Simple Neural o
Networks and Units in Neural Networks

Neural
Language
Models

This is in your brain

Cell body

Ax
NUCIGUS{ Y
~ &
\)
s

Axon hillock
— \\

Endoplasmic
reticulum

on Telodendria

//

Synaptic terminals

Golgi apparatus

Mitochondrion Dendrite

J \ Dendritic branches

By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830

Neural Network Unit

This is not in your brain

Output value y

Non-linear transform

Weighted sum

Weights W,
Input layer x; X, X3 +1

Neural unit

Take weighted sum of inputs, plus a bias
z=b+ ZW,‘X,‘
i

z=w-x+b

Instead of just using z, we'll apply a nonlinear activation

function f:

Non-Linear Activation Functions

We're already seen the sigmoid for logistic regression:

1.0

Sigmoid L y=1/(1+e7)
{ y
y= G(Z) s 1+e_z 0.4

007 3 - -2

Final function the unit is computing

y=0o(w-x+b) =

1

exp(—(w

- X

Final unit again

Output value y

Non-linear activation function

Weighted sum

Weights W,
Input layer x; X, X3 +1

An example

Suppose a unit has:

w= [0.2,0.3,0.9] b = 0.5
What happens with input x:
x = [0.5,0.6,0.1]
1
=o(w-x+b) = —
y=0(w-x+Db) | & o—(wxtb)
1 |

1 4+ ¢~ (:5%2+.6%.3+.1%.94.5) — 1+ ¢—087 =.70

Non-Linear Activation Functions besides sigmoid

Most Common:

1.0 10
— n Z
y= €€ y = max(z 0)

05 2+ g 2 _ 3
fcg 0.0 % 0
I i
o T s

~19% =5 0 5 10 ST 5 0 5 10

Rectified Linear Unit

Simple Neural o
Networks and Units in Neural Networks

Neural
Language
Models

Simple Neural
Networks and The XOR problem

Neural
Language
Models

The XOR problem

Minsky and Papert (1969)

Can neural units compute simple functions of input?

AND OR XOR
X1l X2 |¥% x1 x2|y x1 x2|y
O 0 |0 O 0 |0 O 0 |0
® 1 [0 O 1 |1 O 1 |1
1 0 |0 1 0 |1 1 0 |1
- B | 1 1 |1 1 1 |0

Perceptrons

A very simple neural unit
* Binary output (O or 1)
* No non-linear activation function

0, tw-x+b<0

YTV 1, ifwex+b>0

Easy to build AND or OR with perceptrons
0, fw-x+b5<0
_{1,ﬁwa+b>O

Xl Xl
-XQ’““I;EEE§::> Xz’—__é Z;<:>
-1 AND = OR
_|_1/ x1 x2|y +1 x1 x2|y
® O |0 ©O 0 |0
O 1 |0 O 1 |1
AND 1 o le OR 1 0 |1
1 1 1 1 1 |1

But!

It is not possible to capture XOR with perceptrons.

Why? Perceptrons are linear classifiers

Perceptron equation given x, and x_, is the equation of a line
wx twx +b=0

(in standard linear format: x, = (—w /w,)x + (=b/w,))

This line acts as a decision boundary

* Oif inputis on one side of the line
* 1if on the other side of the line

Decision boundaries

X X X
\\21 2y 2
O RN, ® 1 @ © I O
T Ty 9
0 O O™, 0O *~— 0 O *~—
0 1) 0 " 0 1
a) Xl AND X2 b) Xl OR X2 C) Xl XOR X2

XOR is not a linearly separable function!

Solution to the XOR problem

XOR can't be calculated by a single perceptron

XOR can be calculated by a layered network of units.

