LING 334 - Introduction to Computational Linguistics

Week 5

Linguistic Structure, NLP “Tasks”, and Annotation
The Basic Approaches of Linguistics

It’s all over the place! Low consensus field.

This makes some sense -
language has many parts and purposes.

Descriptivism

Maybe the one thing we can all agree on:
the object of study is how and what language is,
rather than what it “should be” (prescriptivism)
Descriptivism

Origins with Pāṇini, Sanskrit linguist ~400BC

Contrast with “experts,” Strunk and White etc.
(these are cultural norms and conventions)

Key (modern) ideas:
- Language change is normal and expected
- Everyone has a “dialect”
- There are very few cross-linguistic universals
<table>
<thead>
<tr>
<th>Level of Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonetics</td>
<td>sounds</td>
</tr>
<tr>
<td>Phonology</td>
<td>ordering of sounds</td>
</tr>
<tr>
<td>Morphology</td>
<td>words and word parts</td>
</tr>
<tr>
<td>Syntax</td>
<td>ordering of words</td>
</tr>
<tr>
<td>Semantics</td>
<td>propositional meaning</td>
</tr>
<tr>
<td>Pragmatics</td>
<td>non-propositional meaning</td>
</tr>
</tbody>
</table>

Small to big units:
But there are many more...

Reference pointing out things with words
Prosody suprasegmental sounds like pitch
Discourse sequences between large units
Social Meaning social implicature of variation

(very roughly)
Small
to
big
units:
The Concept of a “Task” in NLP

Research in NLP is often framed as solving a particular “task”, e.g. improving performance at some problem

Very frequent sort of task in traditional NLP:
- Given free text or speech audio,
 automatically generate a representation of some part of its linguistic structure
Phonetics

The physical production and perception of speech sounds
Unit of analysis: speech sound

NLP Tasks:
Speech synthesis
Automated transcription

https://dood.al/pinktrombone/
Phonology

The systematic organization of speech sounds
Unit of analysis: phoneme

Questions include:

● Which set of sounds does a language use?
● What rules constrain their orderings?

Example: /P/ aspiration

● ‘pin’ - the ‘p’ sound has a puff of air \([p^h] \)
● ‘spin’ - it doesn’t \([p] \)

NLP Tasks:
Similar to Phonetics
Morphology

The structure and constituent parts of words

Unit of analysis: morpheme

(smallest meaning-bearing unit)

Morphemes can be:

- **Free** can stand alone, words like ‘cat’ and ‘banana’
- **Bound** can’t stand alone, word-parts like ‘un-’ and ‘-est’

NLP Tasks:

- Morphological Segmentation (very important in synthetic langs!)
- Lemmatization and Inflection
Syntax

The systematicity of word orderings

“The sloth ate the cupcake.” != “The cupcake ate the sloth.”
* “Cupcake sloth ate the the.”

NLP Tasks:

- Syntactic Parsing
- Downstream applications, e.g.:
 - Machine Translation
 - Semantic Similarity
Semantics

The propositional (e.g., literal) meanings of words and larger units (frequently sentences)

Table =

NLP Tasks:
- Recognizing Textual Entailment
- Semantic Parsing

We’re digging into semantics next week!
Pragmatics

The beyond-propositional meanings of words and larger units

Among the many possibilities:

Implicature “I’m sad.” “Here’s a popsicle.”

Performatives “I now pronounce you X and Y.”

Deference “Please follow me, your majesty.”

Information Structure

NLP Tasks:

Many social/applied!

```plaintext
a. A large book was sitting on the desk.
b. On the desk a large book was sitting.
c. On the desk was sitting a large book.
d. It was a large book that was sitting on the desk.
e. What was sitting on the desk was a large book.
f. There was a large book sitting on the desk.
g. Sitting on the desk was a large book.
```
Traditional Levels of Structure

<table>
<thead>
<tr>
<th>Small to big units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonetics</td>
</tr>
<tr>
<td>Phonology</td>
</tr>
<tr>
<td>Morphology</td>
</tr>
<tr>
<td>Syntax</td>
</tr>
<tr>
<td>Semantics</td>
</tr>
<tr>
<td>Pragmatics</td>
</tr>
</tbody>
</table>
Reference

What entity in the world does a linguistic expression point out? Includes pronouns, honorifics, naming and nicknaming

Winograd Schema Challenge:
“The goose wouldn’t fit in the boat because it was too big.”
“The goose wouldn’t fit in the boat because it was too small.”

NLP Tasks:
● Coreference Resolution
● Named Entity Recognition

“I voted for Nader because he was most aligned with my values,” she said.
Discourse

The relations between clauses and propositions

NLP Tasks:

● Discourse Parsing
● Argumentation Mining
Social Meaning

Many sorts of complex socially enmeshed meaning-making:

 * Sentiment and stance
 * Regional variation
 * Identity performance
 * Memes and spread of ideas

Each can be an NLP Task!
Data in Linguistics

Introspection, and/or “native speaker intuitions”

Collected observations of language in use (e.g. corpora)

Laboratory data (experimentally collected or manipulated)

All of the above potentially augmented with annotations
Linguistic Annotations

To train a relevant model, we need training data
 So, we hand-label some!
Traditionally, most commonly done by experts
Today, frequently done with crowdsourcing as well
Which is more appropriate depends on the task!
 See relevant readings re: wisdom of the crowd -
 Naive annotators can do a great job!
Annotation Schemes

An annotation scheme or ontology instantiates a theory of language.

