Week 9

Neural Nets, RNNs, and Transformers



Coming Up

2/22 - More NNs, RNNs, and Transformers

2/27 - Research in NLP, final project brainstorming

2/29 - Topic Models

3/5 - Extra TA OH (here) for final projects/assignments

3/7 - State of the art and contemporary issues




Reminder - One Neuron (= Logistic Regression)

Biologically inspired
(but way less complex) Output value y

Non-linear activation function

Weighted sum

Weights  w,
Input layer  x; X, X3

this and future figures from SLP Ch. 7, 9, 10, and 11 unless noted 5




Non-Linearities - Sigmoid

1.0
Transforms any

0.8
oo Y=1/(1+e77)

0.4}

value to be
between O and 1, ¥
pseudo-probability

0.2

0.03 —6 —2 =7 2 4 6 8

2
x axis = sum of weights times inputs

y axis = output value of neuron 4
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Non-Linearities - tanh and ReLLU

tanh ReLLU
(like sigmoid, works better) (most common)
1.0 10
—_— nZ
i y= max(z0)

_ 0.5 &+ g2 _ 5
-('C% 0.0 % 0
>\—0.5 -5

_19]_0 -5 0 5 10 _1—010 =5 0 5 10

credit J+M, SLP slides




Why Non-Linearities?

Naive Bayes is a linear classifier

Decision boundary from »; w - x °

For NNs, key idea is representing the input in

increasingly abstract non-linear transformations
“Hidden Layers”

Until the final decision can be made linearly




KExample from Computer Vision

Kach layer in a convolutional neural network

-
=
=

)
AN

<+
-
S
N

~+~
AN

)
S
>

et
oYy

=
AN
A
«b)
N
-

=
>

)

=
B)

+
S

E

+
-
S

NE

v
-
c
)
a
w

iR
FR e
Edee
Edeae

Wt U
- FEle

et
D




Simple Feed-forward Neural Net
Kach arrow represents multiplication of value by a weight

Summed at each node,
non-linear transform

Like multiple logistic

regressions running
concurrently on the

same Inputs




Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:
1. Text classification

2. Language modeling

State of the art systems use more powerful neural
architectures, but simple models are useful to
consider!



Classification: Sentiment Analysis

We could do exactly what we did with
Naive Bayes or Perceptron

Input layer is binary features as before
e.2. bag of words

Output layer is O or 1
Learn weights from labeled examples



Sentiment Features

Var

Definition

X1
X2
X3
X4

X5

A6

count(positive lexicon) € doc)

count{negative lexicon) € doc)
1 if “no” € doc

{ 0 otherwise

count( 1st and 2nd pronouns € doc)
1 if “1” € doc

{ 0 otherwise

log(word count of doc)



Feedforward nets for simple classification

U
2-layer
Perc.:e|:.)tron/ W feedforward
e network
Regression W

f, f f

1 2 n

Just adding a hidden layer to logistic regression

 allows the network to use non-linear interactions between
features

e which mav (or mav not) imnrove nerformance



Kven better: representation learning

The real power of deep learning
comes from the ability to learn features
from the data

Instead of using hand-built
human-engineered features for
classification

W

Use learned representations like
embeddings!



Simple NN - Another View

p(positive sentiment|The dessert is...)

Large input layer!

Output layer
sigmoid

Many weights! U

Hidden layer

Projection layer 2 e

embeddings
E embedding for  embedding for embedding for
word 534 word 23864 word 7
The dessert is
Wl W2 W3 14




Issue: texts come in different sizes

FE @ .-00 @ -0 .- 09 @@ - @ --00

embedding for  embedding for embedding for

This assumes a fixed size length (3) BT S
) . . ’ .
Kind of unrealistic. [ The [ dessent | 15 |

w2 e

Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
* If shorter then pad with zero embeddings
* Truncate if you get longer reviews at test time

2. Create a single "sentence embedding” (the same
dimensionality as a word) to represent all the words
* Take the mean of all the word embeddings

* Take the element-wise max of all the word embeddings
* For each dimension, pick the max value from all words




Neural Language Models (LMs)

Language Modeling: Calculating the probability of
the next word in a sequence given some history.

