, the boy who annoyed me slept here, etc. It would not,

however, generate such strings as the beefcut sincerity, sincerity reminisced,

the boy frightens sincerity, sincerity admires the boy, the sincerity that the

ideamightfrighten you astonishes me, the boyfound a piece ofbook, the boy

annoyed the chair, the chair who annoyed me found here, etc. Strings of
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the first type would be one-grammatical (as are all strings generated by G) ;

strings of the second type would be two-grammatical; all strings would be

three-grammatical, with respect to this primitive categorization.

Many of the two-grammatical strings might find a natural use in actual

communication, of course. Some of them, in fact, (e.g., misery loves

company, etc.) might be more common than many one-grammatical

strings (an infinite number of which have zero probability and consist of

parts which have zero probability, effectively).

A speaker of English can impose an interpretation on many of these

strings by considering their analogies and resemblances to those generated

by the grammar he has mastered, much as he can impose an interpretation
on an abstract drawing. One-grammatical strings, in general, like rep-
resentational drawings, need have no interpretation imposed on them to

be understood. With a hierarchy such as ^ we could account for the fact

that speakers of English know for example, that colorless green ideas

sleepfuriously is surely to be distinguished, with respect to well-formedness,

from revolutionary new ideas appear infrequently on the one hand and from

furiously sleep ideas green colorless or harmless seem dogs young friendly

(which has the same pattern of grammatical affixes) on the other; and so

on, in an indefinite number of similar cases.

Such considerations show that a generative grammar could more com-

pletely fulfil its function as an explanatory theory if we had some way to

project, from the grammar, a certain compatible hierarchy ^ in terms of

which degree of grammaticalness could be defined. Let us consider now
how this might be done.

In order to simplify exposition, we first restrict the problem in two ways.
We shall consider only sentences of some fixed length, say length L
Second, let us consider the problem of determining the system of categories
#

z
- = {Ci\ . . . Caf}9 where ^ is fixed. The best choice of a

t categories is

the one that in the appropriate sense maximizes substitutability relations

among the categorized elements. The question, then, is how we can select

the fixed number of categories which best mirror substitutability relations.

Note that we are interested in substitutability not with respect to L(G)
but to contexts stated in terms of the categories of^ itself. To take an

example, boy and sincerity are much more freely substitutable in contexts

defined by the categories of ^2 of (23) than in actual contexts of L(G);
thus we may find both words in the context Noun Verb Determiner-,

but not in the context you frightened the- . Some words may not be
substitutable at all in L(G), although they are mutually substitutable in

terms of higher order categories. This fact suggests that systematic

procedures of substitution applied to successive words in some sequence
ofgrammatical sentences will probably always fail as, indeed, they always
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have so far since the maximization of substitutability, in the sense we
intend here, is a property of the whole system of categories.

A better way to approach the problem is this: suppose that Oj is a

sequence sl9 . . .
,
sm of all sentences of length I in L(G) and that <f

i
is a

proposed set of a
i categories. Let cr2 be a sequence of sentence-forms

S l5 . . . ,
2W? where, for each j < 772, 2^ generates ^ and S^ consists of

categories of ^. There will, of course, be many repetitions in a2 ,
in

general. Let cr3 be the sequence tl9 . . . , tn of all strings generated by the

S/s in 0*2, where cr3 contains no repetitions. For example,. if a: contains

the boy slept and the period elapsed, but not the period slept or the boy

elapsed, and if <72 is based on a categorization into nouns and verbs [i.e.,

or2 contains (Determiner, Noun, Verb)], then cr3 would contain all four of

those sentences.

It seems reasonable to measure the adequacy of a system of categories

by some function ofthe length ofthe sequence a3 . The number ofgenerated
sentences in o3 indicates the extent to which the categorization reflects

substitutability relations not only with respect to the given set of sentences

but also with respect to contexts defined in terms of the categories them-

selves. Thus particular nouns may not be substitutable with respect to

the same verbs, but they do each occur in a given position relative to

some verb so that they are substitutable with respect to the category
Verb. The same is true of particular verbs, adjectives, etc. This approach

permits us to set up all the categories simultaneously.
To evaluate a system

<S
i of a

i categories, given a sequence a of actual

sentences of length A, we shall try to discover a sequence <r2 that covers

cr1? in the sense we have defined (more precisely, whose terms constitute a

set that covers o^), and that is minimal in the sense that it generates the

shortest sequence cr3 . In case the categories of <S
i
are pairwise disjoint,

this procedure is perfectly simple; we merely replace each word in the

strings of a by the category of <
ffi to which it belongs, thus forming <r2 .

But, if the categories of <6
i overlap, there may be many covering sequences

<r2 ;
we must find the minimal one in order to evaluate #V

Categories overlap in the case of grammatical homonyms, as we have

observed. Note that if a word is put into more than one category when we
form ^i the value of this categorization will always suffer a loss in one

respect. Each time a category appears in a sentence-form of o2 a set of

sentences of cr3 is generated for each word in that category. Hence the

more words in a category, the more sentences generated and the less

satisfactory the categorization. However, if the word assigned to two

categories is a bona fide homonym, there may be a compensating saving.

Suppose, for example, that the phoneme sequence /no/ (know, no) is put

only into the category of verbs. Then all verbs will be generated in a3 in
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the position there are- books on the table. Similarly, if it is put only
into the category of determiners, all will be generated in such contexts as

/- that he has been here. If /no/ is assigned to both categories, a given
occurrence of /no/ in a can be assigned to either verb or determiner. Since

verbs will appear anyway in the context 7- that he has been here and

determiners in there are- books on the table, no new sentence forms are

produced by assignment of /no/ to verb in the first case and to determiner

in the second. There is thus a considerable saving in the sequence <r3 of

generated strings.

These observations suggest a way to decide when an element should in

fact be considered a set ofgrammatical homonyms. We make this decision

when the loss incurred automatically in assigning it to several categories

is more than compensated for by the gain that can be achieved through the

extra freedom in choosing the complete covering sequence cr2 ;
there is

always a numerical answer to this question. It must be shown, of course,

that in terms of presystematic criteria, the solution of the homonym prob-
lem given by this approach is the correct one. Certain preliminary

investigations of this have been hopeful (cf. Chomsky, 1955), but the task

of evaluating and improving this or any other conception of syntactic

category is an immense one. Furthermore, several important distinctions

have been blurred in this brief discussion.

Let us now return to our two assumptions: (a) that the length 2, of

sentences is fixed and (b) that the number a^ of categories is fixed. The
first is easily dispensable. Given G, we can evaluate a set

<S
% {C^,

. . .
, Cfl .*},

where a
t
is a fixed integer, in the following way. Select a new

"word" # to indicate sentence boundary, # $ Cf for any/ Define a

discourse as a sequence of words #, vt^
1

, . . .
, w^

1
, #, wx

2
,

. . . 9 w^,
#,...,#, w-f, . . .

,
H>

afr

fc

, where for each/ w^ . . . w^
j

is a sentence of

the language generated by G. This is a discourse of length ax + . . . +
aj. + k. An initial discourse is an initial subsequence of a discourse. A
discourseform is a sequence of categories Cp*, . . .

, C$
i of categories of^f

or {#} such that there is a discourse wl9 . . . , wq , where, for each/ w
3
- e Cp*9

and an initial discourseform is an initial subsequence of a discourse form.

Let S^ be a set of initial discourse forms, each of length A, which covers

the set of initial discourses of length A and is minimal from the point of

view of generation, and let N(X) be the number of distinct strings generated

by the members of S
A

. Then the natural way to define the value of the

categorization
<^

i is, by analogy with the definition of channel capacity in

Eq. 1, p. 431, as

(24)
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We choose as the best categorization into af categories that analysis
(S

i

for which Val (^) is minimal. In other words, we select the categorization
into a

t categories that minimizes the information per word, that is,

maximizes the redundancy, .in the generated "language" of grammatical
discourses (assuming independence of successive sentences). Thus we shall

try to select a categorization that maximizes the contribution of the

category analysis to the total set of constraints under which the source

operates in producing discourses. In practice, this computation can be

much simplified by assuming that successive choices of SA , for increasing

A, are not independent.
We have now proposed a definition of optimal categorization into n

categories, for each n, which is independent of arbitrary decisions about

sentence length. We must finally consider the assumption that we are

given the integers al9 . . .
, aN which determine the number of categories in

Condition 22. Suppose, in fact, that we determine for each n the optimal

categorization Kn into n categories, in the way previously sketched. To
select from the set {Kn} the hierarchy & 9

we must determine for which

integers a
i
we will actually set up the optimal categorization Ka .

as an

order ^ of V. We would like to select a
t in such a way that Ka .

will

be clearly preferred to Ka _^ but will not be much worse than Ka+l ;

that is to say, we would like to select Ka .
in such a way that there will be a

considerable loss in forming a system of categories with fewer than a
i

categories but not much of a gain in adding a further category.
We might, for example, take ^ = K^ as an order of# just in case the

function f(ri)
= wVal (Kn) has a relative minimum at n = a

t
. (We might

also be interested in the absolute minimum of/, defined in this or some
more appropriate way we might take this as defining an absolute order of

grammaticalness and an overriding bifurcation of strings into grammatical
and ungrammatical, with the grammatical including as a proper subclass

those generated by the grammar.)
In the way just sketched we might prescribe a general procedure T such

that, given a grammar G, Y(G) is a hierarchy # of categories compatible
with (?, by which degree of grammaticalness is defined for each string in

the terminal vocabulary of G. It would then be correct to say that a

grammar not only generates sentences with structural descriptions but also

assigns to each string, whether generated or not, a degree of grammatical-
ness that measures its deviation from the set of perfectly well-formed

sentences as well as a partial structural description that indicates how this

string deviates from well-formedness.

It is hardly necessary to emphasize that this proposal is, in its details,

highly tentative. Undoubtedly there are many other ways to approach
this complex question.
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1.6 Minimum-Redundancy Codes

Before a message can be transmitted, it must be coded in a form appro-

priate to the medium through which it will pass. This coding can be

accomplished in many ways; the procedure becomes of some theoretical

interest, however, when we ask about its efficiency. For a given alphabet,

what codes will, on the average, give the shortest encoded messages?
Such codes are called minimum-redundancy codes. Natural languages are

generally quite redundant; how to encode them to eliminate that re-

dundancy poses a challenging problem.
The question of coding efficiency becomes especially interesting when

we recognize that every channel is noisy, so that an efficient code must not

only be short but at the same time must enable us to keep erroneous

transmissions below some specified probability. The solutions that have

been found for this problem constitute the real core of information theory

as it is applied to many practical problems in communication engineering.

