Words and Corpora
How many words in a sentence?

"I do uh main- mainly business data processing"
- Fragments, filled pauses

"Seuss’s cat in the hat is different from other cats!"
- **Lemma**: same stem, part of speech, rough word sense
 - *cat* and *cats* = same lemma
- **Wordform**: the full inflected surface form
 - *cat* and *cats* = different wordforms
How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars
and their

Type: an element of the vocabulary.

Token: an instance of that type in running text.

How many?

- 15 tokens (or 14)
- 13 types (or 12) (or 11?)
How many words in a corpus?

\[N = \text{number of tokens} \]

\[V = \text{vocabulary} = \text{set of types}, \ |V| \text{ is size of vocabulary} \]

Heaps Law = Herdan's Law = \[|V| = kN^\beta \]

where often \(.67 < \beta < .75 \)

i.e., vocabulary size grows with \(> \) square root of the number of word tokens

| | Tokens = N | Types = | V |
|--------------------------|------------|---------|
| Switchboard phone conversations | 2.4 million | 20 thousand |
| Shakespeare | 884,000 | 31 thousand |
| COCA | 440 million| 2 million |
| Google N-grams | 1 trillion | 13+ million |
Corpora

Words don't appear out of nowhere!

A text is produced by

• a specific writer(s),
• at a specific time,
• in a specific variety,
• of a specific language,
• for a specific function.
Corpora vary along dimensions like

○ **Language**: 7097 languages in the world
○ **Variety**, like African American Language varieties.
 ○ AAE Twitter posts might include forms like "iont" (*I don't*)
○ **Code switching**, e.g., Spanish/English, Hindi/English:
 S/E: Por primera vez veo a @username actually being hateful! It was beautiful:

 [For the first time I get to see @username actually being hateful! it was beautiful:]

 H/E: dost tha or ra- hega ... dont worry ... but dherya rakhe

 [“he was and will remain a friend ... don’t worry ... but have faith”]

○ **Genre**: newswire, fiction, scientific articles, Wikipedia
○ **Author Demographics**: writer's age, gender, ethnicity, SES
Corpus datasheets

Gebru et al (2020), Bender and Friedman (2018)

Motivation:

• Why was the corpus collected?
• By whom?
• Who funded it?

Situation: In what situation was the text written?

Collection process: If it is a subsample how was it sampled? Was there consent? Pre-processing?

+Annotation process, language variety, demographics, etc.
Basic Text Processing

Words and Corpora
Word tokenization
Text Normalization

Every NLP task requires text normalization:

1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences
Space-based tokenization

A very simple way to tokenize

- For languages that use space characters between words
 - Arabic, Cyrillic, Greek, Latin, etc., based writing systems
- Segment off a token between instances of spaces

Unix tools for space-based tokenization

- The "tr" command
- Inspired by Ken Church's UNIX for Poets
- Given a text file, output the word tokens and their frequencies
Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)

Given a text file, output the word tokens and their frequencies

```
tr -sc 'A-Za-z' '\n' < shakes.txt
| sort
| uniq -c
```

1945 A
72 AARON
19 ABBESS
5 ABBOT
25 Aaron
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbot

... ...

Change all non-alpha to newlines
Sort in alphabetical order
Merge and count each type
The first step: tokenizing

```
tr -sc 'A-Za-z' '
' < shakes.txt | head
```

THE
SONNETS
by
William
Shakespeare
From
fairest
creatures
We
...

The second step: sorting

```
tr -sc 'A-Za-z' '
' < shakes.txt | sort | head

A
A
A
A
A
A
A
A
A
A
A
A
...
```
More counting

Merging upper and lower case
```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' \n | sort | uniq -c
```

Sorting the counts
```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' \n | sort | uniq -c | sort -n -r
```

<table>
<thead>
<tr>
<th>Count</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>23243</td>
<td>the</td>
</tr>
<tr>
<td>22225</td>
<td>i</td>
</tr>
<tr>
<td>18618</td>
<td>and</td>
</tr>
<tr>
<td>16339</td>
<td>to</td>
</tr>
<tr>
<td>15687</td>
<td>of</td>
</tr>
<tr>
<td>12780</td>
<td>a</td>
</tr>
<tr>
<td>12163</td>
<td>you</td>
</tr>
<tr>
<td>10839</td>
<td>my</td>
</tr>
<tr>
<td>10005</td>
<td>in</td>
</tr>
<tr>
<td>8954</td>
<td>d</td>
</tr>
</tbody>
</table>

