
Week 9
Neural Nets, RNNs, and Transformers

1

LING 334 - Introduction to Computational Linguistics

Coming Up

2/22 - More NNs, RNNs, and Transformers

2/27 - Research in NLP, final project brainstorming

2/29 - Topic Models

3/5 - Extra TA OH (here) for final projects/assignments

3/7 - State of the art and contemporary issues

2

Reminder - One Neuron (≈ Logistic Regression)

Biologically inspired
(but way less complex)

3this and future figures from SLP Ch. 7, 9, 10, and 11 unless noted

Non-Linearities - Sigmoid

Transforms any
value to be
between 0 and 1,
pseudo-probability

x axis = sum of weights times inputs
y axis = output value of neuron 4

Non-Linearities - tanh and ReLU

 tanh ReLU
 (like sigmoid, works better) (most common)

5

credit J+M, SLP slides

Why Non-Linearities?

Naive Bayes is a linear classifier
Decision boundary from ∑ w ∙ x

For NNs, key idea is representing the input in
increasingly abstract non-linear transformations

“Hidden Layers”

Until the final decision can be made linearly
6

Example from Computer Vision

Each layer in a convolutional neural network
is activated by increasingly abstract stimuli

7

Simple Feed-forward Neural Net

Each arrow represents multiplication of value by a weight

Summed at each node,
non-linear transform

Like multiple logistic
regressions running
concurrently on the
same inputs 8

Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:
1. Text classification
2. Language modeling

State of the art systems use more powerful neural
architectures, but simple models are useful to
consider!

9

Classification: Sentiment Analysis

We could do exactly what we did with
Naive Bayes or Perceptron
Input layer is binary features as before

e.g. bag of words
Output layer is 0 or 1
Learn weights from labeled examples

U

W

x
n

x
1

σ

Sentiment Features

11

Feedforward nets for simple classification

Just adding a hidden layer to logistic regression
• allows the network to use non-linear interactions between

features
• which may (or may not) improve performance.

12

U

W

x
n

x
1

f
1 f

2
f

n

12

W

x
n

x
1

f
1 f

2
f

n

Perceptron/
Logistic
Regression

2-layer
 feedforward
 network

σ
σ

Even better: representation learning

The real power of deep learning
comes from the ability to learn features
from the data
Instead of using hand-built
human-engineered features for
classification
Use learned representations like
embeddings!

13

U

W

x
n

x
1

e
1 e

2
e

n

σ

Simple NN - Another View

Large input layer!

Many weights!

14

Issue: texts come in different sizes
This assumes a fixed size length (3)!
Kind of unrealistic.
Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same
dimensionality as a word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings

• For each dimension, pick the max value from all words 15

Neural Language Models (LMs)

Language Modeling: Calculating the probability of
the next word in a sequence given some history.
• We've seen N-gram based LMs
• But neural network LMs far outperform n-gram

language models
State-of-the-art neural LMs are based on more
powerful neural network technology like
Transformers
But simple feedforward LMs can do almost as
well!

16

Simple feedforward
Neural Language Models

Task: predict next word wt
 given prior words wt-1, wt-2, wt-3, …

Problem: Now we’re dealing with sequences of
arbitrary length.
Solution: Sliding windows (of fixed length)

17

Neural Network Language Model

Sliding window
over words

Large output layer
of all words in V

Notice the hidden
layer is itself
a vector! 18

Why Neural LMs work better than N-gram LMs

Training data:
We've seen: I have to make sure that the cat gets fed.
Never seen: dog gets fed
Test data:
I forgot to make sure that the dog gets ___
N-gram LM can't predict "fed"!
Neural LM can use similarity of "cat" and "dog" embeddings
to generalize and predict “fed” after dog

Training via Backpropagation
Loss = function saying,
how wrong are we?

Derivative of this function
at any point tells us which
way to go to be less wrong

Chain rule allows us to go
back arbitrarily far

20

Recurrent Neural Networks

21

Vector of hidden state
from the previous timestep

Additional set of weights
setting how previous step
should be combined

Inputs at this timestep

Core idea: combine hidden state vector
from previous timestep (e.g., word)
With input vector at current timestep

Recurrent Neural Networks - unrolled view

22

Weights are shared
across timesteps

E.g., the same
U, V, W are
applied at each
timestep

Recurrent Neural Networks - unrolled view

23

Output layer (y) can be used:
e.g. predict POS tags

or discarded, if we just
care about building up
the hidden state

Can just use final
output layer for prediction

RNNs as a language model

24

RNNs as a language model - generation

25

Recurrent Neural Networks - a flexible mechanism

26

Sequence-to-Sequence Models

Encode a sequence word by word,
building the hidden state

Pass final hidden state to
another RNN to “decode”

Common use case:
machine translation

27
slide from Stanford CS224n

https://docs.google.com/file/d/1zABDUd2CVTLx_xb80xM8L5x8xCoTisDB/preview

Seq2seq Models - another view

Remember encoder and decoder are separate RNNs

28

Final encoder
hidden state ==
“context vector”

Bottleneck Problem

This final hidden state is a bottleneck - this one vector is
being asked to encode *everything* about the input

How can we let the
model look back?

Answer:
Attention!