Inasmuch as psychologists and linguists have not yet exploited these

fundamental results for noisy channels, we shall limit our attention here to

the simpler problem of finding minimum-redundancy codes for noiseless

channels.

The problem of optimal coding can be posed as follows : we know from

Sec. 1.3 that an alphabet is used most efficiently when each character

occurs independently and equiprobably, that is, when all strings of equal

length are equiprobable. So we must find a function 6 that maps our

natural messages into coded forms in which all sequences of the same

length are equiprobable. For the sake of simplicity, let us assume that

the messages can be divided into independent units that can be separately

encoded. In order to be definite, let us imagine that we are dealing with

printed English and that we are willing to assume that successive words are

independent. Each time a space occurs in the text the text accumulated

since the preceding space is encoded as a unit. For each word, therefore,

we shall want to assign a sequence of code symbols in such a way that, on

the average, all the code symbols will be used independently and equally
often and in such a way that we shall be able to segment the coded messages
to recover the original word units when the time comes to decode it.

First, we observe that in any minimum-redundancy code the length of a

given coded word can never be less than the length of a more probable
coded word. If the more probable word were longer, a saving in the

average length could be achieved by simply reversing the codes assigned
to the two words. We begin, therefore, by ranking the words in order of

decreasing probability of occurrence. Let pr represent the probability of
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the word ranked r, and let cr represent the length of its encoded representa-

tion; that is to say, we rank the words

Pi > Pz > - > PN-I > PN*

where N is the number of different words in the vocabulary. For a mini-

mum redundancy code we must then have

cl ^ C2 ^ ^ cAr~l ^ CN*

Note, moreover, that the mean length C of an encoded word will be

C-ijyv. (25)
r=l

Obviously, the mean length would be a minimum if we could use only

one-letter words, but this would entail too large a number D of different

code characters. Ordinarily, our choice of D is limited by the nature of

the channel. Of course, it is not length per se that we want to minimize

but length per unit ofinformation transmitted. The problemjs to minimize

CfH9 the length per bit (or to maximize H/C, the amount of information

per unit length), subject to the subsidiary conditions that Spr
= 1 and

that the coded message be uniquely decodable.

By virtue of Assumption 2 in Sec. 1.3 it would seem that H/C, the

information per letter in the encoded words, cannot be greater than log D,

the capacity of the coding alphabet. From that fact we might try to move

directly to a lower bound,

C>-^-. (26)

log D

Although this inequality is correct, it cannot be derived as a simple

consequence of Assumption 2. Consider the following counter-example

(Feinstein, 1958): we have a vocabulary of three words with probabilities

Pi =p2
= 2p3

= 0.4 and we code them into the binary alphabet (0, 1}

so that 6(1) = 0, 6(2) = 1, and 6(3) = 01. Now we can easily compute
that C = 1.2, H = 1.52, and Iog2 D = 1, so that the average length is less

than the bound stated in Eq. 26. The trouble, of course, is that 6 does

not yield a true code, in the sense defined in Chapter 11; the coded

messages are not uniquely decodable. If, however, we add to Assumption
2 the further condition of unique decodability, the lower bound stated in

Eq. 26 can be established. The further condition is most easily phrased

in terms of a left tree code, in which no coded word is an initial segment

of any other coded word. By using Eq. 21 we can write

N N n-c N N
H = - <logp, < - I ftlog- = log!

~" + 2PA log D '
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For left tree codes we know, from Eq. 4, in Chapter 1 1, that SZ>-C * < 1
;

therefore,
log />-<< log 1 = 0,

so we can write

H < f pfr log D,
2=1

from which the desired inequality of Eq. 26 follows by rearranging terms.

If Eq. 26 sets a lower bound on the mean length C, how closely can

we approach it? The following theorem, due to Shannon (1948), provides

the answer:

Theorem 4. Given a vocabulary V ofN words with information H and a

coding alphabet A of D code symbols, it is possible to code the words by

finite strings of code symbolsfrom A in such a way that C, the average

number of code symbols per word, satisfies the inequality

-^ <C< -^ + 1. (27)
log D log D

The proof has been published in numerous places; see, for example,
Feinstein (1958, Chapter 2) or Fano (1961, Chapter 3).

Instead of proving here that such minimum-redundancy codes exist,

we shall consider ways of constructing them. Both Shannon (1948)

and Fano (1949) proposed methods of constructing codes that approach
minimum redundancy asymptotically as the length of the coding unit

is enlarged to include progressively longer sequences of words. In 1952,

however, Huffman discovered a method of systematically constructing

minimum-redundancy codes for finite vocabularies without resorting to

any limiting operations.

Huffman assumes that the vocabulary to be encoded is finite, that the

probability of each word is known in advance, that a left tree code can be

used, and that all code symbols will be of unit length. Within these limits,

let us now consider the special conditions that a minimuin-redundancy
code must satisfy:

1 . No two words can be represented by identical strings of code symbols.
2. It must be possible for a receiver to segment coded messages into

the coded words that comprise them. (This restriction is discussed in Chap-
ter 1 1, Sec. 2.) The printer's use of a special symbol (space) to mark word
boundaries in a natural code is in general too inefficient for minimum

redundancy codes. Proper segmentation in the sense of boundary markers

is ensured, however, by the assumption that it must be a left tree code.

3. If the words are ranked in order of decreasing probability pr ,
then

the length of the rth word, cr , must satisfy the inequalities

^i ^ ^2 ^ ^ CNI == CN*
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Because all the code symbols are equally long, cr can be interpreted simply
as the number of symbols used to code the rth word. In a minimum

redundancy tree code CN_-L
= CN because the first CN^ symbols used to

code the Nth word cannot be the coded form of any other word
;
that is

to say, the coded forms of words TV" 1 and N must differ in their first

CN-I symbols, and, if they do, no additional symbols are needed to encode

word N.

4. At least two (and not more than Z)) words of code length CN have

codes that are identical except for their final digits. Imagine a minimum

redundancy tree code in which this was not true; then the final code

symbols could be deleted, thus shortening the average length of a coded

word and so leading to a contradiction.

5. Each possible string of CN 1 code symbols must be used either to

represent a word or some initial segment of the sequence must represent
a word. If such a string of symbols existed and was not used, the average

length of the coded words could be reduced by using it in place of some

longer string.

These restrictions are sufficient to determine the following procedure,
which we shall outline for a binary coding alphabet, D = 2. List the words

from most probable to least probable. By (3), CN_I = CN , and, by (4),

there are exactly two words of code length CN that must be identical except
for their final symbols. So we can assign as the final digit ofthe (N l)th

word and 1 as the final digit of the Nth word. Once this has been done, the

(TV l)th and Mh words taken together are equivalent to a single com-

posite message; its code will be the common (but still unknown) initial

segment of length CN I and its probability will be the sum of the

probabilities of the two words comprising it. By combining these two

words, we create a new vocabulary with only N I words in it. Suppose
we now reorder the words as before and repeat the whole procedure. We
can continue to do so until the reduced vocabulary contains only two

words, at which point we assign to one and 1 to the other and the code

is completed.
An illustration of this procedure, using a binary code, is shown in

Table 2. A vocabulary of nine words is given in order of decreasing

probability. The first step is to assign to word /z and 1 to word i (or

conversely) as their final code symbols, then to combine /z and z into a single

item in a new derived distribution. The procedure is then repeated for

the two least probable items in this new distribution, etc., until all the code

symbols have been assigned. The result is to produce a coding tree; it

can be seen with difficulty in Table 2, in which its trunk is on the right

and its branches extend to the left, or more easily in Fig. 2, in which it has

been redrawn in the standard way.
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k

Fig. 2. The coding tree developed for the minimum-redun-

dancy code of Table 2.

In order to evaluate the coding efficiency, we need to know log D, C,

and H. The coding alphabet is binary, D = 2, and its information capacity
is Iog2 D = 1 bit per symbol. The average length of an encoded word can

be easily computed from Table 2 by Eq. 25; the result is 2.80 binary code

symbols per word. The amount of information in the original distribution

or word probabilities can be computed by Eq. 13; the result is 2.781 bits

per word. In terms of Theorem 4, therefore, we have

which indicates that for this example the average length is already quite

close to its lower bound. The redundancy of the coded signal as defined

by Eq. 17 is less than 1 %.
It should be obvious that errors in the transmission or reception of

minimum-redundancy codes are difficult to detect. Every branch of the

coding tree is utilized and errors convert any intended message into a

perfectly plausible alternative message. Considerable study has been

devoted to the most efficient ways to introduce redundancy into the code

deliberately in order to make errors easier to detect and to correct. But

these artificially redundant codes are not surveyed here. The poiftt should

be noted, however, that the redundancy of natural codes may not be so

inefficient as it seems, for it can help us to communicate under less than

optimal conditions.
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The reason that minimum-redundancy codes are important is an

economic one. There is a cost to communication and someone must

pay for it. It is often appropriate to use C, the average length of the mes-

sage, as a measure of the cost, since it takes either more time or more

equipment to transmit more symbols. It should be recognized, however,

that the economy achieved by minimizing C\H affects the supply price,

not the demand price of this commodity (Marschak, 1960). The supply

price is the lowest price the supplier is willing to charge; the demand price

is the highest price the buyer is willing to pay. The demand price

depends on the payoff that the customer expects to obtain by using the

information; since that use will ordinarily involve the meaning of the

message in an essential way, it takes us beyond the limits we have arbit-

rarily imposed on this chapter.

1.7 Word Frequencies

It is scarcely surprising to find that the various words of a natural

language do not occur equally often in any reasonable sample of ordinary

discourse. Some words are far more common than others. Psychologists

have recognized the importance of these unequal probabilities for any kind

of experimentation that uses words as stimuli. It is standard procedure

for psychologists to try to control for the effects of unequal familiarity by

selecting the words from some tabulation of relative frequencies of

occurrence. For English the Thorndike-Lorge (1944) counts are probably

the best known and most widely used. An extensive technical literature

deals with the various statistics that have been compiled for the (usually

written) languages of the world; we shall make no attempt to review or

evaluate it in these pages. Instead, we shall concentrate our attention on

certain statistical aspects of the vocabulary that seem theoretically most

significant.

