
Simple Neural
Networks and
Neural
Language
Models

 Units in Neural Networks

This is in your brain

2

By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830

Neural Network Unit
This is not in your brain

3

Weights

Input layer

Weighted sum

Non-linear transform

Output value

bias

Neural unit

Take weighted sum of inputs, plus a bias

Instead of just using z, we'll apply a nonlinear activation
function f:

Non-Linear Activation Functions

5

Sigmoid

We're already seen the sigmoid for logistic regression:

Final function the unit is computing

Final unit again

7

Weights

Input layer

Weighted sum

Non-linear activation function

Output value

bias

An example

Suppose a unit has:

w = [0.2,0.3,0.9] b = 0.5

What happens with input x:

x = [0.5,0.6,0.1]

Non-Linear Activation Functions besides sigmoid

9

tanh ReLU
Rectified Linear Unit

Most Common:

Simple Neural
Networks and
Neural
Language
Models

 Units in Neural Networks

Simple Neural
Networks and
Neural
Language
Models

 The XOR problem

The XOR problem

Can neural units compute simple functions of input?

Minsky and Papert (1969)

Perceptrons

A very simple neural unit

• Binary output (0 or 1)

• No non-linear activation function

Easy to build AND or OR with perceptrons

But!

It is not possible to capture XOR with perceptrons.

Why? Perceptrons are linear classifiers

Perceptron equation given x
1
 and x

2
, is the equation of a line

w1x1 + w2x2 + b = 0

(in standard linear format: x2 = (−w1/w2)x1 + (−b/w2))

This line acts as a decision boundary
• 0 if input is on one side of the line
• 1 if on the other side of the line

Decision boundaries

XOR is not a linearly separable function!

Solution to the XOR problem

XOR can't be calculated by a single perceptron

XOR can be calculated by a layered network of units.

The hidden representation h

(With learning: hidden layers will learn to form useful representations)

Simple Neural
Networks and
Neural
Language
Models

 The XOR problem

Simple Neural
Networks and
Neural
Language
Models

 Feedforward Neural Networks

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or
MLPs) for historical reasons

Binary Logistic Regression as a 1-layer Network

23

w

x
n

x
1

+1

w1 wn b

(y is a scalar)
σOutput layer

(σ node)

Input layer
vector x

(we don't count the input layer in counting layers!)

(vector)
(scalar)

Multinomial Logistic Regression as a 1-layer Network

24

W

xnx1

Fully connected single layer network

W is a
matrix

+1

y is a vector

y1 yn

b is a vector

b

s s sOutput layer
(softmax nodes)

Input layer
scalars

Sidenote on softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is:

Example:

Two-Layer Network with scalar output

U

W

x
n

x
1

+1

y is a scalar

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

Two-Layer Network with scalar output

U

W

x
n

x
1

+1

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

i

j
Wji

vector

y is a scalar

Two-Layer Network with scalar output

U

W

x
n

x
1

+1

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

y is a scalar

Two-Layer Network with softmax output

U

W

x
n

x
1

+1

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

y is a vector

Multi-layer Notation

W[1]

x
n

x
1

+1

b[1]

i

j

W[2]
b[2]

sigmoid or softmax

ReLU

Multi Layer Notation

31

Replacing the bias unit

Let's switch to a notation without the bias unit

Just a notational change

1. Add a dummy node a
0
=1 to each layer

2. Its weight w
0
 will be the bias

3. So input layer a[0]
0
=1,

◦ And a[1]
0
=1 , a[2]

0
=1,…

Replacing the bias unit

Instead of: We'll do this:

x= x1, x2, …, xn0 x= x0, x1, x2, …, xn0

Replacing the bias unit

Instead of: We'll do this:

Simple Neural
Networks and
Neural
Language
Models

 Feedforward Neural Networks

Simple Neural
Networks and
Neural
Language
Models

 Applying feedforward networks
to NLP tasks

Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:
1. Text classification

2. Language modeling

State of the art systems use more powerful neural
architectures, but simple models are useful to
consider!

