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Abstract

We study a class of what we call penalty-card strategies in repeated games of incomplete information.

The idea is that a player who plays an action resulting in a low expected payoff of other players may

obtain a penalty card. If a player obtains a limit number of cards, she is going on suspension; during the

period of suspension she must play an action resulting in a high expected payoff of other players. Any

deviation while being on suspension results in a breakdown of cooperation.

We show that if players’ privately known types are i.i.d., or more generally evolve according to a

Markov chain, then under some mild conditions on the stage game, the outcomes that maximize the

aggregate payoff of all players can be attained in penalty-card strategies for the discount factor tending

to 1.

Penalty-card strategies have several useful features, e.g., players condition their actions only on a

simple statistics containing all necessary information regarding the past play, and can be viewed as a

positive model of playing repeated games with incomplete information.

1 Introduction

The models of repeated games of incomplete information have a wide range of applications. They include: (a)

oligopoly markets in which firms privately know their costs, (b) repeated auctions in which bidders privately

know their valuations; (c) partnership games in which the effort that can be exerted depends on other duties

that partners must perform, or (d) favor exchange when a person in need does not know if others can help.

In the existing literature, repeated games of incomplete information have been analyzed by means of

two kinds of strategies: (a) simple and intuitive strategies that allow to obtain only limited results, or (b)

strategies that allow to attain a wider range of payoffs, but are less intuitive and more involved, or have been

“tailored” with the objective of attaining particular payoffs.

The aim of this paper is to introduce a class of as we believe simple and intuitive strategies, which in

addition support a wide range of outcomes. We study a class of what we call penalty-card strategy profiles.
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The idea is that a player who plays an action which “hurts” other players obtains a (tacit) penalty card.

One card has no immediate effect on the future play. But if a player obtains a limit number of cards, she

goes on suspension, which means that for some number of periods she has to take actions that other players

“want” her to play. Detectable deviations result in a breakdown of cooperation.

Penalty-card strategies resemble what we observe in numerous settings in practice; in fact, the idea

comes from penalty cards as used in sport games, and the concept of warning as used in numerous everyday

interactions. Players condition their actions only on simple statistics containing all necessary information

regarding the past play. The strategy profiles also have a number of other useful features.

We show that if players’ privately known types are i.i.d., or more generally evolve according to a Markov

chain, then under some mild conditions on the stage game, the efficient outcome (that is, the outcome that

maximizes the aggregate payoff of all players) can be attained in penalty-card strategies for the discount

factor tending to 1. The fact that the efficient outcome can be attained is roughly intuitive. When the

discount factor becomes closer to 1, and players assign higher weights to future payoffs, one can allow a

larger limit number of penalty cards. So, players go on inefficient suspension less frequently, and the action

profile that maximizes the aggregate payoff is played more frequently.

The fact that the penalty-card strategies supporting the efficient outcome are incentive compatible re-

quires a careful design of the transition probability in the structure of penalty cards in response to players’

actions. We design this transition probability by imitating the d’Aspremont and Gerard-Varet (1979) mech-

anism. That is, the structure of penalty cards changes in the way that players internalize the current payoffs

of their opponents by the effect that their actions have on their own continuation payoff.

Despite the fact that current actions in penalty-card strategies are contingent only on a simple statistics

regarding the past play, the number of incentive constraints which must be checked is still large, and their

form is quite complicated. We make the analysis more tractable by studying the incentive constraints only

for the discount factor δ tending to 1. This allows for omitting all expressions of order o(1−δ), which makes

the form of constraints simpler, and enables us to derive explicit formulas for the repeated-game payoffs.

An additional difficulty arises when players’ types are persistent or correlated over time, because players’

current actions may reveal to their opponents information about their future types, which may affect their

opponents’ future actions. These “signalling” and “ratcheting” effects might suggest that players must con-

dition their strategies on the previous actions of their opponents not only through penalty cards. Strategies

contingent on previous actions are, however, not necessary. We prescribe the changes in the structure of

penalty cards in the way that players not only internalize the effect of their current actions on the current

payoffs of the opponents, but also internalize the expected effect of their current actions on the future payoffs.