There is one particularly striking regularity that has been found in these

various statistical explorations. The following is perhaps the simplest way
to summarize it (Mandelbrot, 1959): consider a (finite or infinite) popula-

tion of discrete items, each of which carries a label chosen from a discrete

set. Let n(f, s) be the number of different labels that occur exactly/times

in a sample of s items. Then one finds that, for large s,

n(f, s)
= G(s)f-

(l+f
>\ (28)

where p > and G(s) is a constant depending on the size of the sample.

If Eq. 28 is expressed as a probability density, then it is readily seen that

the variance of/is finite if and only if p > 2 and that the mean of/is finite

if and only if p > 1. In the cases of interest in this section it is often
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true that p < 1, so we are faced with a law that is often judged anomalous

(or even pathological) to those prejudiced in favor of the finite means and

variances of normal distributions. In the derivation of the normal distri-

bution function, however, it is necessary to assume that we are dealing
with the sum of a large number of variables, each of which makes a small

contribution relative to the total. When equal contributions are not as-

sumed, however, it is still possible to have stable limit distributions, but

either the second moment (and all higher moments) will be infinite, or

all moments will be infinite (cf. Gnedenko & Kolmogorov, 1954, Chapter
7). Such is the distribution underlying Eq. 28.

Nonnormal limit distributions might be dismissed as mathematical

curiosities of little relevance were it not for the fact that they have been

observed in a wide variety of situations. As Mandelbrot (1958) has pointed
out, these situations seem especially common in the social sciences. For

example, if the items are quantities of money and the labels are the names
of people who earn each item, then n(fy s) will be the number of people

earning exactly/units of money out of a total income equal to s. In this

form the law was first stated (with p > 1) by Pareto (1897). Alternatively,

if the items are taxonomic species and the labels are the names of genera
to which they belong, then n(f, s) will be the number of genera each with

exactly / species. In this form the law was first stated by Willis (1922),

then rationalized by Yule (1924), with p < 1 (and usually close to 0.5).

In the present instance, if the items are the consecutive words in a con-

tinuous discourse by a single author and the labels are sequences of letters

used to encode words, then n(f, s) will be the number of letter sequences

(word types) that occur exactlyf times in a text of s consecutive words

(word tokens). In this form the law was first stated by Estoup (1916),

rediscovered by Condon (1928), and intensively studied by Zipf (1935).

Zipf believed that p = 1, but further analysis has indicated that usually

p < 1 . Considerable data indicating the ubiquity of Eq. 28 were provided

by Zipf (1949), and empirical distributions of this general type have come
to be widely associated with his name.

When working with word frequencies, it is common practice to rank

them in order (as we did for the coding problem in the preceding section)

from the most frequent to the least frequent. The rank r is then defined

as the number of items that occur/times or more:

If we combine this definition with Eq. 28 and approximate the sum by an

integral, then, for large/,

Pf
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Fig. 3. The rank-frequency relation plotted on log-log coordinates.

which states a reciprocal relation between the ranks r and the frequencies

/. We can rewrite this relation as

where B = !//>. Therefore
pr

.= K. r (29)

K Blogr,
which means that on log-log coordinates the rank-frequency relation

should give a straight line with a slope of B. It was with such a graph
that the law was discovered, and it is still a popular way to display the

results of a word count. An illustration is given in Fig. 3.

The persistent recurrence of stable laws of this nonnormal type has

stimulated several attempts at explanation, and there has been considerable

discussion oftheir relative merits. We shall not review that discussion here ;

the present treatment follows Mandelbrot (1953, 1957) but does little more
than introduce the topic in terms of its simplest cases.

Imagine that the coded message is, in fact, a table of random (decimal)
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digits. Let the digits and 1 play the role of word-boundary markers;

each time or 1 occurs it marks the beginning of a new word. (In this code

there are words of zero length ; a minor modification can eliminate them if

they are considered anomalous.) The probability of getting a particular

word of exactly length i is (probability of symbol)*(probability of bound-

ary marker) = (0.8)*'(0.2), and the number of different words of length

i is 8*.

The critical point to note in this example is that when we order these

coded words with respect to increasing length we have simultaneously
ordered them with respect to decreasing probability. Thus it is possible

to construct Table 3. The one word of zero length has a probability of 0.2

Table 3 The Rank-Frequency Relation for a Random Code

and, since it is the most probable word, it receives rank 1. The eight

words one digit long all have a probability of 0.02 and share ranks 2

through 9; we assign them all the average rank 5.5; and so the table

continues. When we plot these values on log-log coordinates, we obtain

the function shown in Fig. 4. Visual inspection indicates that the slope is

slightly steeper than 1, which is also characteristic of many natural-

language texts.

It is not difficult to obtain the general equation relating probability to

average rank for this simple random case (Miller, 1957). Let p(#] be

the probability of a word-boundary marker, and let 1 X#) ^
f(L)

be the probability of a letter. If the alphabet (excluding #) has D letters,

then p(L)/D is the probability of any particular letter, and p(wt) =
p(^f)p(L)

iD~ i
is the probability of any particular word of length i (= 0,

1, . . .). This quantity will prove to be more useful when written

p(#K*
ilosDrs

- (30)
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Fig. 4. The rank-frequency relation for strings of random

digits occurring between successive occurrences of or 1.

The solid line represents the expected function and the

dashed line representsthe average ranks.

there are D j different words of exactly length /,
there must be

D * of them ec
l
ual to or shorter than z? so that when we rank them in

of increasing length the D j words of length ; will receive ranks

lo"
1 D* to 2|*o DJ - The averaSe rank

D-l D - 1

D+l
.

*>~ 3

2(D
-

1) 2(D - 1)

which will prove more useful if we write

D +

(31)
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for now Eqs. 30 and 31 combine to give

= K'(r(Wi)
-

c]-
B

, (32)

which can be recognized as a variant form of Eq. 29, where

and
logD 2(D- 1) D + l

Thus a table of random numbers can be seen to follow the general type
of law that has been found for word frequencies. If we take D = 26 and

= 0.18 to represent written English, then

=
log 26

and
A-1.06

/5QY-1.06
' = 0.181 =0.09,

\277

so we have

p(w .)
= 0.09 [r(w,)

-
0.46]-

1 '06
.

Since c = 0.46 will quickly become negligible as r(w t.) increases, we can

write

which is, in fact, close to the function that has been observed to hold for

many normal English texts (Zipf, for example, liked to put K' = 0.1

and B = 1).

The hypothesis that word boundaries occur more or less at random in

English text, therefore, has some reasonable consequences. It helps us to

understand why the probability ofa word decreases so rapidly as a function

of its length which is certainly true, on the average, for English. The

critical step in the derivation of Eq. 32, however, occurs when we note that

for the random message the rank with respect to increasing length and

the rank with respect to decreasing probability are the same. In English,

of course, this precise equivalence of rankings does not hold otherwise

we would never let our most frequent word the require three letters but

it holds approximately. Miller and Newman (1958) have verified the

prediction that the average frequency of words of length i is a reciprocal

function of their average rank with respect to increasing length, where the

slope constant for the length-frequency relation on log-log coordinates is

close to but perhaps somewhat smaller than B.



^6> FINITARY MODELS OF LANGUAGE USERS

In Sec. 1.6 we noted that for a minimum-redundancy code the length of

any given word can never be less than the length ofa more probable word.

Suppose, therefore, that we consider the rank-frequency relation for

optimal codes, that is, for codes in which the lower bound on the average

length C is actually realized, so that C = ff/log D. This optimal con-

dition will hold when the length i of any given word is directly proportional

to the amount of information associated with it:

-log p(wt)~

where p depends on the choice of scale units. This equation can be re-

written as

which is Eq. 30 again, with B = I/p. From here on the argument can

proceed exactly as before. We see, therefore, that the rank-frequency

relation holds quite generally for minimum-redundancy codes because

such codes (like tables of random numbers) use all equally long sequences

of symbols equally probably. The fact that both minimum-redundancy
codes and natural languages (which are certainly far from minimum-

redundancy) share the rank-frequency relation in Eq. 29 is interesting,

of course, but it provides no basis whatsoever for any speculation that

there is something optimal about the coding used in natural languages.

The choice of the digits and 1 as boundary markers to form words in a

table of random numbers was completely arbitrary; any other digits

would have served equally well. If we generalize this observation to

English texts, it implies that we might choose some character other than the

space as a boundary marker. Miller and Newman (1958) have studied

the rank-frequency relation for a (relatively small) sample of pseudo-words
formed by using the letter E as the word boundary (and treating the space

as just another letter). The null word EE was most frequent, followed

closely by ERE, E#E, and so on. As predicted, a function of the general

type of Eq. 29 was also obtained for these pseudo-words (but with a slope

constant B slightly less than unity, perhaps attributable to inadequate

sampling).
There is an enormous psychological difference between the familiar

words formed by segmenting on spaces and the apparently haphazard

strings that result when we segment on E. Segmenting on spaces respects

the highly overlearned strings Miller (1956) has referred to them as

chunks of information in order to distinguish sharply from the bits of

information defined in Sec. 1.3 that normally function as unitary,

psychological elements of language. It seems almost certain, therefore,
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that an evolutionary process of selection must have been working in favor

of short words some psychological process that would not operate on

the strings of characters between successive Es. Thus we find many more

very long, very improbable pseudo-words.
In one form or another the hypothesis that we favor short words has

been advanced by several students of language statistics. Zipf (1935) has

referred to it as the law of abbreviation: whenever a long word or phrase

suddenly becomes common, we tend to shorten it. Mandelbrot (1961)

has proposed that historical changes in word lengths might be described

as a kind of random walk. He reasons that the probability of lengthening
a word and the probability of shortening it should be in equilibrium, so that

a steady state distribution of word lengths could be maintained. If the

probability of abbreviation were much greater than the probability of

expansion, the vocabulary would eventually collapse into a single word of

minimum length. If expansion were more likely than abbreviation, on

the other hand, the language would evolve toward a distribution with

B < 1, and, presumably, some upper bound would have to be imposed
on word lengths in order for the series/?(>vt.)

to converge, so that %p(w?)
= 1 .