XOR RelU /@

x1 x2|y 1 -2

6 00 o (5 B

O 1 |1 \

1 0 |1 1 1 1

1 1[0 ol 3 5

X1 X2

. . pe.
The hidden representation h o
TSI
Xz‘ hz‘ 1 2
1 @ O 1 s
0 O *— 0 O——"@ .
1 L h
0 1 O - 1 2 1
a) The original x space b) The new (linearly separable) / space

(With learning: hidden layers will learn to form useful representations)

Simple Neural
Networks and The XOR problem

Neural
Language
Models

Simple Neural
Networks and Feedforward Neural Networks

Neural
Language
Models

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or
MLPs) for historical reasons

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)

Output layer
(0 node)

\Y

(vector)

Input layer
vector x

y=0cw:-:x+Db)

(scalar)

(y is a scalar)

Multinomial Logistic Regression as a 1-layer Network

Fully connected single layer network
A Y,

y = softmax(Wx + b)

Output layer

(softmax nodes) y is a vector
W b
Wiis a b is a vector
matrix

Input layer
scalars

Sidenote on softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is:

softmax(z) = exp (21) , exp (22) . exp (2k)
t (Z) Zle exp (z;) Zf:l exp (zi) Zle exp (z;)
exp (z;)

1 <i<k

softmax(z;) = —

2_j—1€xp(z))

Example:
z=10.6,1.1,—1.5,1.2,3.2,—1.1]

softmax(z) = [0.055,0.090,0.006,0.099,0.74,0.010]

Two-Layer Network with scalar output

y = o(z) yisascalar
z=Uh

Output layer
(0 node) U

hidden units
(0 node)

h=oc(Wx+Db)
) it

Or tanh

Input layer
(vector)

Two-Layer Network with scalar output

Output layer y = 0a(z) yis ascalar

(0 node)

hidden units
(0 node)

Input layer
(vector)

Two-Layer Network with scalar output

y = o(z) yisascalar
z=Uh

Output layer
(0 node) U

hidden units
(0 node)

h=oc(Wx+Db)
) it

Or tanh

Input layer
(vector)

Two-Layer Network with softmax output

y = softmax(z)

Output layer

(0 node) y is a vector
hidden units oc(Wx+b)
(0 node) coud e
Input layer

(vector)

Multi-layer Notation

y = ql2!

sigmoid or softmax
‘ a[z] = g[z] (Z[Z])
2121 — w21l 4 pl2]

alll = glil(zlily RelU

L1 = witlglol 4 pl1]

bl

0]

Multi Layer Notation

1 — wltlgll 4 plt

AU =
all = gl
A2 = wllgll 4 pl2l
ad? = gl
§ = al®

X X5 X3 +1

foriinl.n
Al — Wl gli-1 o pli
alll = glil (gl

)’l\ e a[n]

Replacing the bias unit

Let's switch to a notation without the bias unit
Just a notational change

1. Add a dummy node a =1 to each layer

2. Its weight w, will be the bias

3. Soinput layera'® =1,
> Anda =1,a? =1,...

Replacing the bias unit

Instead of: We'll do this:
X=X, Xy e X X=Xy X, X, ooy X,
h=o(Wx+b) h= o (Wx)

ngo no
hi=o (ijm +bj) c ;Wﬁxi
. =

Replacing the bias unit

Instead of: We'll do this:

Simple Neural
Networks and Feedforward Neural Networks

Neural
Language
Models

Simple Neural

Networks and Applying feedforward networks

Neural to NLP tasks

Language
Models

Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:
1. Text classification

2. Language modeling

State of the art systems use more powerful neural
architectures, but simple models are useful to
consider!

Classification: Sentiment Analysis

We could do exactly what we did with logistic
regression

Input layer are binary features as before
Output layerisOor 1

Sentiment Features

Var

Definition

X1
X2
X3
X4

X5

A6

count(positive lexicon) € doc)

count{negative lexicon) € doc)
1 if “no” € doc

{ 0 otherwise

count(1st and 2nd pronouns € doc)
1 if =" € doc

{ 0 otherwise

log(word count of doc)

Feedforward nets for simple classification

U
Loisti 2-layer
ogi>tic W feedforward
Regression network

W

f, f f

1 2 n

Just adding a hidden layer to logistic regression

* allows the network to use non-linear interactions between
features

e which mav (or mav not) imborove nerformance

Even better: representation learning

The real power of deep learning comes

from the ability to learn features from
the data

Instead of using hand-built
human-engineered features for
classification e, e e

Use learned representations like
embeddings!