In the present paper, we show our results for stage games with finite number of actions and types.

However, as we show in a companion paper Olszewski and Safronov (2015), similar results hold for a number

of games with infinite action space, for example, in repeated auctions and a repeated version of Spulber’s

(1995) oligopoly game, studied in numerous existing papers. We also show in the companion paper that
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in many applications, including versions of (a)-(d), efficiency can be attained in particularly simple and

intuitive strategies.

Related literature
Fudenberg, Levine and Maskin (1994) show a folk theorem for a family of repeated games with finite

numbers of actions and types, in which players have i.i.d. types. The focus of their paper is entirely on the

payoffs that can be attained in equilibrium, not on the strategies attaining these payoffs.

More recent research on the topic was initiated by papers on repeated duopoly and repeated auctions. In

Athey and Bagwell (2001), followed up by Athey, Bagwell and Sanchirico (2004), firms play a repeated version

of Spulber’s (1995) oligopoly game with an infinite number of actions, and each firm is privately informed of

its cost of production. This cost follows an i.i.d. process. Among other results, they show that the efficient

payoff vector can be attained in the two-firm case when the discount factor exceeds some cutoff level. Hörner

and Jamison (2007) generalize this result to an arbitrary number of firms. Athey and Bagwell (2008) extend

their 2001 model to the more realistic case in which the firms’ costs are more persistent (more precisely,

they follow a Markov process). They construct an equilibrium which depends on the firms’ costs, and which

attains a more efficient payoff vector than the best equilibrium in strategies which are independent of the

firms’ costs. This more efficient payoff is, however, not efficient. They also construct an efficient equilibrium,

but only in the two-firm case. Finally, Escobar and Toikka (2010) show that the efficient payoff vector can

be attained in suitably modified review strategies; they even prove that any Pareto-efficient payoff vector

above a stationary minmax vector can be attained for a generic class of games.

Athey and Bagwell (2001), Athey, Bagwell and Sanchirico (2004), and Athey and Bagwell (2008) construct

intuitive and simple equilibrium strategies, but obtain only limited efficiency results.1 ,2 Hörner and Jamison’s

(2007) result is general and obtained under weak assumptions regarding the observability of actions, but the

strategies are quite involved and carefully “tailored” for obtaining particular payoffs. In addition, all these

authors study only the Spulber’s oligopoly game, and except Athey and Bagwell (2008) these papers assume

i.i.d. types. The review strategies3 used by Escobar and Toikka are intuitive, and deliver general results.

However, their complete strategies are not entirely explicit. Contingent on some histories, they are defined

by a fixed-point argument, although the chance of reaching such a history is rather low.

Skrzypacz and Hopenhayn (2004) Blume and Heidhues (2002) study collusion in repeated auctions, and

show that players can obtain a higher equilibrium total payoff that in the repetition of stage-game Nash

1The equilibria constructed in Athey and Bagwell (2008) resemble our “one-penalty card” strategy profiles. So, not surpris-

ingly, they achieve only partial, but not full efficiency.

2 In addition, Athey and Bagwell construction requires the assumption that firms can split the market unequally, in the way

they wish, when they charge equal prices. As we show in the working paper, the penalty-card strategies attain efficiency not

only for any number of firms, but also when the market splits equally among the firms which charge the lowest prize.

3Review strategies were initially studied by Radner (1985) in a repeated moral hazard game. In the case of i.i.d. costs, the

idea behind Escobar and Toikka’s equilibria are also closely related to the linking mechanism from Jackson and Sonnenschein

(2007).
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equilibrium, and in the bid rotation scheme which in every period appoints a winning bidder, making in

exchange other bidders more likely to be winners in future periods. Allowing for mediated communication,

Aoyagi (2007) shows that efficiency can be attained for a large class of repeated-auction settings. He obtains

these results by modifying self-generation techniques. The strategies that attain efficient outcomes, as well as

the strategies studied in Aoyagi (2003), share numerous features with our penalty-card strategies. Namely,

the stage-auction winners are excluded for a number of periods, and the winners in the following periods are

efficiently appointed from the set recent losers.