What happened here?
Issues in Tokenization

Can't just blindly remove punctuation:
- m.p.h., Ph.D., AT&T, cap’n
- prices ($45.55)
- dates (01/02/06)
- URLs (http://www.northwestern.edu)
- hashtags (#nlproc)
- email addresses (someone@u.northwestern.edu)

Clitic: a word that doesn't stand on its own
- "are" in we're, French "je" in j'ai, "le" in l'honneur

When should multiword expressions (MWE) be words?
- New York, rock ’n’ roll
Tokenization in NLTK

Bird, Loper and Klein (2009), *Natural Language Processing with Python*. O’Reilly

```python
>>> text = 'That U.S.A. poster-print costs $12.40...'  # set flag to allow verbose regexps
>>> pattern = r'''(?x)            # abbreviations, e.g. U.S.A.
  ([A-Z]\.)+             # words with optional internal hyphens
  | \w+(-\w+)*
  | $?\d+(_\d+)?%?        # currency and percentages, e.g. $12.40, 82%
  | \.\.\.               # ellipsis
  | [][]\.,;'?():-\'
  # these are separate tokens; includes ], [
  ... '''

>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
```
Tokenization in languages without spaces

Many languages (like Chinese, Japanese, Thai) don't use spaces to separate words!

How do we decide where the token boundaries should be?
Word tokenization in Chinese

Chinese words are composed of characters called "hanzi" (or sometimes just "zi")

Each one represents a meaning unit called a morpheme.
Each word has on average 2.4 of them.

But deciding what counts as a word is complex and not agreed upon.
How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”
How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals
How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚明 进入 总决赛
Yao Ming reaches overall finals
How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚明 进入 总决赛
Yao Ming reaches overall finals

7 characters? (don't use words at all):
姚明 进入 总决赛
Yao Ming enter enter overall decision game
Word tokenization / segmentation

So in Chinese it's common to just treat each character (zi) as a token.

- So the **segmentation** step is very simple

In other languages (like Thai and Japanese), more complex word segmentation is required.

- The standard algorithms are neural sequence models trained by supervised machine learning.
Basic Text Processing

Word tokenization
Byte Pair Encoding
Another option for text tokenization

Instead of

- white-space segmentation
- single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts of words as well as whole words)
Subword tokenization

Three common algorithms:

- **Byte-Pair Encoding (BPE)** (Sennrich et al., 2016)
- **Unigram language modeling tokenization** (Kudo, 2018)
- **WordPiece** (Schuster and Nakajima, 2012)

All have 2 parts:

- A token **learner** that takes a raw training corpus and induces a vocabulary (a set of tokens).
- A token **segmenter** that takes a raw test sentence and tokenizes it according to that vocabulary.
Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters

\[= \{A, B, C, D, \ldots, a, b, c, d\ldots\}\]

Repeat:

- Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
- Add a new merged symbol 'AB' to the vocabulary
- Replace every adjacent 'A' 'B' in the corpus with 'AB'.

Until \(k\) merges have been done.
BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V ← all unique characters in C # initial set of tokens is characters

for $i = 1$ to k do # merge tokens til k times
 $t_L, t_R ←$ Most frequent pair of adjacent tokens in C
 $t_{NEW} ← t_L + t_R$ # make new token by concatenating
 $V ← V + t_{NEW}$ # update the vocabulary
 Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-separated tokens.

So we commonly first add a special end-of-word symbol '__' before space in training corpus

Next, separate into letters.
BPE token learner

Original (very fascinating🤔) corpus:

low low low low low lowest lowest newer newer newer newer newer newer newer newer wider wider wider wider wider new new

Add end-of-word tokens, resulting in this vocabulary:

vocabulary
_
, d, e, i, l, n, o, r, s, t, w
BPE token learner

<table>
<thead>
<tr>
<th>corpus</th>
<th>vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 low</td>
<td>_, d, e, i, l, n, o, r, s, t, w</td>
</tr>
<tr>
<td>2 lowest</td>
<td></td>
</tr>
<tr>
<td>6 newer</td>
<td></td>
</tr>
<tr>
<td>3 wider</td>
<td></td>
</tr>
<tr>
<td>2 new</td>
<td></td>
</tr>
</tbody>
</table>

Merge er to er

<table>
<thead>
<tr>
<th>corpus</th>
<th>vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 low</td>
<td>_, d, e, i, l, n, o, r, s, t, w, er</td>
</tr>
<tr>
<td>2 lowest</td>
<td></td>
</tr>
<tr>
<td>6 newer</td>
<td></td>
</tr>
<tr>
<td>3 wider</td>
<td></td>
</tr>
<tr>
<td>2 new</td>
<td></td>
</tr>
</tbody>
</table>
BPE

corpus
5 low _
2 lowest _
6 newer _
3 wider _
2 new _

vocabulary
_, d, e, i, l, n, o, r, s, t, w, er

Merge er _ to er_

corpus
5 low _
2 lowest _
6 newer _
3 wider _
2 new _

vocabulary
, d, e, i, l, n, o, r, s, t, w, er, er
BPE

corpus vocabulary
5 low _ __, d, e, i, l, n, o, r, s, t, w, er, er__
2 lowest _ __
6 newer__
3 wider__
2 new _