Neural Net Classification with embeddings as input
features!

p(positive sentiment|The dessert is...)

Output layer
sigmoid

Hidden layer

Projection layer
embeddings

cmbedding for embedding for embedding for
word 534 word 23864 word 7

\ | |

The dessert is

w1 Wo Wa

Issue: texts come in different sizes

(F& @ . 00 (F@ «c @ <. 00 @@ @ - 0@

embedding for embedding for embedding for

This assumes a fixed size length (3)! i St

The | dessert | is |

Kind of unrealistic. | k
Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
* If shorter then pad with zero embeddings
* Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same
dimensionality as a word) to represent all the words
* Take the mean of all the word embeddings

* Take the element-wise max of all the word embeddings
* For each dimension, pick the max value from all words

Reminder: Multiclass Outputs

What if you have more than two output classes?
> Add more output units (one for each class)
> And use a “softmax layer”

softmax(z;) = - 1<i<D

Neural Language Models (LMs)

Language Modeling: Calculating the probability of the
next word in a sequence given some history.

* We've seen N-gram based LMs

* But neural network LMs far outperform n-gram
language models

State-of-the-art neural LMs are based on more
powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!

Simple teedrorward Neural Language
Models

Task: predict next word w,

given prior wordsw, ., w, ., W

17 22 V3t
Problem: Now we’re dealing with sequences of
arbitrary length.

Solution: Sliding windows (of fixed length)

1
(Wt|Wt) ~ (Wt|wt N+1)

Neural Language Model
p(aardvark|...) p(fish|...) p(for]...) p(zebral...)

} t t |
oupntlver () () () Bastho fliy) o

U \/""“’h

Hidden layer dp, X1
W / dhX3d
ProjeCtion layer " .o , oo . o [.. ee @ e ..] 3dxl
embeddings 1 T
E embedding for embedding for embedding for
word 35 word 9925 word 45180
K !
3] and thanks[for all the] B
V-3 W2 Wt-1 W,

Why Neural LIVIS work better than N-gram
LMs

Training data:
We've seen: | have to make sure that the cat gets fed.
Never seen: dog gets fed

Test data:

| forgot to make sure that the dog gets
N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog"
embeddings to generalize and predict “fed” after dog

Simple Neural .

Networks and Applying feedforward networks
Neural to NLP tasks

Language

Models

Simple Neural o _
Networks and Training Neural Nets: Overview

Neural
Language
Models

Intuition: training a 2-layer Network

Actual answer y " }

System output y

*

Forward pass

Loss function L(y, y)

Backward pass

Training instance

Intuition: Training a 2-layer network

For every training tuple (x, y)
o Run forward computation to find our estimate y

° Run backward computation to update weights:

> For every output node
o Compute loss L between true y and the estimated y
> For every weight w from hidden layer to the output layer
o Update the weight
o For every hidden node
o Assess how much blame it deserves for the current answer
o For every weight w from input layer to the hidden layer
o Update the weight

Reminder: Loss Function for binary logistic regression

A measure for how far off the current answer is to
the right answer

Cross entropy loss for logistic regression:
Leg(9,y) = —logp(ylx) = —[ylogy+ (1 —y)log(1—7)]

= —|ylogo(w-x+b)+(1—y)log(l —oc(w-x+b))

Reminder: gradient descent tor weight
updates

Use the derivative of the loss function with respect to
weights % L(f(x;w),y)

To tell us how to adjust weights for each training item
> Move them in the opposite direction of the gradient

W= W= b L(FOGw),)

o For logistic regression

aLCE(yvy)
5’w]-

= [ow-x+b))l

Where did that derivative come from?