* We've seen N-gram based LMs

* But neural network LMs far outperform n-gram
language models

State-of-the-art neural LMs are based on more
]%owerful neural network technology like
ransformers

Bultl'simple feedforward LMs can do almost as
well!



Simple feedforward
Neural Language Models

Task: predict next word w,

t-1° Wt 22 Wt 37 °°°

Problem: Now we’re dealing with sequences of
arbitrary length.

given prior words w

Solution: Sliding windows (of fixed length)

P(we W™ 1) m P(we W s )



Neural Network Language Model
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Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed.
Never seen: dog gets fed

Test data:

I forgot to make sure that the dog gets

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat” and "dog” embeddings
to generalize and predict “fed” after dog
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Recurrent Neural Networks

Core idea: combine hidden state vector
from previous timestep (e.g., word) C %
With input vector at current timestep y /

\

Additional set of weights
setting how previous step C i )
should be combined

Vector of hidden state —( R 1 ) ( X )
from the previous timestep T

Inputs at this timestep 2
T SGGGSSGSSSSSS——————————————,— S



Recurrent Neural Networks - unrolled view

Weights are shared \ )

across timesteps GE— )

E.g., the same \M\

U, V, W are Cho %
applied at each

timestep




Recurrent Neural Networks - unrolled view

Output layer (y) can be used: \;/

e.g. predict POS tags c—v— Y .

or discarded, if we just \% :
care about building up \M

the hidden state ) ( % )

Can just use final

C Mg D C X1 D)
output layer for prediction .




RNNs as a language model

Next word long and thanks for all
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RNNs as a language model - generation
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Recurrent Neural Networks - a flexible mechanism

)

Yo Yn

t t
RNN

t t

s N

a) sequence labeling

Xt

RNN

c¢) language modeling
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d) encoder-decoder
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Sequence-to-Sequence Models

Encode a sequence word by word,
building the hidden state

Pass final hidden state to
another RNN to “decode”

Common use case:
machine translation

27



https://docs.google.com/file/d/1zABDUd2CVTLx_xb80xM8L5x8xCoTisDB/preview

Seq2seq Models - another view

Remember encoder and decoder are separate RNNs

Target Text
A
= N
N P -~ i
) gt ko Z
llegs | la~ | bruja | verde | </s>
A | A | A | | T
' 1 : 1
ft | | !
I I : :
hidden ; ' '
layer(s) | | |
| ! : !
embedding : I : :
layer ; | I |
: . l g : .
the reen witch arrived <s> | llegd ! la | bruja ! verde
| | « |
| /4 | Va | /1 | /4
\\ / /7 | s 17
X Separator
Source Text




Bottleneck Problem

This final hidden state is a bottleneck - this one vector is
being asked to encode *everything® about the input

How can we let the e
model look back? | mE |
Answer: = ;j - EE
Attention! o B r{,llegé | | i) e




Attention

Incorporate an additional “context vector” at each step:

e Weighted sum of the encoder hidden states

e Simplest: dot product Decoder
similarity of current %
decoder hidden state “
and each encoder state &

e Many methods!




Other Key Concepts: Stacked and Bidirectional

Bidirectional RNN

Stacked RNN
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Hidden state from previous layer becomes input
for next layer, like feedforward

Two separate RNNs processing the input in opposite
directions to “see” both sides of any particular token
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Aside: Notes on Training

Architecture often about setting up a structure that “could work”:

e Reasonable-seeming information flow
e Differentiable loss function that says how bad guesses are
e Training data to train it on

Calculus tells how to “wiggle the weights” to get it to work,
learning from training data.

Often surprising it does! Classic article:
The Unreasonable Effectiveness of Recurrent Neural Networks .



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Aside: Notes on Tokenization
Contemporary NNs use subword tokenization

Like the Byte Pair Encoding algorithm introduced at the
very beginning of the course, and variants

33



Contextual Embeddings
Problem with word2vec!

Embedding for “sound” is always the same, even in:
“Does that sound good?”

¢

I heard a loud sound.”

¢

I’'m going boating out on the sound.”

“That’s sound logic right there!”

Doesn’t seem quite right.

