Dispensability of the randomization device in "Belief-free Equilibria in Repeated Games", by Ely, Hörner and Olszewski (2004)

For B a subset of a Euclidean space, let \mathring{B} denote its interior. Recall that V denotes the limit of the belief-free equilibrium payoff set, as δ tends to 1, given that a public randomization device is available. We show that:

Lemma 1 In the positive case, if $v \in \mathring{V}$, then there exists $\overline{\delta} < 1$ such that, for all $\delta > \overline{\delta}$, v is a payoff vector achieved by a belief-free equilibrium without any public randomization device.

Proof. Suppose that $v^0 \in \mathring{V}$ is a belief-free equilibrium payoff. Then, by Proposition 5, there exists $p = (p_1, \ldots, p_J), p \ge 0, \sum_j p_j = 1$, such that:

$$pM_i > v_i^0 > pm_i, \ i = 1, 2$$

where the inequalities can be taken to be strict as $v^0 \in \mathring{V}$. Therefore, there exists $\overline{\delta} < 1$ and a finite sequence $\{j_k\}_{k=1}^{K}, j \in \mathcal{J}$, such that, for $\delta > \overline{\delta}$,

$$q^t M_i > v_i^0 > q^t m_i, \ i = 1, 2, \ \text{all } t.$$

where:

$$q_j^t = (1-\delta) \sum_{\tau=t}^{\infty} \delta^{\tau-t} I_{\{\tau=k \pmod{K}\}}, \ j = j_k.$$

and $I_{\{x=y\}} = 1$ if x = y, and 0 otherwise.

We consider the sequence of regimes A^{j_1} , A^{j_2} ,..., $A^{j_{\kappa}}$, A^{j_1} , A^{j_2} ,..., $A^{j_{\kappa}}$,... That is, we consider a cyclic sequence of regimes with cycle A^{j_1} , A^{j_2} ,..., $A^{j_{\kappa}}$. Thus, $q^t = (q_1^t, \ldots, q_J^t)$ defines a probability measure that can be interpreted as the occupation measure, from period t on, given discount factor δ , over the different regimes, for the sequence under consideration.

By definition of M_i and m_i , there exists, for each player i = 1, 2, and each regime \mathcal{A}^j , a pair $\left\{\bar{\alpha}_{-i}^{\mathcal{A}^j}, \underline{\alpha}_{-i}^{\mathcal{A}^j}\right\}$ of mixed actions in $\Delta \mathcal{A}_{-i}^j$ and a pair $\left\{\bar{x}_i^{\mathcal{A}^j}, \underline{x}_i^{\mathcal{A}^j}\right\}$ of functions satisfying Eq.(4) and (5). Define a Markovian strategy for each player i = 1, 2 as follows:

(i) the state space in period t is $[q^t m_{-i}, q^t M_{-i}]$.

(ii) the initial state is v_{-i}^0 , the equilibrium value to be achieved. Let \mathcal{A}^j be the regime in period t, given the sequence described above.

(iii) at any state $v_{-i} \in [q^t m_{-i}, q^t M_{-i}]$ such that $v_{-i} = \lambda q^t m_{-i} + (1 - \lambda) q^t M_{-i}$, player *i* plays $\underline{\alpha}_i^{\mathcal{A}^j}$ with probability λ and $\underline{\alpha}_i^{\mathcal{A}^j}$ with complementary probability.

(iv) (a) if the mixed action used by player *i* in period *t* is $\bar{\alpha}_i^{\mathcal{A}^j}$, the realized action is $a_i \in A_i$ and the signal observed is $\sigma_i \in \Sigma_i$, the next period state, v'_{-i} , is given by:

$$v_{-i}' = \frac{1-\delta}{\delta} \left(\bar{x}_{-i}^{\mathcal{A}^j} \left(a_i, \sigma_i \right) - M_{-i}^{\mathcal{A}^j} \right) + \frac{q^t M_{-i}}{\delta},$$

which is an element of $[q^{t+1}m_{-i}, q^{t+1}M_{-i}]$ by construction.

(b) if the mixed action used by player *i* in period *t* is $\underline{\alpha}_i^{\mathcal{A}^i}$, the realized action is $a_i \in A_i$ and the signal observed is $\sigma_i \in \Sigma_i$, the next period state, v'_{-i} , is given by:

$$v'_{-i} = \frac{1-\delta}{\delta} \left(\underline{x}^{\mathcal{A}^{j}}_{-i} \left(a_{i}, \sigma_{i} \right) - m^{\mathcal{A}^{j}}_{-i} \right) + \frac{q^{t} m_{-i}}{\delta},$$

which is an element of $[q^{t+1}m_{-i}, q^{t+1}M_{-i}]$ by construction.

This pair of Markovian strategies is a sequential equilibrium and achieves the payoff vector v^0 . A similar argument applies to the abnormal case, and the proof in the negative case is standard.