Another class of related strategies studied in the existing literature, but in quite different settings is the

class of chip strategies. According to these strategies, each player is initially endowed with a certain number

of chips; a player who plays an action such that her opponents’ payoff is high obtains from them a chip,

or gives them a chip if her opponents’ payoff is low. Möbius (2001) and Hauser and Hopenhayn (2008)

analyze a model of voluntary favor exchange between two players. Favor opportunities arrive according to

a Poisson process, and the benefit of receiving a favor exceeds the cost of providing it. Mobius identifies

conditions under which chip strategies constitute an equilibrium. For any given discount factor, the equilibria

in chip strategies cannot obviously be fully efficient, because incentive compatibility imposes a limit on the

number of chips that can be used. Hauser and Hopenhayn suggest two improvements to chip strategies

that enhance the efficiency of equilibria: exchanging chips at different rates (i.e., one favor today is not

necessarily equivalent to one favor in the future), and appreciation and depreciation of chips. Solving the

model numerically, they demonstrate that for a large set of parameter values the efficiency gains are quite

large. Abdulkadirouglu and Bagwell (2012) analyze the chip mechanism in a discrete version of Möbius’

model of favors. They identify the optimal limit number of chips given a discount factor, and compare this

optimal chip mechanism with a more sophisticated favor-exchange relationship in which the size of a favor

owed may decline over time. For any given discount factor, the equilibria in chip strategies cannot obviously

be fully efficient, because incentive compatibility imposes a limit on the number of chips that can be used.

They provide no efficiency result (explicitly or implicitly) when the discount factor converges to 1.4

We do not pretend to improve on the existing literature in terms of generality of efficiency results. Indeed,

to generalize Fudenberg, Levin and Maskin’s, and Escobar and Toikka’s result to a generic class of games,

one would have to assume that types evolve according to a non-Markov process, or relax the assumption

of perfect monitoring of actions. We view our main contribution as describing intuitive strategies, which

provide a positive model of playing repeated games with incomplete information. These strategies, under

relatively mild conditions, attain efficiency in all settings studied in the existing literature, that is, for i.i.d.

and Markov types, and for games with finite action and type spaces, and even in some applications with

infinite action spaces.5 One may also find interesting the relation to the d’Aspremont and Gerard-Varet

4One should also mention Athey and Miller (2007) who look at similar debt strategies in a model of repeated trade with

hidden valuations.

5We also conjecture, but we have not proved formally, that one can obtain efficiency results in repeated auctions without

4



(1979) mechanism. This mechanism has several useful properties, and they are inherited by our repeated

game strategies. We will emphasize some other advantages of penalty-card strategies in Section 7.

In Section 2, we introduce the model, and present verbally penalty-card strategies. In Section 3, we

state the result, and describe the main idea behind our construction of equilibria, focusing on the i.i.d. case.

Section 4 contains the detailed exposition of “efficient” penalty-card strategies in this case. Sections 5 and

6 are devoted to the proof that these strategies satisfy equilibrium conditions, and approach the efficient

outcome for the discount factor tending to 1. The proof in the i.i.d. case is relatively simple, exhibits all

basic ideas, avoiding more delicate issues specific to the Markovian case. We state the result, and point out

the key modification in the construction of equilibria required in this case in Section 8, but postpone the

detailed proof to Appendix. Finally, we elaborate in Section 7 on the advantages of penalty-card strategies.

2 Preliminaries

2.1 Model

Consider a normal-form game G with I players, numbered by i = 1, ..., I. Let Ai and Θi be finite sets

of actions and (privately observed) types, respectively, of player i. Let ui(θi, a) be the payoff of player

i. We make some, mild assumptions on the payoffs. These assumptions will be better understood when

penalty-card strategies are defined, so we will introduce them later.