It should be noted, however, that the existence of a relation in the form of

Eq. 29 does not depend in any essential way on some prior psychological
law of abbreviation. The central import of Mandelbrot's earlier argument
is that Eq. 29 can result from purely random proccesses. Indeed, if there is

some law of abbreviation at work, it should manifest itself as a deviation

from Eq. 29 presumably in a shortage of very long, very improbable
words, a shortage that would not become apparent until extremely large

samples of text had been tabulated.

The occurrence of the rank-frequency relation of Eq. 29 does not con-

stitute evidence of some powerful and universal psychological force that

shapes all human communication in a single mold. In particular, its

occurrence does not constitute evidence that the signal analyzed must have

come from some intelligent or purposeful source. The rank-frequency

relation, Eq. 29 has something of the status of a null hypothesis, and, like

many null hypotheses, it is often more interesting to reject than to accept.

These brief paragraphs should serve to introduce some of the theoretical

problems in the statistical analysis of language. There is much more that

might be said about the analysis of style, cryptography, estimations of

vocabulary size, spelling systems, content analysis, etc., but to survey all

that would lead us even further away from matters of central concern in

Chapters 11, 12, and 13.

If one were to hazard a general criticism of the models that have been

constructed to account for word frequencies, it would be that they are still

far too simple. Unlike the Markovian models that envision Dk
parameters,
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explanations for the rank frequency relation use only two or three param-
eters. The most they can hope to accomplish, therefore, is to provide a

null hypothesis and to indicate in a qualitative way (perhaps) the kind of

systems we are dealing with. They can tell us, for example, that any

grammatical rule regulating word lengths must be regarded with con-

siderable suspicion in an English grammar, at least.

The complexity of the underlying linguistic process cannot be suppressed

very far, however, and examples of nonrandom aspects are in good supply.

For example, if we partition a random population on the basis of some

independent criterion, the same probability distribution should apply to

the partitions as to the parent population. If, for example, we partitioned

according to whether the words were an odd or an even number of running
words away from the beginning of the text or according to whether their

initial letters were in the first or the last half of the alphabet, etc., we would

expect the same rank-frequency relation to apply to the partitions as to

the original population. There are, however, several ways to partition

the parent population that look as though they ought to be independent
but turn out in fact not to be. Thus, for example, Yule (1944) established

that the same distribution does not apply when different categories (nouns,

verbs, and adjectives) are taken separately; Miller, Newman, and Fried-

man (1958) showed a drastic difference between the distributions of content

words (nouns, verbs, adjectives, adverbs) and of function words (every-

thing else), and Miller (1951, p. 93) demonstrated that the distribution

can be quite different ifwe consider only the words that occur immediately

following a given word, such as the or of. There is nothing in our present

parsimonious theories of the rank-frequency relation that could help us

to explain these apparent deviations from randomness.

In an effort to achieve a more appropriate level of complexity in our

descriptions of the user, therefore, we turn next to models that take account

of the underlying structure of natural languages models that, for lack of

a better name, we shall refer to here as algebraic.

2. ALGEBRAIC MODELS

If the study of actual linguistic behavior is to proceed very far, it must

clearly pay more than passing notice to the competence and knowledge of

the performing organism. We have suggested that a generative grammar
can give a useful and informative characterization of the competence of

the speaker-hearer, one that captures many significant and deep-seated

aspects of his knowledge of his own language. The question is, therefore,

how does he put his knowledge to use in producing a desired sentence or
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in perceiving and interpreting the structure of presented utterances ? How
can we construct a model for the language user that incorporates a

generative grammar as a fundamental component ? This topic has received

almost no study, so we can do little more than introduce a few speculations.

As we observed in the introduction to this chapter, models of linguistic

performance can generally be interpreted interchangeably as depicting

the behavior of either a speaker or a hearer. For concreteness, in the

present sections we shall concentrate on the listener's task and frame our

discussion largely in perceptual terms. This decision is, however, a

matter of convenience, not of principle.

Unfortunately, the bulk of the experimental research on speech percep-

tion has involved the recognition of individual words spoken in isolation

as part of a list (cf. Fletcher, 1953) and so is of little value to us in under-

standing the effects of grammatical structure on speech perception. That

such effects exist is clear from the fact that the same words are easier to

hear in sentences than in isolation (Miller, Heise, & Lichten, 1951;

Miller, 1962a). How these effects are caused, however, is not at all clear.

Let us take as our starting point the sentence-recognizing device

introduced briefly in Chapter 11, Sec. 6.4. Instead of a relatively passive

process of acoustic analysis followed by identification and symbolic

representation, we imagined (following Halle & Stevens, 1959, 1962) an

active device that recognizes its input by discovering what must be done

in order to generate a signal (in some possibly derived form) to match it.

At the heart of this active device, of course, is a componentM that contains

rules for generating a matching signal. Associated with M would be

components to analyze and (temporarily) to store the input, components
that reflect various semantic and situational constraints suggested by the

context of the sentence, a heuristic component that could make a good
first guess, a component to make the comparison of the input and the

internally generated signals, and perhaps others. On the basis of an initial

guess, the device generates an internal signal according to the rules stored

in M and tests its guess against the input signal. If the match is un-

satisfactory, the discrepancy is used to make a better guess. In this

manner the device proceeds to modify its own internal signal until the

match is judged satisfactory or the input is dismissed as unintelligible.

The program for generating the matching signal can be taken as the

symbolic representation of the input.

If it is granted that such a sentence-recognizer can provide a plausible

model for human speech perception, we can take it as our starting point

and can proceed to try to specify it more precisely. In particular, the

two parts of it that seem to perform the most important functions are

the contextual component, which helps to generate a first guess, and the
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grammatical component M, which imposes the rules for generating the

internal signal. We should begin by studying those two components. Even
if it were feasible, a study of the ways contextual information can be

stored and brought to bear would lead us far beyond the limits we have

placed on this discussion. With respect to M, however, the task seems

easier. The way the rules for synthesizing sentences might operate is, of

course, very much in our present line of sight.

We are concerned with a finite device M in which are stored the rules

of a generative grammar G. This device takes as its input a string x of

symbols and attempts to understand it; that is to say, M tries to assign
to # a certain structural description F(x) or a set (F^x), . . . , Fm(x)} of

syntactic descriptions in the case of a sentence x that is structurally

ambiguous in m different ways. We shall not try to consider all of those

real but obscure aspects of understanding that go beyond the assignment
of syntactic structural descriptions to sentences, nor shall we consider the

situational or contextual features that may determine which of a set of

alternative structural descriptions is actually selected in a particular case.

There is no point of principle underlying this limitation to syntax rather

than to semantics and to single sentences rather than their linguistic and

extra-linguistic contexts it is simply an unfortunate consequence of

limitations in our current knowledge and understanding. At present there

is little that can be said, with much precision, about those further questions.

[See Ziff (1960) and Katz & Fodor (1962) for discussion of the problems
involved in the development of an adequate semantic theory and some of

the ways in which they can be investigated].

The device M must contain, in addition to the rules of G 9 a certain

amount of computing space, which may be utilized in various different

ways, and it must be equipped to perform logical operations of various

sorts. We require, in particular, that M assign a structural description

FJx) to x only if the generative grammar G stored in the memory of M
assigns Ft(x) to # as a possible structural description. We say that the

device M (partially) understands the sentence x in the manner ofG if the set

(jFifc), . . .
,
Fm(x)} of structural descriptions provided by M with input x

is (included in) the set assigned to x by the generative grammar G. In

particular, M does not accept as a sentence any string that is not generated

by G. (This restriction can, of course, be softened by introducing degrees
of grammaticalness, after the manner of Sec. 1.5, but we shall not burden
the present discussion with that additional complication.) M is thus a
finite transducer in the sense ofChapter 12, Sec. 1.5. It uses its information

concerning the set of all strings in order to determine which of them are

sentences of the language it understands and to understand sentences

belonging to this language. This information, we assume, is represented in
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the form of rules of the generative grammar G stored in the memory of M.
Before continuing, we should like to say once more that it is perfectly

possible that M will not contain enough computing space to allow it to

understand all sentences in.the manner of the device G whose instructions

it stores. This is no more surprising than the fact that a person who knows
the rules of arithmetic perfectly may not be able to perform many computa-
tions correctly in his head. One must be careful not to obscure the

fundamental difference between, on the one hand, a device M storing the

rules G but having enough computing space to understand in the manner of

G only a certain proper subset L f

of the set L of sentences generated by
G and, on the other hand, a device M* designed specifically to understand

only the sentences of Z/ in the manner of G. The distinction is perfectly

analogous to the distinction between a device F that contains the rules of
arithmetic but has enough computing space to handle only a proper subset

'

of the set S of arithmetical computations and a device F* that is

designed to compute only S'. Thus, although identical in their behavior
to F* and M*, F and M can improve their behavior without additional

instruction if given additional memory aids, but F* and M* must be

redesigned to extend the class of cases that they can handle. It is clear that

F and M, the devices that incorporate competence whether or not it is

realized in performance, provide the only models of any psychological
relevance, since only they can explain the transfer of learning that we know
occurs when memory aids are in fact made available.

In particular, if the grammar G incorporated in M exceeds any finite

automaton in generative capacity, then we know that M will not be able

to understand all sentences in the manner of G. There would be little

reason to expect, a priori, that the natural languages learned by humans
should belong to the special family of sets that can be generated by one-

sided linear grammars (cf. Defs. 6 and 7, Chapter 12, Sec. 4.1) or by
nonself-embedding context-free grammars (cf. Proposition 58 and Theorem
33, Chapter 12, Sec. 4.6). In fact, they do not, as we have observed several

times. Consequently, we know that a realistic modelM for the perceiver
will incorporate a grammar G that generates sentences that M cannot

understand in the manner of G (without additional aids). This conclusion

should occasion no surprise; it leads to none of the paradoxical conse-

quences that have occasionally been suggested. There has been much
confusion about this matter and we should like to reemphasize the fact

that the conclusion we have reached is just what should have been expected.
We can construct a model for the listener who understands a presented

sentence by specifying the stored grammar G, the organization ofmemory,
and the operations performable by M. We determine a class of perceptual
models by stating conditions that these specifications must meet. In
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Sec. 2.1 we consider perceptual models that store rewriting systems. Then
in Sec. 2.2 we discuss possible features of perceptual models that incorpo-
rate transformational grammars.