34




KELMo (Embeddings from a Language Model)

Key insight: don’t use static embeddings; instead, use

hidden state from an RNN language model (Peters et al. 2018)
Embedding of “stick” in “Let’s stick to” - Step #1

Forward Language Model Backward Language Model

LSTM : : :
Layer #2

JJ N | JEEE o o e s T o5 33
LSTM @t . A% . A ® § 0
Layer #1 -w w w w w w

figure from Jay Alammar

Embedding 11l 8 0 il I I 11

35




KELMo (Embeddings from a Language Model)

Result is “contextual” embeddings
Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers

1 O T (T
- o = TN
2- Multiply each vector by i ®
a weight based on the task w
¢ S t
| I I
I x s A A
. X So ﬂ u

3- Sum the (now weighted) figure from Jay Alammar

vectors

ELMo embedding of “stick” for this task in this context 36




The Muppet Parade

BERT and others follow on this idea with more complex

architectures - key idea is self-attention

B

Many layers!
Details matter a lot!

Self-Attention
Layer

o=

X4

37




Transformers :

Output Vector

Detailed view of ok oogiErn

value vectors

self-attention

Softmax @ O 0)

Q5

Key/Query <'?

. 4
Comparisons 1

& e ol
Generate N NG

ey, query, value ‘@ ‘
e eectrgrs I @ @2




Pre-Training — Fine-Tuning Paradigm

ﬁ: Mask LM Mai LM \ NLI WD Start/End Span\
= * D—O—0r—

L)) e (] L)) G- ()

..... >
s ofe o 0 0 u u = d . .»
BERT sls = s 2 a a & ......., BERT
| P =0 = = e = [ e (=T = = e
— . L L - . s B

—_—
(o)) (o) (o) () e (o) )= )= (=)

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

39




POS

The many layers of BERT %'""_"'""'j"""_';'

K(A) = 1.57 K(s) =0.83
~f[[Joops -

1 iy | ) P—
s 4 | = |

| %5

BERT-Large has 24 transformer layers , - oo

Consts.

Deps

(each of which has a number of further

K(A) = 1.61 K(s) = 0.06
---------- e [ [ T e 0 e

Entities

internal layers itself) T

Empirical work has shown that BERT s & " o™
N NN I

encodes increasingly abstract

linguistic information in higher layers | = - =00

= T e (O e £ ) ) ) 1 [ [ [ T S

(Tenney et al, 2019) 0 2 4 6 8 10 12 14 16 18 20 22 24
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BERT et al. for Classification

BERT in particular provides a [CLS] token,

contextual embedding token for classification
Output value ¥

Frequently just start

the Cycle over again,,, Non-linear activation function

Train a new classifier Weighted sum
where the features are Weights  w,

BERT [CLS] embeddings! NpUtlajer o a &




Parameter Explosion!
Parameters are any values we have to set - e.g. weights

Naive Bayes
two classes, vocab size of 30k = 60k params

BERT-Large, 300 million params

More recent models in the trillions

42




Parameter Explosion!
Therefore, these big NNs are very data hungry!
We need many examples (at least 10x params) to train

Training on the internet, basically (Common Crawl)
Multiple terabytes of text

Costs to train one model up to the millions USD
not to mention all the failed attempts...

43




A Tricky Proposition

We got here empirically -
you see many cards have been stacked,
people kept trying stuff until they stayed standing

It all sounds reasonable, but it’s also weird that it works

New subfield: BERTology
trying to understand what linguistic things
BERT et al know and can do, and why

44




What did we gain from doing this?
Better results on concrete tasks, real world applications

Neural Machine Translation for instance - transformative
previously very complex statistical systems,
now trained end-to-end

No feature engineering! (Lots of architecture tinkering.)

Many building blocks for complex models

45




New Terminology
“Large Language Models” (LLMs)

LMs with (very) high parameter counts as
adaptable or general-purpose NLP solvers

a.k.a. “foundation models” (FMs)

“pre-trained language models” (PLMs)

46




Huge Capacity — “Emergent” Properties

LLMs appear to display new abilities with greater size,

Reading Comprehension Translation Summarization Question Answering
90 {HUMAN- -~ ,5 |Unsupervised Statistical MT T ——
80 1 ~ 301 1 1Open Domain QA Systems 1 1
20 - — 28 PGNet
70 w
DrQA+PGNet -~ ---—-—-——-————- . 9 56 >
5 15 {Denoising + Backtranslate ----13 o
T o0 | & 24 1Seq2seq + Attn 3
DrQA------===mmmmmmmmmmmm == oA @ 5 q45eq S
50 1 10 {Embed Nearest Neighbor--_~-1 & 22 =
PGNet--- . © Random-3
0 Denoising========<=-caf======" 9 20
51 <
30 18 ~~_most freq Q-type answer
C oo ------Seq2seq o - 5
117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M