We study a repeated game in which players play stage game G in periods t = 1, 2, ..., and discount future

payoffs at a common rate δ; it is convenient to denote 1 − δ by ε. Actions are publicly observed at the

end of each period. In the repeated game, players are allowed to communicate by sending at the beginning

of each period simultaneous, publicly observed cheap-talk messages regarding their types. We assume that

the message space of each player i coincides with the type space Θi. Players also have access to a public

randomization device, i.e., they observe the realization of a random variable distributed uniformly on interval

[0, 1]. The timing of events in each period is as follows: (a) players privately observe their types; (b) they

send public cheap-talk messages regarding their types; (c) players take publicly observed actions; (d) they

observe a realization of public random device.

In the main text, we assume that players’ types are i.i.d. according to distributions ηi, i = 1, ..., I.

In Appendix, we generalize the results from the main text to players’ types which are still independently

distributed, but evolve over time according to homogeneous, aperiodic irreducible Markov chains. That is,

if the current-period type profile is θ = (θ1, ..., θI) ∈ Θ =
I�

i=1

Θi, the next-period type profile will be θ′ with

(transition) probability ηθ,θ′ , and for every pair of type profiles θ, θ′ ∈ Θ, there exists a t such that if the

current-period type profile is θ, the type profile in period t will be θ′ with positive probability. By ergodic

theorem, every such process has a limiting type distribution η, and independent of the initial type profile,

communication, improving on Aoyagi (2007).
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the distribution of types at time t converges as t→∞ to the limiting distribution at an exponential rate.

All other elements of the model, that is, histories, repeated-game strategies and payoffs are defined in

the standard manner.

2.2 Description of penalty-card strategies

We study the following class of strategies:

• A penalty-card strategy profile has two phases: a cooperation phase; and a joint-penalty phase.

• In the cooperation phase, some players are on suspension, and other players are active. Initially, all

players are active.

• Actions prescribed for both active players and players on suspension depend only on the set of active

players.

(Typically, the prescribed actions “reward” active players and “penalize” players on suspension.)

• Each active player holds a certain number of penalty cards. A player may obtain another penalty card,

or some of the exisitng cards may be annulled.

• Any player can collect only up to a certain number of penalty cards. If a player reaches this limit

number, the player goes on suspension for a certain, possibly random number of periods.

• Players who come back from suspension become active. This happens when the prescribed suspension

comes to its end, independent of the actions of players.

• The chance of obtaining another penalty card by some player, or of annulling some existing cards is

determined by the current penalty-card structure and the actions of active players;

• The play stays in the cooperation phase until some player takes an action which is not prescribed for

any private information.

• Any unprescribed action triggers the joint-penalty phase. Once the joint penalty phase is triggered the

play remains in this phase forever.

The definition is motivated by the concept of penalty cards as used in sport games, or the concept of

warning as used in numerous everyday interactions, and is aimed to adjust these concepts in the possibly

simplest manner to the repeated-game setting.

We prove our results using more specific penalty-card strategies. For example, only one active player

will hold penalty cards. One may also consider slightly more general classes strategies with similar features.
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For example, a unilateral deviation could trigger a player-specific penalty phase, instead of any deviation

triggering a joint-penalty phase.

The penalty-card strategies can also be viewed as a specific debt contract in which players holding penalty

cards are borrowers, and their debt is jointly owned by other players. Players on suspension are (possibly

temporarily) excluded from the credit market, and forced to repay their debt, and joint-penalty phase may

be interpreted as a credit-market failure.

2.3 Assumptions on stage game

We can now present the assumptions that we impose throughout the main text on the stage game.6 For

any set of players R ⊂ {1, ..., I} and their type profile θR ∈ ΘR =
�

i∈R

Θi, denote by a(θR) a R-efficient

action profile, that is, an action profile that maximizes the total payoff of the players from R.7 Let viR =

Eθ(ui(θi, a(θR))) for i /∈ R denote the expected stage-game payoff of a player i who is not in R, when players

take the R-efficient action profile. Similarly, let wiR for i ∈ R denote the expected stage-game payoff of player

i who is a member of R, when players take the R-efficient action profile.

Assumption I: For any i = 1, ..., n and R such that i /∈ R,

viR < w
i
R∪{i}.