2. 1 Models Incorporating Rewriting Systems

Let us suppose that we have a language L generated by a context-

sensitive grammar G that assigns to each sentence of L a P-marker

a labeled tree or labeled bracketing in the manner we have already
considered. What can we say about the understanding of sentences by the

speaker of L? For example, what can we say about the class of sentences

of his language that this speaker will be able to understand at all? If we
construct a finite perceptual device M that incorporates the rules of G
in its memory, to what extent will M be able to understand sentences in

the manner of G?
In part, we answered this question in Sec. 4.6 of Chapter 12. Roughly,

the answer was the following. Suppose that we say that the degree of

self-embedding of the P-marker Q is m if m is the largest integer meeting
the following condition: there is, in the labeled tree that represents Q,
a continuous path passing through m + 1 nodes JV

,
. . .

, Nm ,
each with

the same label, where each N
t (i > 1) is fully self-embedded (with something

to the left and something to the right) in the subtree dominated by N^;
that is to say, the terminal string of Q can be written in the form

*2/o2/l - - - 2/m-l^m-l - - l>lW (33)

where Nm dominates z, and for each / < m, Ni
dominates

2/i - 2/m-l^m-l - V
t , (34)

and none of the strings y ,
. . .

, ym_l5 y
,

. . .
,

i;m_x is null. Thus, for

example, in Fig. 5 the degree of self-embedding is two.

In Sec. 4.6 of Chapter 12 we presented a mechanical procedureT that

can be regarded as having the following effect: given a grammar G and
an integer m, T(G, m) is a finite transducer M that takes a sentence x

as input and gives as output a structural description F(x) (which is, further-

more, a structural description assigned to x by G) wherever F(x) has a

degree of self-embedding of no more than m; that is to say, where m is a

measure of the computing space available to a perceptual model M, which

incorporates the grammar G, M will partially understand sentences in the

manner of G just to the extent that the degree of self-embedding of their

structural descriptions is not too great. As the amount of computing
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space available to the device M increases, M will understand more deeply

embedded structures in the manner of G. For any given sentence x there

is an m sufficiently large so that the device M with computing space

determined by m [i.e., the deviceY(<7, m)] will be capable of understanding
x in the manner of G; M does not have to be redesigned to extend its

capacities in this way. Furthermore, this is the best result that can be

achieved, since self-embedding is, as was proved in Chapter 12, precisely

the property that distinguishes context-free

languages from the regular languages that

can be generated (accepted) by finite auto-

mata.

In Chapter 12 this result was stated only
for a certain class K of context-free gram-
mars. We pointed out that the class K
contains a grammar for every context-free

language and that it is a straightforward

matter to drop many, if not all, of the

restrictions that define K. Extension to

context-sensitive grammars is another

matter, however, and the problem of find-

ing an optimal finite transducer that under-

stands the sentences of G as well as possible,

for any context-sensitive G, has not been

investigated at all. Certain approaches to

this question are suggested by the results

of Matthews', discussed in Chapter 12, Sec.

4.2, on asymmetrical context-sensitive gram-
mars and PDS automata, but these have not yet been pursued.

These restrictions aside, the procedure T of Sec. 4.6, Chapter 12,

provides an optimal perceptual model (i.e., an optimal finite recognition

routine) that incorporates a context-free grammar G. Given G, we can

immediately construct such a device in a mechanical way, and we know

that it will do as well as can be done by any device with bounded memory
in understanding sentences in the manner of G. As the amount ofmemory

increases, its capacity to understand sentences of G increases without

limit. Only self-embedding beyond a certain degree causes it to fail when

memory is fixed. We can, in fact, rephrase the construction so that the

procedureT determines a transducerY(G) which understands all sentences

in the manner of G, where Y(G) is a "single-pass" device with only push-

down storage, as shown in Sec. 4.2, Chapter 12.

Observe that the optimal perceptual model M = T(G, m\ where m
is fixed, may fail to understand sentences in the manner of G even when

Fig. 5. Phrase marker with a

degree of self-embedding equal

to two.
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the language L generated by G might have been generated by a one-sided

linear grammar (finite automaton). For example, the context-free gram-
mar G that gives the structural description in Fig. 5 might be the following:

S-+aS, S->SZ>, S-+c. (35)

(It is a straightforward matter to extendT to deal with rules of the kind
in Example 35.) The generated language is the set of all strings a*cb* and
is clearly a regular language. Nevertheless, with m =

1, Y(G, m) will

not be capable of understanding the sentence aacbb generated in Fig. 5

in the manner of G, since this derivation has a degree of self-embedding

equal to two. The point is that although a finite automaton can be found
to accept the sentences of this language it is not possible to find a finite

device that understands all of its sentences in the manner of the particular

generative process G represented in Example 35.

Observe also that the perceptual device ^F(G, m) is nondeterministic.

As a perceptual model it has the following defect. Suppose that G assigns
to x a structural description D with degree of self-embedding not exceeding
m. Then, as we have indicated, the device Y(G, m) will be capable of

computing in such a way that it will map x into D, thus interpreting x in

the manner of G. Being nondeterministic, however, it may also, given x,

compute in such a way that it will fail to map x into a structural description
at all. If Y(G, m) fails to interpret x in the manner of G on a particular

computation, we can conclude nothing about the status of x with respect
to the grammar G, although if T(G, m) does map x into a structural

description D we can conclude that G assigns D to x. We might investigate
the problem of constructing a deterministic perceptual model that parti-

ally understands the output of a context-free grammar, or a model with

nondeterminacy matching the ambiguity of the underlying grammar
that is, a model that may block on a computation with a particular string

only if this string is either not generated by the grammar from which the

model is constructed or is generated only by a derivation that is too deeply
self-embedded for the device in question but this matter has not yet been

carefully investigated. It is clear, however, that such devices unlike T(G, m),
would involve a restriction on the right-recursive elements in the structural

descriptions (i.e., on right branchings). See, in this connection, the

example on p. 473.

Self-embedding is the fundamental property that takes a system outside

of the generative capacity of a finite device, and self-embedding will

ultimately result from nesting of dependencies, since the nonterminal

vocabulary is finite. However, the nesting of dependencies, even short of

self-embedding, causes the number of states needed in the deviceY(G, m) to
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increase quite rapidly with the length of the input string that it is to under-

stand. Consequently, we would expect that nested constructions should

become difficult to understand even when they are, in principle, within the

capacity of a finite device, since available memory (i.e., number of states)

is clearly quite limited for real-time analytic operations, a fact to which we
return in Sec. 2.2. Indeed, as we observed in Chapter 11 (cf. Example 11

in Sec. 3), nested structures even without self-embedding quickly become

difficult or impossible to understand.

From these observations we are led to conclude that sentences of natural

languages containing nested dependencies or self-embedding beyond a

certain point should be impossible for (unaided) native speakers to under-

stand. This is indeed the case, as we have already pointed out. There are

many syntactic devices available in English and in every other language
that has been studied from this point of view for the construction of

sentences with nested dependencies. These devices, if permitted to

operate freely, will quickly generate sentences that exceed the perceptual

capacities (i.e., in this case, the short-term memory) of the native speakers
of the language. This possibility causes no difficulties for communication,

however. These sentences, being equally difficult for speaker and hearer,

simply are not used, just as many other proliferations of syntactic devices

that produce well-formed sentences will never actually be found.

There would be no reason to expect that these devices (which are, of

course, continually used when nesting is kept within the bounds ofmemory
restriction) should disappear as the language evolves; and, in fact, they

do not disappear, as we have observed. It would be reasonable to expect,

however, that a natural language might develop techniques to paraphrase

complex nested sentences as sentences with either left-recursive or right-

recursive elements, so that sentences of the same content could be produced
with less strain on memory. That expectation, formulated by Yngve

(1960, 1961) in a rather different way, to which we return, is well confirmed.

Alongside such self-embedding English sentences as
if,

whenever X then Y,

then Z, we can have the basically right-branching structure Z if whenever

X, then Y, and so on in many other cases. In particular, many singulary

grammatical transformations in English seem to be primarily stylistic;

they convert one sentence into another with much the same content but

with less self-embedding. Alongside the sentence that the fact that he

left was unfortunate is obvious, which doubly embeds S, we have the more

intelligible and primarily right-recursive structure it is obvious that it was

unfortunate that he
left. Similarly, we have a transformation that converts

the cover that the book that John has has to John's book's cover, which is

left-branching rather than self-embedding. (It should also be noted,

however, that some of these so-called stylistic transformations can increase
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structural complexity, e.g., those that give "cleft-sentences" from 7

read the book that you told me about we can form // was the book that you
told me about that I read, etc.)

Now to recapitulate : from the fact that human memory is finite we can

conclude only that some self-embedded structures should not be under-

standable; from the further assumption that memory is small, we can

predict difficulties even with nested constructions. Although sentences are

accepted (heard and spoken) in a single pass from left to right, we cannot

conclude that there should be any left-right asymmetry in the under-

standable structures. Nor is there any evidence presently available for such

asymmetry. We have little difficulty in understanding such right-branching

constructions as he watched the boy catch the ball that droppedfrom the

tower near the lake or such left-branching constructions as all of the men

whom I toldyou about who were exposed to radiation who worked half-time,

are still healthy, but the ones who workedfull time are not or many more than

half of the rather obviously much too easily solved problems were dropped
last year. Similarly, no conclusion can be drawn from our present knowl-

edge of the distribution of left-recursive and right-recursive elements in

language. Thus, in English, right-branching constructions predominate;
in other languages Japanese, Turkish the opposite is the case. In fact,

in every known language we find right-recursive, left-recursive, and self-

embedding elements (and, furthermore, we find coordinate constructions

that exceed the capacity of rewriting systems entirely, a fact to which we
return directly).

We have so far made only the following assumptions about the modelM
for the user:

1. M is finite;

2. M accepts (or produces) sentences from left-to-right in a single pass ;

3. M incorporates a context-free grammar as a representation of its

competence in and knowledge of the language.