Merge n e to ne

corpus vocabulary
5 low _ __, d, e, i, l, n, o, r, s, t, w, er, er__, ne
2 lowest _ __
6 newer__
3 wider__
2 new _
BPE

The next merges are:

<table>
<thead>
<tr>
<th>Merge</th>
<th>Current Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ne, w)</td>
<td>, d, e, i, l, n, o, r, s, t, w, er, er, ne, new</td>
</tr>
<tr>
<td>(l, o)</td>
<td>, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo</td>
</tr>
<tr>
<td>(lo, w)</td>
<td>, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low</td>
</tr>
<tr>
<td>(new, er__)</td>
<td>, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer__</td>
</tr>
<tr>
<td>(low, __)</td>
<td>, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer__, low__</td>
</tr>
</tbody>
</table>
BPE token **segmenter** algorithm

On the test data, run each merge learned from the training data:

- Greedily
- In the order we learned them
- (test frequencies don't play a role)

So: merge every *er* to *er*, then merge *er_* to *er_*, etc.

Result:

- Test set "new er_" would be tokenized as a full word
- Test set "low er_" would be two tokens: "low er_"
Properties of BPE tokens

Usually include frequent words
And frequent subwords

• Which are often morphemes like -est or –er

A morpheme is the smallest meaning-bearing unit of a language

• unlikeliest has 3 morphemes un-, likely, and -est
Basic Text Processing

Byte Pair Encoding
Word Normalization and other issues
Word Normalization

Putting words/tokens in a standard format

◦ U.S.A. or USA
◦ uhhuh or uh-huh
◦ Fed or fed
◦ am, is, be, are
Case folding

Applications like IR: reduce all letters to lower case
 ◦ Since users tend to use lower case
 ◦ Possible exception: upper case in mid-sentence?
 ◦ e.g., *General Motors*
 ◦ *Fed* vs. *fed*
 ◦ *SAIL* vs. *sail*

For sentiment analysis, MT, Information extraction
 ◦ Case is helpful (*US* versus *us* is important)
Lemmatization

Represent all words as their lemma, their shared root = dictionary headword form:

◦ *am, are, is* → *be*

◦ *car, cars, car's, cars'* → *car*

◦ Spanish *quiero* (‘I want’), *quieres* (‘you want’)
 → *querer* ‘want'

◦ *He is reading detective stories*
 → *He be read detective story*
Lemmatization is done by Morphological Parsing

Morphemes:
- The small meaningful units that make up words
- **Stems:** The core meaning-bearing units
- **Affixes:** Parts that adhere to stems, often with grammatical functions

Morphological Parsers:
- Parse *cats* into two morphemes *cat* and *s*
- Parse Spanish *amaren* (‘if in the future they would love’) into morpheme *amar* ‘to love’, and the morphological features 3PL and future subjunctive.
Stemming

Reduce terms to stems, chopping off affixes crudely

This was not the map we found in Billy Bones’s chest, but an accurate copy, complete in all things-names and heights and soundings—with the single exception of the red crosses and the written notes.
Porter Stemmer

Based on a series of rewrite rules run in series
◦ A cascade, in which output of each pass fed to next pass

Some sample rules:

ATIONAL → ATE (e.g., relational → relate)
 ING → ε if stem contains vowel (e.g., motoring → motor)
 SSES → SS (e.g., grasses → grass)
Dealing with complex morphology is necessary for many languages

- e.g., the Turkish word: Uygarlastiramadiklarimizdanmissinizcasina
- `(behaving) as if you are among those whom we could not civilize’
- Uygar `civilized’ + las `become’
 + tir `cause’ + ama `not able’
 + dik `past’ + lar ‘plural’
 + imiz ‘p1pl’ + dan ‘abl’
 + mis ‘past’ + siniz ‘2pl’ + casina ‘as if’
Sentence Segmentation

!, ? mostly unambiguous but **period** “.” is very ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to classify a period as either (a) part of the word or (b) a sentence-boundary.
 - An abbreviation dictionary can help

Sentence segmentation can then often be done by rules based on this tokenization.
Basic Text Processing

Word Normalization and other issues