Assumption II: For any i = 1, ..., n and R such that i ∈ R,

1

|R| − 1

�

i�=j∈R

wiR−{j} > v
i
R−{i}.

To interpret these assumptions suppose that in the cooperation phase of a penalty-card strategy profile,

players play R-efficient action profile, for R being the set of currently active players. Then, our assumptions

say that every player prefers being active to being on suspension (for any subset of other active players),

and prefers on average when another player is on suspension to being on suspension herself.

Finally, we assume that

Assumption III: The incomplete information stage game has an equilibrium in which the payoff of

every player i is lower than wiR for R = {1, ..., I}.

We will call the equilibrium described in assumption III bad equilibrium. The existence of stage-game

equilibria for general games can be established by a simple fixed-point argument. However, stage-game

6That is, these assumptions apply to the i.i.d. case. In the Markovian case studied in Appendix, the assumptions will be

very similar but slightly stronger.

7Pick an arbitrary maximizer when there exist more than one.
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equilibria may not satisfy assumption III. There may exist no equilibrium satisfying assumption III even in

complete information games with degenerate type spaces.

However, bad equilibria do exist in many settings of interest. For example, consider symmetric games.

Then, either the symmetric equilibrium whose existence is guaranteed by a fixed-point argument is itself

efficient, or it is inefficient, and then every player obtains a lower payoff in that equilibrium than in the

efficient outcome, so assumption III is satisfied.

3 The main idea

In the main text, we focus on the i.i.d. types. In Appendix, we generalize our results to the case when

players’ types are Markovian. The main idea of equilibria that we are going to construct is to imitate the

AGV mechanism (see d’Aspremont and Gerard-Varet (1979) and Arrow (1979)) using continuation payoffs as

transfers. To introduce this idea, suppose for a moment that players are allowed to make monetary transfers

to one another at the end of each period.8

Theorem 1. If the stage game satisfies assumptions (A)-(C), and players are allowed to make monetary

transfers at the end of each period, then the efficient payoff can be attained in penalty-card equilibria as the

discount factor tends to 1.

This result is not new. For i.i.d. types, it is implicit in Fudenberg et al. (1994). A working paper by

Miller (2009) makes this observation explicit, and shows that the result is not limited to i.i.d. types. For

Markov types it follows from Athey and Segal’s (2013) Proposition 2. Our objective, however, is to prove

the result without transfers and in explicit and relatively intuitive strategies, improving in this way on both

Fudenberg et al. and Athey and Segal. We provide the proof of Theorem 1 not only for completeness, we

will refer to this construction in the following sections.

First, we introduce some auxiliary terms, which will also be used later. Define by

sji = Eθ−i(uj(θj , a(θi, θ−i)))−EθiEθ−i(uj(θj , a(θi, θ−i)))

the effect of player i’s report on player j’s payoff; in particular, sji > 0 (sji ≤ 0) if player i reports a type

that gives player j in expectation a payoff higher (no higher) than the ex ante expected payoff. This effect

is obviously a function of θi, but we will often disregard its argument as it will cause no confusion. Let

si =
�

j �=i

sji

be the effect of player i’s report on the total payoff of all other players.

8 In this case, players need not observe any public randomization device.
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To show Theorem 1, consider the following strategies. To simplify notation for any type profile θ, denote

by a(θ) the efficient action profile, i.e., an action profile that maximizes the sum of the stage-game payoffs

of all players. (This is, the R-efficient action profile a(θR) for R = {1, ..., I}.)

(A) In every period, players report their types truthfully.

(B) If θ is the reported type profile, players take action profile a(θ).

(C) Players make transfers. For all i �= j ∈ {1, ..., I}, player j transfers sji to player i.

That is, player i obtains (as a transfer) the difference between the sum of interim and ex ante expected

payoffs of other players. Player i’s expected payoff from reporting θ′i, given truthful reports of other players,

is then

Eθ−i(ui(θi, a(θ
′
i, θ−i))) +

�

j �=i

�
Eθ−i(uj(θj , a(θ

′
i, θ−i)))−EθiEθ−i(uj(θj , a(θi, θ−i)))

�
−

−
�

j �=i

Eθj
�
Eθ−j (ui(θi, a(θi, θ−i)))−EθjEθ−j (ui(θi, a(θi, θ−i))

�
).