37

Classification: Sentiment Analysis

We could do exactly what we did with logistic
regression

Input layer are binary features as before

Output layer is 0 or 1 U

W

x
n

x
1

σ

Sentiment Features

39

Feedforward nets for simple classification

Just adding a hidden layer to logistic regression

• allows the network to use non-linear interactions between
features

• which may (or may not) improve performance.

40

U

W

x
n

x
1

f
1 f

2
f

n

40

W

x
n

x
1

f
1 f

2
f

n

Logistic
Regression

2-layer
 feedforward
 network

σ
σ

Even better: representation learning

The real power of deep learning comes
from the ability to learn features from
the data

Instead of using hand-built
human-engineered features for
classification

Use learned representations like
embeddings!

41

U

W

x
n

x
1

e
1 e

2
e

n

σ

42

Neural Net Classification with embeddings as input
features!

Issue: texts come in different sizes

This assumes a fixed size length (3)!

Kind of unrealistic.

Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same
dimensionality as a word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings

• For each dimension, pick the max value from all words 43

Reminder: Multiclass Outputs

What if you have more than two output classes?
◦ Add more output units (one for each class)
◦ And use a “softmax layer”

44

U

W

x
nx

1

Neural Language Models (LMs)

Language Modeling: Calculating the probability of the
next word in a sequence given some history.

• We've seen N-gram based LMs

• But neural network LMs far outperform n-gram
language models

State-of-the-art neural LMs are based on more
powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!
45

Simple feedforward Neural Language
Models

Task: predict next word wt
 given prior words wt-1, wt-2, wt-3, …

Problem: Now we’re dealing with sequences of
arbitrary length.

Solution: Sliding windows (of fixed length)

46

47

Neural Language Model

Why Neural LMs work better than N-gram
LMs

Training data:

We've seen: I have to make sure that the cat gets fed.

Never seen: dog gets fed

Test data:

I forgot to make sure that the dog gets ___

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog"
embeddings to generalize and predict “fed” after dog

Simple Neural
Networks and
Neural
Language
Models

 Applying feedforward networks
to NLP tasks

Simple Neural
Networks and
Neural
Language
Models

 Training Neural Nets: Overview

Intuition: training a 2-layer Network

51

U

W

x
nx

1

Training instance

Forward pass

Backward pass

Intuition: Training a 2-layer network

52

Reminder: Loss Function for binary logistic regression

A measure for how far off the current answer is to
the right answer

Cross entropy loss for logistic regression:

53

Reminder: gradient descent for weight
updates

Where did that derivative come from?

Using the chain rule! f (x) = u(v(x))
Intuition (see the text for details)

55

Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

How can I find that gradient for every weight
in the network?

These derivatives on the prior slide only give the
updates for one weight layer: the last one!

What about deeper networks?

• Lots of layers, different activation functions?

Solution in the next lecture:

• Even more use of the chain rule!!

• Computation graphs and backward differentiation!
56

Simple Neural
Networks and
Neural
Language
Models

 Training Neural Nets: Overview

Simple Neural
Networks and
Neural
Language
Models

 Computation Graphs and
Backward Differentiation

Why Computation Graphs
For training, we need the derivative of the loss with
respect to each weight in every layer of the network

• But the loss is computed only at the very end of the
network!

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)

• Backprop is a special case of backward differentiation

• Which relies on computation graphs.

59

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

60

Example:

61

Computations:

Example:

62

Computations:

Backwards differentiation in computation
graphs

The importance of the computation graph
comes from the backward pass

This is used to compute the derivatives that
we’ll need for the weight update.

Example

64

We want:

The chain rule

Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x)))

Example

66

Example

67

Example

68

Example

69

Backward differentiation on a two layer
network

70

σ

W[2]

W[1]

y

x
2

x
1

Sigmoid activation

ReLU activation

1

1

b[1]

b[2]

Backward differentiation on a two layer
network

71

Backward differentiation on a 2-layer
network

Summary

For training, we need the derivative of the loss with respect to
weights in early layers of the network

• But loss is computed only at the very end of the network!

Solution: backward differentiation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the derivative of
the loss with respect to these early weights.

74

Simple Neural
Networks and
Neural
Language
Models

 Computation Graphs and
Backward Differentiation