Of these, (3) is surely false, but the conclusions concerning recursive ele-

ments that we have drawn from it would undoubtedly remain true under
a wide class of more general assumptions. Obviously, (1) is beyond ques-
tion; (2) is an extremely weak assumption that also cannot be questioned,
either for the speaker or hearer note that many different kinds of internal

organization of M are compatible with (2), for example, the assumption
that M stores a finite string before deciding on the analysis of its first

element or that M stores a finite number of alternative assumptions
about the first element which are resolved only at an indefinitely later

time.
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If we add further assumptions beyond these three, we can derive addi-

tional conclusions about the ability of the device to produce or understand

sentences in the manner of the incorporated grammar. Consider the two

extreme assumptions :

4. M produces P-markers strictly "from the top down," or from trunk

to branch, in the tree graph of the P-marker.

5. M produces P-markers strictly "from the bottom up," or from

branch to trunk, in the tree graph of the P-marker.

In accordance with (4), the device M will interpret a rule A ->
<f>

of

the incorporated grammar as the instruction "rewrite A as </>" that is

to say, as the instruction that, in constructing a derivation, a line of the

form yiAyz can be followed by the line y-^y^ Assumption 5 requires the

device M to interpret each rule A >
(/>

of the grammar as the instruction

"replace <f> by A" that is to say, in constructing an inverted derivation

with S as its last line and a terminal string as its first line, a line of the form

Y>i</>y>2
can be followed by the line ^v4yv

From Assumption 4 we can conclude that only a bounded number of

successive left-branchings can, in general, be tolerated by M. Thus

suppose that M is based on a grammar containing the rule S -> SA.

After n applications of this left-branching rule the memory of a device

meeting Assumptions 2 and 4 (under the natural interpretation) would

have to store n occurrences of A for later rewriting and would thus

eventually have to violate Assumption 1 . On the other hand, from Assump-
tion 5 we can conclude that only a bounded number of successive right-

branchings can in general be tolerated. For example, suppose the under-

lying grammar contains right-branching rules: A -> cA, B-+cB, A->a,
and B-+b. In this case the device will be presented with strings c

na or

c
n
b. Now, although Assumption 2 still calls for resolution from left to

right, Assumption 5 implies that no node in the P-marker can be replaced

until all that it dominates is known, so that resolution must be postponed
until the final symbol in the string is received. Thus the device would have

to store n occurrences of c for later rewriting and, again, Assumption 1

must eventually be violated. Left-branching causes no difficulty under

Assumption 5, of course, just as right-branching causes no difficulty in the

case of Assumption 4. Thus Assumptions 4 and 5 impose left-right asym-

metries (in opposite ways) on the set of structures that can be accepted or

produced by M. Observe that the devices T(G, m), given by the proced-

ure T of Chapter 12, Sec. 4.6, need not meet either of the restrictions

in Assumption 4 or 5; in constructing a particular P-marker, they may
move up or down or both ways indefinitely often, just as long as self-

embedding is restricted.
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Assumption 4 might be interpreted as a condition to be met by the

speaker; Assumption 5, as a condition to be met by the hearer. (Of course,

if we design a model of the speaker to meet Assumption 4 and a model of

the hearer to meet Assumption 5 simultaneously, we will severely restrict

the possibility
of communication between them.) If Assumption 4

described the speaker, we would expect him to have difficulty with left-

branching constructions
;

if Assumption 5 described the listener, we would

expect him to have difficulty with right-branching constructions. Neither

assumption seems particularly plausible. There is no reason to think that

a speaker must always select his major phrase types before the minor

subphrases or his word categories before his words (Assumption 4).

Similarly, although a listener obviously receives terminal symbols and

constructs phrase types, there is no reason to assume that decisions con-

cerning minor phrase types must uniformly precede those concerning major

structural features of the sentence. Assumptions 4 and 5 are but two of a

large set of possible assumptions that might be considered in specifying

models of the user more fully. Thus we might introduce an assumption

that there is a bound on the length ofthe string that must be received before

a construction can be uniquely identified by a left-to-right perceptual

model and so on, in many other ways.

There has been some discussion of hypotheses such as Assumptions 4

and 5. For example, Skinner's (1957) proposal that "verbal operant

responses" to situations (e.g., the primary nouns, verbs, adjectives) form

the raw materials of which sentences are constructed by higher level

"autoclitic" responses (grammatical devices, ordering, selecting, etc.)

might be loosely interpreted as a variant of Assumption 5, regarded as

an assumption about the speaker. Yngve (1960, 1961) has proposed a

variant of (4) as an assumption about the speaker; his proposal is explicitly

directed toward our present topic and so demands a somewhat fuller

discussion.

Yngve describes a process by which a device that contains a grammar
rather similar to a context-free grammar produces derivations of utter-

ances, always rewriting the leftmost nonterminal symbol in the last line of

the already constructed derivation and postponing any nonterminal

symbols to the right of it. Each postponed symbol, therefore, is a promise
that must be remembered until the time comes to develop it ; as the number

of these promises grows, the load on memory also grows. Thus Yngve
defines a measure of depth in terms of the number of postponed symbols,
so that left-branching, self-embedding, and multiple-branching all con-

tribute to depth, whereas right-branching does not. (Note that the depth of

postponed symbols and the degree of embedding are quite distinct

measures.) Yngve observes that a model so constructed for the speaker
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will be able with a limited memory to produce structures that do not exceed

a certain depth. He offers the hypothesis that Assumption 4, so interpreted,

is a correct characterization of the speaker and that natural languages have

developed in such a way as to ease the speaker's task by limiting the

necessity for left-branching.

The arguments in support of this hypothesis, however, seem incon-

clusive. It is difficult to see why any language should be designed for the

ease of the speaker rather than the hearer, and Assumption 4 in any form

seems totally unmotivated as a requirement for the hearer; on the

contrary, the opposite assumption, as we have noted, seems the better

motivated of the two. Nor does (4) seem to be a particularly plausible

assumption concerning the speaker, for reasons we have already stated. It

is possible, of course, to construct sentences that have a great depthand that

are quite unintelligible, but they characteristically involve nesting or

self-embedding and thus serve merely to show that the speaker and hearer

have finite memories that is to say, they support only the obvious and

unquestionable Assumptions 1 and 2, not the additional Assumption 4.

In order to support Yngve's hypothesis, we would have to find unintelligible

sentences whose difficulty was attributable entirely to left-branching and

multiple-branching. Such examples are not readily produced. In order to

explain why multiple-branching, which contributes to the measure of

depth, does not cause more difficulty, Yngve treats coordinate construc-

tions (e.g., conjunctions) as right-branching, which does not contribute

to the number of postponed symbols. But this is perfectly arbitrary;

they could just as well be treated as left-branching. The only correct

interpretation for such constructions is in terms of multiple-branching from

a single node this is exactly the formal feature that distinguishes true

coordinate constructions, with no internal structure, from others. As we

have observed in Chapter 11, Sec. 5, such constructions are beyond the

limits of systems of rewriting rules altogether. Hence the relative ease

with which such sentences as Examples 18 and 20 of Chapter 11 can be

understood contradicts not only Assumption 4 but even the underlying

Assumption 3, of which 4 is an elaboration.

In short, there seems to be little that we can say about the speaker and

the hearer beyond the obvious fact that they are limited finite devices that

relate sentences and structural descriptions and that they are subject to the

constraint that time is linear. From this, all that we can conclude is that

self-embedding (and, more generally, nesting of dependencies) should cause

difficulty, as indeed it does. It is also not without interest that self-embed-

ding seems to impose a greater burden than an equivalent amount of

nesting without self-embedding. Further speculations are, at the present

time, quite unsupported.
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2.2 Models Incorporating Transformational Grammars

There are surprising limitations on the amount of short-term memory
available for human data processing, although the amount of long-term

memory is clearly great (cf. Miller, 1956). This fact suggests that it might
be useful to look into the properties of a perceptual model M with two
basic components, M^ and M2 , operating as follows : M contains a small,

short-term memory. It performs computations on an input string x
as it is received symbol by symbol and transmits the result of these com-

putations toM2 . M2 contains a large long-term memory in which is stored

a generative grammar G; the task of M2 is to determine the deeper
structure of the input string x, using as its information the output trans-

mitted to it by Mj. (Sentence-analyzing procedures of this sort have been

investigated by Matthews, 1961.)

The details of the operation of M2 would be complicated, of course;

probably the best way to get an appreciation of the functions it would have
to perform is to consider an example in some detail. Suppose, therefore,

that a device M, so constructed, attempts to analyze such sentences as

John is easy to please. (36)

John is eager to please. (37)

To these, MI might assign preliminary analyses, as in Fig. 6, in which
inessentials are omitted. Clearly, however, this is not the whole story.
In order to account for the way in which we understand these sentences,
it is necessary for the componentM2 , accenting the analysis shown in Fig.
6 as input, to give as output structural descriptions that indicate that in

John is
[elfger]

to please

Fig. 6. Preliminary analysis of Sentences 36

and 37.
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John 's Adj. John V ATP

eaSer complement pleases
someone

(*) (b)
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NP VP NP Vp

it is Adj. complement someone V NP
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I I

easy
pleases John

(c) (d)

Fig. 7. Some P-markers that would be generated by the rewriting rules of the

grammar and to which the transformation rules would apply.

Example 36 John is the direct object ofplease, whereas in Example 37 it is

the logical subject ofplease.
Before we can attempt to provide a description of the device M2 we

must ask how structural information ofthis deeper kind can be represented.

Clearly, it cannot be conveyed in the labeled tree (P-marker) associated

with the sentence as it stands. No elaboration of the analysis shown in

Fig. 6, with more elaborate subcategorization, etc., will remedy the

fundamental inability of this form of representation to mirror grammatical
relations properly. We are, of course, facing now precisely the kind of

difficulty that was discussed in Chapter 11, Sec. 5, and that led to the

development of a theory of transformational generative grammar. In a

transformational grammar for English the rewriting rules would not be

required to provide Examples 36 and 37 directly; the rewriting rules

would be limited to the generation of such P-markers as those shown in

Fig. 7 (where inessentials are again omitted). In addition, the grammar
will contain such transformations as

TV replaces complement by 'Tor x to y" where x is an NP and y is a VP
in the already generated sentence xy;

T2 : deletes the second occurrence of two identical TVP's (with whatever

is affixed to them);

TV deletes direct objects of certain verbs;
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T4 : deletes "for someone" in certain contexts;

T5 : converts a string analyzable as

#P _ is _ Adj
-

(for
- NP^ - to - V - NP2

to the corresponding string of the form

NP2 -is - Adj
-

(for
- NPJ - to - V.