The first term of this expression is player i’s expected interim utility given his actual and reported type,

the second term is the expected payment to player i from other players, and the third term is the expected

payment of player i to other players. The third term is equal to zero, and the second part of the second term

does not depend on player i’s report, while the first term and the first part of the second term sum up to

I�

j=1

Eθ−i(uj(θj , a(θ
′
i, θ−i))) (1)

Thus, if players other than i report truthfully, player i has an incentive to maximize the sum of the stage-game

payoffs, which is attained by reporting her own type truthfully.

(D) An action profile other than a(θ), for any reported type profile θ, triggers a permanent repetition

of the bad stage-game Nash equilibrium. This obviously disciplines the players to taking action profile a(θ)

given any report θ.

That is, the prescribed strategies are incentive compatible, and attain the efficient payoff.

Transfers are not allowed in our setting, they will be dispensed with later, and their role will be played by

continuation payoffs. More specifically, a player i’s report will affect the probability of i obtaining a penalty

card (or of annulling i’s existing penalty cards), which in turn increases (decreases) the probability of i going

on suspension. Since players on suspension will play actions that maximize the stage-game payoffs of active

players, i’s suspension can be viewed as a transfer to other players. This transfer can be player j’s specific

by making the probability of i obtaining a penalty card dependent on player j’s report, and different for

different players j.

4 Efficient repeated-game strategies

In the present section, we specify penalty-card strategies that attain efficiency. That is, we show that:
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Theorem 2. If players types are i.i.d., and the stage game satisfies assumptions I-III, then the efficient

payoff can be approximated in penalty-card equilibria when the discount factor δ approaches 1.

Let

pi = Pr{si > 0} ·Eθi [si|si > 0],

or equivalently,

pi = −Pr{si ≤ 0} ·Eθi [si|si ≤ 0].

We first describe the efficient strategies in the case when all players are active.

At the beginning of period 1, a player is randomly selected, each with probability 1/I, and that player

begins the game with one penalty card.9 There is always exactly one player who holds a positive number

of penalty cards. Denote this player i by F. At the end of each period, all penalty cards of player F can

be annulled, player F can obtain another penalty card, or the penalty-card structure may stay unchanged.

When all penalty cards of player F are annulled, another player j obtains a (first) penalty card; denote this

other player by G. It is decided at the end of the period (contingent on the realization of public randomization

device) who will be player G; each player other than F has a chance of 1/(I − 1) of becoming player G.

Denote by n the common limit on the number of penalty cards that an active player can hold, that is,

a player who obtains the n-th penalty card goes on suspension. Suppose that player i is player F at the

beginning of the current period, and that she holds k < n cards. Denote the three possible penalty-card

structures at the end of the period by O1G, O
k+1
F and OkF , respectively.

(A&B) As in Section 3, players report their types truthfully, and if θ is the reported type profile, players

take action profile a(θ).

The penalty-card structure in the following period is determined at the end of the period contingent

on the realization of public randomization device, by the following four-component lottery. The first two

components describe terms that depend on the players’ reports of their types in the current period. The

third and fourth components are adjustment term, independent of the reports.

(C1) O1G with probability αiksi1{si>0}, and O
k+1
F with probability −φiksi1{si≤0}.

Numbers αik and φik will be specified later. For now, it is important to know that they will converge to

0 as the discount factor converges to 1.

(C2) O1G with probability −ψji,ksj1{sj≤0}, and O
k+1
F with probability sjβ

j
i,k1{sj>0}.

Numbers βji,k and ψji,k will be specified later, and will also converge to 0 as the discount factor converges

to 1.