# of parameters in LM

# of parameters in LM

# of parameters in LM

# of parameters in LM

1542M
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Huge Capacity — “Emergent” Properties
LLMs appear to display new abilities with greater size

One of the most striking has been “few-shot learning,”
also called “in-context learning” or “prompting”

General paradigm:

e providing correct examples in LM input context
e prompt for generation of structured output

48




In-Context Learning Paradigm

Gradient as to what the LLM is shown

e [Kine-tuning: thousands of examples, model weights are
updated (either in a final layer or thoughout)

e Few-shot: provide a small number of examples in the
context and ask for an answer, model weights constant

e One-shot: show one example and ask for an answer

e Zero-shot: provide a natural language description of the
task and ask for an answer "



In-Context Learning Examples - Few-shot

From http://ai.stanford.edu/blog/understanding-incontext/

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance
Panostaja did not disclose the purchase They defeated ... in the NFC
price. // Neutral Championship Game. // Sports
Paying off the national debt will be Apple ... development of in-house
extremely painful. // Negative chips. // Tech
The company anticipated its operating The company anticipated its operating
profit to improve. // profit to improve. //
L Infer & retrieve " Infer & retrieve
" concept ‘ concept
sentiment
v b v B

Positive Finance



http://ai.stanford.edu/blog/understanding-incontext/

... even works for MT! (somewhat)

Zero-shot performance from GPT-2 (Radford et al. 2019):

Reading Comprehension Translation Summarization 16 Question Answering
90 {HUMAN -~ -5 JUnsupervised Statistical MT----1 32 ead-3 -------=-=--==-c-nmum-
80 1 : 307 8 1 TOpen Domain QA Systems 1 1
20 - 28 PGNet -
70 =
DrQA+PGNet ~ -~ " 9 26 > 61
5 15 {Denoising + Backtranslate ----13 B
. 60 = £ 24 {Seq2seq + Attn------ 5
DrQA-sssmsisesmssranssninsson A 0 ‘5 Y 1)
50 10 {Embed Nearest Neighbor-- " 92 =
PGNEt-=~~==-peetoi i sanaaaas _|B Random-3-- 4
v 20
40 5 ] = 21
30 18 ~—--most freq Q-type answer
—————————————————————————— Seq2se
) g 0 16 g T 0
117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M
# of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM
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... even works for MT! (somewhat)

e How is that possible?
One possible explanation:

e Natural demonstrations
of useful language tasks
do appear in the wild!

“I’m not the cleverest man in the world, but like they say in
French: Je ne suis pas un imbecile [I’m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
in the riding of Joliette, wrote in French: "Mentez mentez,
il en restera toujours quelque chose,” which translates as,
“Lie lie and something will always remain.”

2

“I hate the word ‘perfume,”” Burr says. ‘It’s somewhat better
in French: ‘parfum.’

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “~-Comment on fait pour aller
de ’autre coté? -Quel autre coté?”’, which means “- How
do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?, or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty”.
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How has this affected the field?

The gap between modern, task-based NLP and
“Computational Linguistics” has maybe never been wider

Divergence between properly linguistic/behavioral
and simply “increase performance on this task”

Still, earlier non-neural methods are not worthless!

Kspecially re: interpretability
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Great Free Courses on This Neural Stuff

Stanford CS224n:
https://www.youtube.com/playlist?list=PLoROMvodv4

rOhcuXMZkNm7j3fVwBBY42z

CMU CS 11-747:
https://www.youtube.com/playlist?list=PLSPYTP1V4

[SAkaHEJ7100rlex-pexS-XV

... and obviously others here at NU!
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https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV

Model KEcosystem

Training these huge models is expensive,
inference (running them on stuff) is relatively cheap.

Community sharing is ideal and happening constantly

HuggingFace is an incredible resource of models and
datasets, with a corresponding python library:

https://huggingface.co/models (quick demo)
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https://huggingface.co/models