Each of these can be generalized and put in the form specified in Chapter
11. When appropriately generalized, they are each independently moti-

vated by examples of many other kinds. Note, for example, the range of

sentences that are similar in their underlying structural features to Examples
36 and 37; we have such sentences as John is an easy person to please,

John is a person who (ft) is easy to please, this room is not easy to work in

(to do decent work in), he is easy to do business with, he is not easy to get

informationfrom, such claims are very easy to befooled by, and many others

all of which are generated in essentially the same way.

Applying 7\ to the pair of structures in Figs. Ic and Id, we derive the

sentence It is easy for someone to please John, with its derived P-marker.

Applying 7*4 to this, we derive It is easy to please John, which is converted

to Example 36 by T5 . Had we applied T5 without r4 , we could have

derived, for example, John is easyfor us to please (with we chosen in place
of someone in Fig. Id we leave unstated obvious obligatory rules).

Applying 7\ to the pair of structures in Figs, la and Ib, we derive John is

eager for John to please someone, which is converted by T2 to John is

eager to please someone. Had we applied Tz to Fig. Ib before applying
Tl9 we would, in the same way, have derived Example 37.

At this point we should comment briefly on several features of such an

analysis. Notice that lam eagerfor you to please, you are eagerfor me to

please, etc., are all well-formed sentences; but / am eagerfor me to please,

you are eager for you to please, etc., are impossible and are reduced to

I am eager to please, you are eager to please obligatorily by T2 . This same
transformation gives / expected to come, you expected to come, etc., from
7 expected me to come, you expectedyou to come, which are formed in the

same way as you expected me to come, I expectedyou to come. Thus this

grammar does actually regard John in Example 37 as identical with the

deleted subject ofplease. Note, in fact, that in the sentence John expected
John to please, in which T2 has not applied, the two occurrences of John
must have different reference. In Example 36, on the other hand, John
is actually the direct object ofplease, assuming grammatical relations to be

preserved under transformation (assuming, in other words, that the P-

marker represented in Fig. Id is part of the structural description of
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Example 36). Note, incidentally, that T5 does not produce such non-
sentences as John is easy to come, since there is no NP comes John, though
we have John is eager to come by Tl9 T2 . T5 would not apply to any
sentence of the form

NP - is - eager
-

(for
- NPJ - to - V - NP2

to give
NP2

- is - eager
-

(for
- NPJ - to - V

(for example, Bill is eagerfor us to meet from John is eagerfor us to meet
Bill; these crooks are eager for us to vote out from John is eager for us to

vote out these crooks), since eager complement, but not eager, is an Adj
(whereas, easy, but not easy complement, is an Adj). Supporting this

analysis is the fact that the general rule that nominalizes sentences of the
form NP is Adj (giving, for example, John's cleverness from John is

clever), converts John is eager (for us) to come (which comes from Fig,
la and we come by 7\) to John's eagernessfor us to come; but it does not
convert Example 36 to John's easiness to please. Furthermore, the general
transformational process that converts phrases of the form

the Noun who (which) is Adj
to

the Adj Noun

(for example, the man who is old to the old man) does convert afellow who
is easy to please to an easyfellow to please (since easy is an Adj) but does
not convert a fellow who is eager to please to an eager fellow to please
(since eager is not, in this case, an Adj). In brief, when these rules are

stated carefully, we find that a large variety of structures is generated by
quite general, simple, and independently motivated rules, whereas other

superficially similar structures are correctly excluded. It would not be

possible to achieve the same degree of generalization and descriptive

adequacy with a grammar that operates in the manner of a rewriting

system, assigning just a single P-marker to a sentence as its structural

description.

Returning now to our main theme, we see that the grammatical relations

of John to please in Examples 36 and 37 are represented in the intuitively
correct way in the structural descriptions provided by a transformational

grammar. The structural description of Example 36 consists of the two

underlying P-markers in Figs. Ic and Id and the derived P-marker in

Fig. 6 (as well as a record of the transformational history, i.e., T1? T^ T5).

The structural description of Example 36 consists of the underlying P-

markers in Figs, la and Ib and the derived P-marker in Fig. 6 (along with

the transformational history Tl9 T2 ,
T3). Thus the structural description
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of Example 36 contains the information that John in Example 36 is the

object ofplease in the underlying P-marker of Fig. Id; and the structural

description of Example 37 contains the information that John in Example
37 is the subject of please in the underlying P-marker in Fig. Ib. Note

that, when the appropriately generalized form of T5 applies to it is easy

to do business with John to yield John is easy to do business with, we again

have in the underlying P-markers a correct account of the grammatical

relations in the transform, although in this case the grammatical subject

John is no longer the object of the verb of the complement, as it is in

Example 3b. Notice also that it is the underlying P-markers, rather than

the derived P-marker, that represent the semantically relevant information

in this case. In this respect, these examples are quite typical of what is

found in more extensive grammars.
These observations suggest that the transformational grammar be

stored and utilized only by the component M2 of the perceptual model.

M! will take a sentence as input and give us as output a relatively superficial

analysis of it (perhaps a derived P-marker such as that in Fig. 6). M2 will

utilize the full resources of the transformational grammar to provide a

structural description, consisting of a set of P-markers and a transforma-

tional history, in which deeper grammatical relations and other structural

information are represented. The output of M = (Ml9 M2) will be the

complete structural description assigned to the input sentence by the

grammar that it stores
;
but the analysis that is provided by the initial,

short-term memory component Mx may be extremely limited.

If the memory limitations on M1 are severe, we can expect to find that

structurally complex sentences are beyond its analytic power even when

they lack the property (i.e., repeated self-embedding) that takes them

completely beyond the range of any finite device. It might be useful,

therefore, to develop measures of various sorts to be correlated with

understandability. One rough measure of structural complexity that we

might use, along with degree of nesting and self-embedding, is the node-to-

terminal-node ratio N(Q) in the P-marker Q of the terminal string t(Q).

This number measures roughly the amount of computation per input

symbol that must be performed by the listener. Hence an increase in

N(Q) should cause a correlated difficulty in interpreting t(Q) for a real-

time device with a small memory. Clearly N(Q) grows as the amount of

branching per node decreases. Thus N(Q) is higher for a binary P-marker

such as that shown in Fig. %a than for the P-marker in Fig. 86 that repre-

sents a coordinate construction with the same number of terminals.

Combined with our earlier speculations concerning the perceptual model

My this observation would lead us to suspect that N(Q) should in general

be higher for the derived P-marker that must be provided by the limited
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a b c

Fig. 8. Illustrating a measure of structural complexity. N(Q)
for the P-marker (a) is 7/4; for (b), N(Q) = 5/4.

component Afx than it would be for underlying P-markers. In other

words, the general effect of transformations should be to decrease the

total amount of structure in the associated P-marker. This expectation is

fully borne out. The underlying P-markers have limited, generally binary

branching. But, as we have already observed in Chapter 1 1 (particularly

p. 305), binary branching is not a general characteristic of the derived

P-markers associated with actual sentences; in fact, the actual set of

derived P-markers is beyond the generative capacity of rewriting systems

altogether, since there is no bound on the amount of branching from a

single node (that is to say, on the length of a coordinate construction).

The psychological plausibility of a transformational model of the

language user would be strengthened, of course, if it could be shown that

our performance on tasks requiring an appreciation of the structure of

transformed sentences is some function of the nature, number, and com-

plexity of the grammatical transformations involved.

One source of psychological evidence concerns the grammatical trans-

formation that negates an affirmative sentence. It is a well-established

fact that people in concept-attainment experiments find it difficult to use

negative instances (Smoke, 1933). Hovland and Weiss (1953) established

that this difficulty persists even when the amount of information conveyed

by the negative instances is carefully equated to the amount conveyed by

positive instances. Moreover, Wason (1959, 1961) has shown that the

grammatical difference between affirmative and negative English sentences

causes more difficulty for subjects than the logical difference between

true and false; that is to say, if people are asked to verify or to construct

simple sentences (about whether digits in the range 2 to 9 are even or odd),

they will take longer and make more errors on the true negative and false

negative sentences than on the true affirmative and false affirmative sen-

tences. Thus there is some reason to think that there may be a grammatical

explanation for some of the difficulty we have in using negative infor-

mation; moreover, this speculation has received some support from
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Eifermann (1961), who found that negation in Hebrew has a somewhat

different effect on thinking than it has in English.

A different approach can be illustrated by sentence-matching tests

(Miller, 19626). One study used a set of 18 elementary strings (for

example, those formed by taking Jane, Joe, or John as the first constituent,

liked or warned as the second, and the old woman, the small boy, or the

young man as the last), along with the corresponding sets of sentences

that could be formed from those by passive, negative, or passive-and-

negative transformations. These sets were taken two at a time, and sub-

jects were asked to match the sentences in one set with the corresponding

sentences in the other. The rate at which they worked was recorded and

from that it was possible to obtain an estimate of the time required to

perform the necessary transformations. If we assume that these four

types of sentence are coordinate and independently learned, then there is

little reason to believe that finding correspondences between any two of

them will necessarily be more difficult than between any other two. On
the other hand, if we assume that the four types of sentence are related to

one another by two grammatical transformations (and their inverses),

then we would expect some of the tests to be much easier than others.

The data supported a transformational position : the negative transforma-

tion was performed most rapidly, the more complicated passive transfor-

mation took slightly longer, and tests requiring both transformations

(kernel to passive-negative or negative to passive) took as much time as

the two single transformations did added together. For example, in order

to perform the transformations necessary to match such pairs as Jane

didn't warn the small boy and The small boy was warned by Jane, subjects

required on the average more than three seconds, under the conditions of

the test.

Still another way to explore these matters is to require subjects to

memorize a set of sentences having various syntactic structures (J. Mehler,

personal communication). Suppose, for example, that a person reads at a

rapid but steady rate the following string of eight sentences formed by

applying passive, negative, and interrogative transformations: Has the

train hit the car? The passenger hasn't been carried by the airplane. The

photograph has been made by the boy. Hasn't the girl worn the jewel?
The student hasn't written the essay. The typist has copied the paper.
Hasn't the house been bought by the man ? Has the discovery been made by
the biologist ? When he finishes, he attempts to write down as many as he

can recall Then the list (in scrambled order) is read again, and again he

tries to recall, and so on through a series of trials. Under those conditions

many syntactic confusions occur, but most of them involve only a single

transformational step. It is as if the person receded the original sentences
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into something resembling a kernel string plus some correction terms for

the transformations that indicate how to reconstruct the correct sentence

when he is called on to recite. During recall he may remember the kernel,

but become confused about which transformations to apply.