9To define the strategies in this manner, we need to allow players to observe a realization of public randomization device

at the beginning of period 1. However, this is not necessary, as one can also choose player F in a deterministic manner, which

introduces some asymmetry; this would be inconvenient for the analysis of players’ payoffs and incentives, but the result would

still hold true.
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(C3) Ok+1F with probability
k

2(k + 1)
− φikpi −

1

I − 1

�

j �=i

βji,kpj ,

independent of the messages sent (or the actions played) in the current period; O1G with probability

1

I − 1

�
1

2(k + 1)
− αikpi − ψ

j
i,kpj

�
,

for a given j, independent of the messages and actions in the current period;10

(C4) OkF with the remaining probability.

(D) As in Section 3, if an action profile other than a(θ) is observed, for any reported type profile θ,

players switch in the following period to playing permanently the bad stage-game Nash equilibrium.

(E) If some player i reaches the limit of n penalty cards, she goes on suspension. This means that for the

expected number of M periods players report truthfully their types, and play the R-efficient action profile

a(θR), where R = {1, ..., I} − {i}. After the M periods, player i comes back from suspension, which means

that one penalty card of player i is annulled.11

This last prescription of play applies only under the assumption that no other player goes on suspension

during the M periods. We will make this simplifying assumption until Section 6, in which we specify the

details of play when a player goes on suspension.

Remark 1 Note that under these strategies the expected change in the number of cards of player F is 0.

Player F obtains one more card with probability k/2(k + 1) and all k cards are annulled with probability

1/2(k + 1). We tried several other combinations of transition probabilities in the penalty-card structure, but

the proof was always unravelling. If player F was obtaining cards too quickly, we were losing efficiency, as

the probability of player F going on suspension was too high. If player F was obtaining cards too slowly,

players had insufficient incentives for revealing her type truthfully.

5 Analysis

5.1 Value functions

It will be convenient to adopt a slightly simpler notation. Namely, let vi = viR for R = {1, ..., I} − {i}

be the stage game payoff of player i when she is the only player on suspension, and let wij = w
i
R for

R = {1, ..., I} − {j} be the stage game payoff of player i when some other player j is the only player on

suspension, and let wi = w{1,...,I} be the stage game payoff of player i when all players are active. Denote

by V ik the continuation payoff of player i who is currently player F and holds k cards, and by W i
j,k the

continuation payoff of player i when j is currently player F and holds k cards. These payoffs are obviously

10As numbers αi
k
, φik, β

j
i,k

, ψj
i,k

will be small, the formulas in the displays define positive numbers.

11 It is worth pointing out that truthful reporting is incentive compatible for players on suspension, since their reports have

no effect on R-efficient action profiles (by the assumption that each player’s payoffs are independent of other players types).
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computed assuming that players play the prescribed strategies. We will often call V ik andW i
j,k value functions.

These functions are payoffs at an ex ante stage, when players have not yet learned their current types.

Numbers αik and φik, which will sometimes be called probabilities of control, will be defined so that the

following equalities are satisfied:

αiksi(1− ε)



 1

I − 1

�

j �=i

W i
j,1 − V

i
k



 = siε

for si > 0, and

φik(−si)(1− ε)[V
i
k+1 − V

i
k ] = siε

for si ≤ 0.

This choice of αik and φik gives player i an incentive to maximize the stage-game payoffs of all players, in

the way analogous to transfers from Section 3. Indeed, by (C1) and (C2) of the definition of strategies, player

i’s report affects her continuation payoff in the “subgame”12 beginning in the following period through the

left-hand sides of the equations. In turn, the right-hand sides are equal to the sum of stage-game payoffs

across all players other than i, which together with the effect of player i’s report on her stage-game payoff

yields the desired incentive to maximize the sum of the stage-game payoffs of all players.

By dividing the two equations by si we obtain

αik(1− ε)



 1

I − 1

�

j �=i

W i
j,1 − V

i
k



 = ε and φik(1− ε)[V
i
k − V

i
k+1] = ε. (2)

Similarly, numbers βji,k and ψji,k (which will also be sometimes called probabilities of control) will be

defined so that the following equations are satisfied:

1

I − 1
βij,ksi(1− ε)[W

i
j,k+1 −W

i
j,k] = siε

for si > 0, and
1

I − 1
ψij,k(−si)(1− ε)

�
V i1 −W

i
j,k

�
= siε

for si ≤ 0.