Example - Part of Speech Tagging:

36 Penn Treebank Tags

 Implicit Proposal: these are what’s important

I/PRP love/VBP eating/VBG noodles/NNS

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
Annotation Schemes (cont.)

Frequently developed over multiple rounds of piloting

Common tradeoff between specificity and speed/expense(scale

Do I want 40 categories and 400 annotations,

or 5 categories and 4,000 annotations?

Zipf’s Law - vanishing returns as we get many categories
Annotation Evaluation

Linguistic categories are purely abstract human creations!

There is no ground truth. (rut roh)

So we usually evaluate with Inter-Annotation Agreement

Have some proportion of the data annotated by multiple people

Obtain a measurement of consistency - how often do people make the same judgment?
Inter-Annotator Agreement

Common - Cohen’s Kappa

Compare the expected agreement to the actual:

\[\kappa = \frac{p_o - p_e}{1 - p_e} \]

\(p_o \) = probability of observed agreement

\(p_e \) = probability of expected agreement
Inter-Annotator Agreement

Say we have a task with two labels, POS and NEG, and two annotators, A and B, with these labels:

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
<th>Item 6</th>
<th>Item 7</th>
<th>Item 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotator A</td>
<td>POS</td>
<td>POS</td>
<td>NEG</td>
<td>POS</td>
<td>POS</td>
<td>NEG</td>
<td>NEG</td>
</tr>
<tr>
<td>Annotator B</td>
<td>POS</td>
<td>NEG</td>
<td>NEG</td>
<td>POS</td>
<td>NEG</td>
<td>NEG</td>
<td>POS</td>
</tr>
</tbody>
</table>
Inter-Annotator Agreement

Count up each category:

<table>
<thead>
<tr>
<th></th>
<th>Annotator A</th>
<th>Annotator B</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>NEG</td>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>
Inter-Annotator Agreement

Get totals:

<table>
<thead>
<tr>
<th></th>
<th>Annotator A</th>
<th></th>
<th>Annotator B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POS</td>
<td>NEG</td>
<td>total</td>
</tr>
<tr>
<td>POS</td>
<td>45</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>NEG</td>
<td>25</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>total</td>
<td>70</td>
<td>30</td>
<td>N = 100</td>
</tr>
</tbody>
</table>
Inter-Annotator Agreement

They agreed 60% of the time

\[p_o = \frac{(45 \text{ POS} + 15 \text{ NEG})}{100 \text{ total}} = 60\% \]

<table>
<thead>
<tr>
<th>Annotator A</th>
<th>POS</th>
<th>NEG</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td>45</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>NEG</td>
<td>25</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>total</td>
<td>70</td>
<td>30</td>
<td>N = 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annotator B</th>
<th>POS</th>
<th>NEG</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inter-Annotator Agreement

Probability of expected is trickier - calculate expected freq for each category:

\[E_{freq} = \frac{\text{row_total} \times \text{col_total}}{N} \]

<table>
<thead>
<tr>
<th></th>
<th>Annotator A</th>
<th>Annotator B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POS</td>
<td>NEG</td>
</tr>
<tr>
<td>POS</td>
<td>45 (42)</td>
<td>15</td>
</tr>
<tr>
<td>NEG</td>
<td>25</td>
<td>15 (12)</td>
</tr>
<tr>
<td>total</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>
Inter-Annotator Agreement

Now we can get p_e:

$$p_e = \frac{42 \text{ POS exp } + 12 \text{ NEG exp}}{100} = 0.54$$

<table>
<thead>
<tr>
<th></th>
<th>POS</th>
<th>NEG</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td>45</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>NEG</td>
<td>25</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>total</td>
<td>70</td>
<td>30</td>
<td>$N = 100$</td>
</tr>
</tbody>
</table>
Inter-Annotator Agreement

And calculate Kappa:

\[
\frac{p_o - p_e}{1 - p_e} = \frac{0.6 - 0.54}{1 - 0.54} = 0.13
\]

<table>
<thead>
<tr>
<th></th>
<th>POS</th>
<th>NEG</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td>45</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>NEG</td>
<td>25</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>total</td>
<td>70</td>
<td>30</td>
<td>N = 100</td>
</tr>
</tbody>
</table>
Interpretation of Agreement Metrics

Usually scaled 0.0 - 1.0:
What counts as good?

Differing opinions!
Ultimately, it’s made up, so it depends on the task
Disagreement is natural and real!

There are many real-world cases for which we would not necessarily expect or even want perfect agreement

Relevant reading: *Inherent Disagreements in Human Textual Inferences*
Who are the Annotators?

Especially for more subjective / social tasks (e.g. hate speech / toxic language detection)

Annotators will assign labels differently based on:

- Demographics (Kuwalty et al. 2020)
- Attitudes or beliefs (Sap et al. 2022)
- Exactly how the question is framed (Jakobsen et al. 2022)
Who are the Annotators?

Therefore always important to ask / report who the annotators are in data collection as thoroughly as possible

... and be thoughtful about what annotators are right for a given task