Preliminary evidence from these and similar studies seems to support
the notion that kernel sentences play a central role, not only linguistically,

but psychologically as well. It also seems likely that evidence bearing on

the psychological reality of transformational grammar will come from

careful studies ofthe genesis oflanguage in infants, but we shall not attempt
to survey that possibility here.

It should be obvious that the topics considered in this section have

barely been opened for discussion. The problem can clearly profit from

abstract study of various kinds of perceptual models that incorporate

generative processes as a fundamental component. It would be instructive

to study more carefully the kinds of structures that are actually found

in natural languages and the formal features of those structures that make

understanding and production ofspeech difficult. In this area the empirical

study of language and the formal study of mathematical models may bear

directly on questions of immediate psychological interest in what could

turn out to be a highly fruitful and stimulating way.

3. TOWARD A THEORY OF COMPLICATED
BEHAVIOR

It should by now be apparent that only a complicated organism can

exploit the advantages of symbolic organization. Subjectively, we seem

to grasp meanings as integrated wholes, yet it is not often that we can

express a whole thought by a single sound or a single word. Before they
can be communicated, ideas must be analyzed and represented by se-

quences of symbols. To map the simultaneous complexities of thought
into a sequential flow of language requires an organism with considerable

power and subtlety to symbolize and process information. These com-

plexities make linguistic theory a difficult subject. But there is an extra

reward to be gained from working it through. Ifwe are able to understand

something about the nature of human language, the same concepts and

methods should help us to understand other kinds of complicated behavior

as well.

Let us accept as an instance of complicated behavior any performance
in which the behavioral sequence must be internally organized and guided

by some hierarchical structure that plays the same role, more or less, as a

P-marker plays in the organization of a grammatical sentence. It is not
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immediately obvious, of course, how we are to decide whether some

particular nonlinguistic performance is complicated or simple ; one natural

criterion might be the ability to interrupt one part of the performance until

some other part had been completed.

The necessity for analyzing a complex idea into its component parts

has long been obvious. Less obvious, however, is the implication that any

complicated activity obliges us to analyze and to postpone some parts

while others are being performed. A task, X, say, is analyzed into the

parts Yi, 72> 73 ,
which should, let us assume, be performed in that order.

So y,_ is singled out for attention while 72 and Y3 are postponed. In order

to accomplish 715 however, we find that we must analyze it into Z and

Z2 ,
and those in turn must be analyzed into still more detailed parts.

This general situation can be expressed in various ways by an outline

or by a list structure (Newell, Shaw, & Simon, 1959) or by a tree graph

similar to those used to summarize the structural description of individual

sentences. While one part of a total enterprise is being accomplished,

other parts may remain implicit and still largely unformulated. The

ability to remember the postponed parts and to return to them in an

appropriate order is necessarily reserved for organisms capable of com-

plicated information processing.
Thus the kind of theorizing we have

been doing for sentences can easily be generalized to even larger units of

behavior. Restricted-infinite automata in general, and PDS systems in

particular, seem especially appropriate for the characterization of many
different forms of complicated behavior.

The spectrum of complicated behavior extends from the simplest

responses at one extreme to our most intricate symbolic processes at the

other. In gross terms it is apparent that there is some scale of possibilities

between these extremes, but exactly how we should measure it is a difficult

problem. If we are willing to borrow from our linguistic analysis, there

are several measures already available. We can list them briefly:

INFORMATION AND REDUNDANCY. The variety and stereotypy of

the behavior sequences available to an organism are an obvious parameter

to estimate in considering the complexity of its behavior (cf. Miller &
Frick, 1949; Frick & Miller, 1951).

DEGREE OF SELF-EMBEDDING. This measure assumes a degree of

complication that may seldom occur outside the realm of language and

language-mediated behaviors. Self-embedding is of such great theoretical

significance, however, that we should certainly look for occurrences of it

in nonlinguistic contexts.

DEPTH OF POSTPONEMENT. This measure of memory load, proposed

by Yngve, may be of particular importance in estimating a person's
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capacity to carry out complicated instructions or consciously to devise

complicated plans for himself.

STRUCTURAL COMPLEXITY. The ratio of the total number of nodes

in the hierarchy to the number of terminal nodes provides an estimate of

complexity that, unlike the depth measure, is not asymmetrical toward the

future.

TRANSFORMATIONAL COMPLEXITY. A hierarchical organization of

behavior to meet some new situation may be constructed by transforming
an organization previously developed in some more familiar situation.

The number of transformations involved would provide an obvious

measure of the complexity ofthe transfer from the old to the new situation.

These are some of the measures that we can adapt in analogy to the

linguistic studies; no doubt many others of a similar nature could be

developed.

Clearly, no one can look at a single instance of some performance
and immediately assign values to it for any of those measures. As in the

case of probability measures, repeated observations under many different

conditions are required before a meaningful estimate is available.

Many psychologists, of course, prefer to avoid complicated behavior

in their experimental studies; as long as there was no adequate way to

cope with it, the experimentalist had little other alternative. Since about

1945, however, this situation has been changing rapidly. From mathe-

matics and logic have come theoretical studies that are increasingly

suggestive, and the development of high-speed digital computers has

supplied a tool for exploring hypotheses that would have seemed fantastic

only a generation ago. Today, for example, it is becoming increasingly

common for experimental psychologists to phrase their theories in terms

of a computer program for simulating behavior (cf. Chapter 7). Once a

theory is expressed in that form, of course, it is perfectly reasonable to try

to apply to it some of the indices of complexity.

Miller, Galanter, and Pribram (1960) have discussed the organization of

complicated behavior in terms of a hierarchy of tote units. A tote unit

consists of two parts: a test to see if some situation matches an internally

generated criterion and an operation that is intended to reduce any dif-

ferences between the external situation and some internal criterion. The

criterion may derive from a model or hypothesis about what will be per-

ceived or what would constitute a satisfactory state of affairs. The opera-
tions can either revise the criterion in the light of new evidence received

or they can lead to actions that change the organism's internal and/or

external environment. The test and its associated operations are actively

linked in a feedback loop to permit iterated adjustments until the criterion
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is reached. A tote (test-operate-test-exit) unit is shown in the form of a

flow-chart in Fig. 9. A hierarchy of tote units can be created by analyzing
the operational phase into a sequence of tote units ; then the operational

phase of each is analyzed in turn. There should be no implication, how-

ever, that the hierarchy must be constructed exclusively from strategy to

tactics or exclusively from tactics to strategy both undoubtedly occur.

An example of the kind of structures produced in this way is shown in the

flowchart in Fig. 10.

These serial flowcharts are simply the finite automata we considered in

Chapter 12, and it is convenient to replace them by oriented graphs (cf.

Karp, 1960). Wherever an initial or

terminal element or operation occurs in

the flowchart, replace it by a node with

one labeled arrow exiting from the

node; wherever a test occurs, replace it

by a node with two labeled exits. Next,

replace every nonbranching sequence
of arrows by a single arrow bearing a

Fig. 9. A simple tote unit. compound label. The graph corre-

sponding to the flow-chart of Fig. 10 is

shown in Fig. 11. From such oriented graphs as these it is a simple
matter to read off the set of triples that define a finite automaton.

A tote hierarchy is just a general form of finite automaton in the sense

of Chapter 12. We know from Theorem 2 of Chapter 12 that for any finite

automaton there is an equivalent automaton that can be represented by
a finite number of finite notations of the form A(A^ . . .

,
Am)*Am+:L9

where the elements A^ . . . , Am can themselves be notations of the same

form, and so on, until the full hierarchy is represented. For any finite

state model that may be proposed, therefore, there is an equivalent model

in terms of a (generalized) tote hierarchy.

Since a tote hierarchy is analogous to a program of instructions for a

serial computer, it has been referred to as a plan that the system is trying
to execute. Any postponed parts of the plan constitute the system's
intentions at any given moment. Viewed in this way, therefore, the finite

devices discussed in these chapters are clearly applicable to an even broader

range of behavioral processes than language and communication. Some

implications of this line of argument for nonlinguistic phenomena have

been discussed informally by Miller, Galanter, and Pribram.

A central concern for this type of theory is to understand where new

plans come from. Presumably, our richest source of new plans is our old

plans, transformed to meet new situations. Although we know little about

it, we must have ways to treat plans as objects that can be formed and
transformed according to definite rules. The consideration of transfor-

mational grammars gives some indication of how we might combine
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Fig. 10. A hierarchical system of tote units

E

T' Ozz, z.

Fig. 11. Graph of flowchart in Fig. 10.
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and rearrange plans, which are, of course, so closely analogous to

P-markers. As in the case of grammatical transformations, the truly

productive behavioral transformations are undoubtedly those that com-

bine two or more simpler plans into one. These three chapters make it

perfectly plain, however, how difficult it is to formulate a transformational

system to achieve the twin goals of empirical adequacy and feasibility of

abstract study.

When we ask about the source of our plans, however, we also raise the

closely related question of what it might be that stands in the same relation

to a plan as a grammar stands to a P-marker or as a programming language

stands to a particular program. In what form are the rules stored whereby

we construct, evaluate, and transform new plans? Probably there are

many diverse sets of rules that govern our planning in different enterprises,

and only patient observation and analysis of each behavioral system will

enable us to describe the rules that govern them.

It is probably no accident that a theory of grammatical structure can be

so readily and naturally generalized as a schema for theories of other kinds

of complicated human behavior. An organism that is intricate and highly

structured enough to perform the operations that we have seen to be

involved in linguistic communication does not suddenly lose its intricacy

and structure when it turns to nonlinguistic activities. In particular, such

an organism can form verbal plans to guide many of its nonverbal acts.

The verbal machinery turns out sentences and, for civilized men, sen-

tences have a compelling power to control both thought and action. Thus

the present chapters, even though they have gone well beyond the usual

bounds of psychology, raise issues that must be resolved eventually by any

satisfactory psychological theory of complicated human behavior.
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