Using the chain rule! 7 (x) = u(v(x)) ﬁ _ du . dv
Intuition (see the text for details) dx dv dx

Derivative of the weighted sum

Derivative of the Activation

Derivative of the Loss

OL _ 0L 0y 0z
dw; 9y 9z dw;

How can | find that gradient for every weight
in the network?

These derivatives on the prior slide only give the
updates for one weight layer: the last one!

What about deeper networks?

* Lots of layers, different activation functions?
Solution in the next lecture:

* Even more use of the chain rule!!

* Computation graphs and backward differentiation!

Simple Neural o _
Networks and Training Neural Nets: Overview

Neural
Language
Models

Simple Neural .
Networks and Computation Graphs and

Neural Backward Differentiation
Language
Models

Why Computation Graphs

For training, we need the derivative of the loss with
respect to each weight in every layer of the network

* But the loss is computed only at the very end of the
network!

Solution: error backpropagation (rumelhart, Hinton, Williams, 1986)
* Backprop is a special case of backward differentiation
* Which relies on computation graphs.

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

Example: L(a,b,c) = c(a+2b)
d = 2%b

Computations: e = a+d

I, = exe

—
.\.

:/

Example: L(a,b,c)= c(a+2b)
d = 2%b

Computations: e = a+d

i = exe

forward pass

3 f
e=5 B

Backwards differentiation in computation
graphs

The importance of the computation graph
comes from the backward pass

This is used to compute the derivatives that
we’ll need for the weight update.

Example L(a,b,c) = c(a—+2b)

d = 24%b
e = a+d
i, = ewxe

. dL oaL oL
Wewant: 52, 5, and 3¢

The derivative g—, tells us how much a small change in a
affects L.

The chain rule
Computing the derivative of a composite function:

£ () = u(v(x)) df _ du dv
dx dv dx

d du dv d
r@=uvmey L=

Example L(a,b,c) = c(a—+2b)

d = 2%b

e = a+d

. = exe aL_
5— (&
oL dL de
Jda _ Oe da
oL dL de dd

b de dd db

Example

L(a,b,c) = c(a+2b)

g —

N ®

2xb
= a+d

= Cxe

JdL

JdL
db

dL de
de da
dL de dd
de dd db

oL _ JL _
e g -
de de
g—l,%—l
dd

%—2

oL L de . 9L _ oL

E I e IETE L=ce P C’B_c:
da de da
xample T LTV T
a=3 db ~ de dd db oy

Example

Backward dirrerentiation on a two layer
network

Sigmoid activation

W[Z]

ReLU activation

W[l]

Backward dirrerentiation on a two layer
network

al!/ = ReLU(z!!) dReLU(z) { 0 for z<0
o dZ | fOl” ZZO

a? — G(Z[Z]) d;iz) =0(z)(1—-0(z))
2

<>
|
QI_I

Backward ditferentiation on a 2-layer
network

dReLU(z) [0 for z<0
dz 1 for z>0

200 _ o(2)(1- ()

dReLU(z) 0 for z<0
dz 11 for z>0

[1]
Starting o1T the backwara pass. a— all eLU(z!")
(I'll write a for al?l and z for zI2]) z zi = Wm[a]m + b
a?l = o(%)
Ly, y) =—(log(®) + (A —y)log(1 —7%)) $ = a?
L(a,y) = —(yloga + (1 — y)log(1 — a))
dL 0L da
9z 0Oa 9z

oL dl 0 log(1 —
<[0)

.
(b0)G

da oL y y-—1
—=a(l—a — == —) = a —
5, =e1-0 Z=-(Z+i—Jad-a)=a-y

Summary

For training, we need the derivative of the loss with respect to
weights in early layers of the network

* Butloss is computed only at the very end of the network!
Solution: backward differentiation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the derivative of
the loss with respect to these early weights.

Simple Neural .
Networks and Computation Graphs and

Neural Backward Differentiation
Language
Models