29

“context vector”
(only the size of

one hidden state)

Attention

Incorporate an additional “context vector” at each step:

● Weighted sum of the encoder hidden states
● Simplest: dot product

similarity of current
decoder hidden state
and each encoder state

● Many methods!
30

Other Key Concepts: Stacked and Bidirectional

31

Stacked RNN Bidirectional RNN

Hidden state from previous layer becomes input
for next layer, like feedforward

Two separate RNNs processing the input in opposite
directions to “see” both sides of any particular token

Aside: Notes on Training
Architecture often about setting up a structure that “could work”:

● Reasonable-seeming information flow
● Differentiable loss function that says how bad guesses are
● Training data to train it on

Calculus tells how to “wiggle the weights” to get it to work,
learning from training data.

Often surprising it does! Classic article:
The Unreasonable Effectiveness of Recurrent Neural Networks 32

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Aside: Notes on Tokenization

Contemporary NNs use subword tokenization

Like the Byte Pair Encoding algorithm introduced at the
very beginning of the course, and variants

33

Problem with word2vec!

Embedding for “sound” is always the same, even in:

● “Does that sound good?”
● “I heard a loud sound.”
● “I’m going boating out on the sound.”
● “That’s sound logic right there!”

Doesn’t seem quite right.

Contextual Embeddings

34

Key insight: don’t use static embeddings; instead, use
hidden state from an RNN language model (Peters et al. 2018)

ELMo (Embeddings from a Language Model)

35

figure from Jay Alammar

Result is “contextual” embeddings

ELMo (Embeddings from a Language Model)

36

figure from Jay Alammar

The Muppet Parade

BERT and others follow on this idea with more complex
architectures - key idea is self-attention

Many layers!
Details matter a lot!

37

Transformers

Detailed view of
self-attention

38

Pre-Training Fine-Tuning Paradigm

39

The many layers of BERT

BERT-Large has 24 transformer layers
(each of which has a number of further
internal layers itself)

Empirical work has shown that BERT
encodes increasingly abstract
linguistic information in higher layers

(Tenney et al. 2019)
40

BERT et al. for Classification

BERT in particular provides a [CLS] token,
contextual embedding token for classification

Frequently just start
the cycle over again…

Train a new classifier
where the features are
BERT [CLS] embeddings! 41

Parameter Explosion!

Parameters are any values we have to set - e.g. weights

Naive Bayes
two classes, vocab size of 30k = 60k params

BERT-Large, 300 million params

More recent models in the trillions

42

Parameter Explosion!

Therefore, these big NNs are very data hungry!

We need many examples (at least 10x params) to train

Training on the internet, basically (Common Crawl)
Multiple terabytes of text

Costs to train one model up to the millions USD
not to mention all the failed attempts...

43

A Tricky Proposition

We got here empirically -
you see many cards have been stacked,
people kept trying stuff until they stayed standing

It all sounds reasonable, but it’s also weird that it works

New subfield: BERTology
trying to understand what linguistic things
BERT et al know and can do, and why 44

What did we gain from doing this?

Better results on concrete tasks, real world applications

Neural Machine Translation for instance - transformative
previously very complex statistical systems,
now trained end-to-end

No feature engineering! (Lots of architecture tinkering.)

Many building blocks for complex models
45

New Terminology

“Large Language Models” (LLMs)

LMs with (very) high parameter counts as
adaptable or general-purpose NLP solvers

a.k.a. “foundation models” (FMs)
 “pre-trained language models” (PLMs)

46

Huge Capacity → “Emergent” Properties

LLMs appear to display new abilities with greater size,

●

47

Huge Capacity → “Emergent” Properties

LLMs appear to display new abilities with greater size

One of the most striking has been “few-shot learning,”
also called “in-context learning” or “prompting”

General paradigm:

● providing correct examples in LM input context
● prompt for generation of structured output

48

In-Context Learning Paradigm

Gradient as to what the LLM is shown

● Fine-tuning: thousands of examples, model weights are
updated (either in a final layer or thoughout)

● Few-shot: provide a small number of examples in the
context and ask for an answer, model weights constant

● One-shot: show one example and ask for an answer
● Zero-shot: provide a natural language description of the

task and ask for an answer 49

In-Context Learning Examples - Few-shot
From http://ai.stanford.edu/blog/understanding-incontext/

50

http://ai.stanford.edu/blog/understanding-incontext/

… even works for MT! (somewhat)

Zero-shot performance from GPT-2 (Radford et al. 2019):

51

… even works for MT! (somewhat)

● How is that possible?

One possible explanation:

● Natural demonstrations
of useful language tasks
do appear in the wild!

52

How has this affected the field?

The gap between modern, task-based NLP and
“Computational Linguistics” has maybe never been wider

Divergence between properly linguistic/behavioral
and simply “increase performance on this task”

Still, earlier non-neural methods are not worthless!

Especially re: interpretability
53

Great Free Courses on This Neural Stuff

Stanford CS224n:
https://www.youtube.com/playlist?list=PLoROMvodv4
rOhcuXMZkNm7j3fVwBBY42z

CMU CS 11-747:
https://www.youtube.com/playlist?list=PL8PYTP1V4
I8AkaHEJ7lOOrlex-pcxS-XV

… and obviously others here at NU! 54

https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV

Model Ecosystem

Training these huge models is expensive,
inference (running them on stuff) is relatively cheap.

Community sharing is ideal and happening constantly

HuggingFace is an incredible resource of models and
datasets, with a corresponding python library:

https://huggingface.co/models (quick demo)
55

https://huggingface.co/models