These equations guarantee that players who currently hold no card maximize the total (across all players)

stage-game payoff, and by dividing by si we obtain

1

I − 1
βij,k(1− ε)[W

i
j,k+1 −W

i
j,k] = ε and

1

I − 1
ψij,k(1− ε)

�
W i
j,k − V

i
1

�
= ε. (3)

Given the prescribed strategies, value V ik for k = 1, ..., n− 1 satisfies the following recursive equation:

V ik = εw
i + (1− ε)

1

2
V ik + (1− ε)

k

2(k + 1)
V ik+1 + (1− ε)

1

I − 1

1

2(k + 1)

�

j �=i

W i
j,1.

12Strictly speaking, the term subgame is incorrect, since private types are never revealed. We will disregrad this subtle issue,

which should cause no confusion.

12



Indeed, player i’s current stage game payoff is wi. By (C1) of the definition of strategies, player i obtains

another penalty card with probability −siφ
i
k when si ≤ 0; in expectation, this yields φikpi. By (C2) of the

definition, player i obtains another penalty card with probability βji,kpj when player j, as player G, decides

about the penalty-card structure. (Recall that player j learns whether she is player G after reporting the

current type.) Together with the chance of obtaining another card described in (C3) of the definition, this

yields k/2(k + 1). Similarly, we compute the chance of all player i’s cards being annulled (in which case

player G obtains a penalty card), and the chance that the number of cards of player i stay the same.

Moving the term (1 − ε)V ik/2 to the left-hand side, then dividing the equation by 1 − (1 − ε)/2, and

omitting all terms of order smaller than ε,13 one can rewrite the recursive equation as:

V ik = 2εw
i + (1− 2ε)

k

k + 1
V ik+1 + (1− 2ε)

1

I − 1

1

k + 1

�

j �=i

W i
j,1, (4)

and for k = n (also omitting terms smaller than ε):

V in =Mεv
i + (1−Mε)V in−1. (5)

We have assumed here that when player i goes on suspension, she will be the only player on suspension for

the entire duration of suspension (M periods). When we fully specify the equilibrium strategies in Section

6, this will not be entirely true, that is, several players may be on suspension at the same time. Then, the

equation will be satisfied only in approximation, but this will be enough for our purposes. We will return to

this issue in Section 6.

Similarly to V ik , we obtain value W i
j,k the following recursive equation for k = 1, ..., n− 1:

W i
j,k = 2εw

i + (1− 2ε)
k

k + 1
W i
j,k+1 + (1− 2ε)

1

I − 1

1

k + 1

�

m�=i,j

W i
m,1 + (1− 2ε)

1

I − 1

1

k + 1
V i1 ,

and for k = n:

W i
j,n =Mεw

i
j + (1−Mε)W

i
j,n−1.

Notice that the recursive equations involve no probability of control. This is important, since it enables

us to compute the value functions from the recursive equations, and then define the probabilities of control

by equations (2) and (3).

5.2 Efficiency

In this section, we will show that the strategies described in the previous sections achieve efficiency. The

calculations will be performed assuming that ε is very small, so one can disregard terms of order lower than

ε.

13Whem we omit terms of order lower than ε, then dividing by 1 − (1 − ε)/2 = 1/2 + ε/2 is equivalent to multiplying by

2− 2ε.
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From the formulas for V ik and V in (that is, (4) and (5)), we can derive the expression for V in−1 as a function

of W i
j,1 as follows:

V in−1 = 2εw
i + (1− 2ε)

n− 1

n
V in + (1− 2ε)

1

I − 1

1

n

�

j �=i

W i
j,1

= 2εwi + (1− 2ε)
n− 1

n
[Mεvi + (1−Mε)V in−1] + (1− 2ε)

1

I − 1

1

n

�

j �=i

W i
j,1

= 2εwi +
n− 1

n
Mεvi +

n− 1

n
[1− (M + 2)ε]V in−1 + (1− 2ε)

1

I − 1

1

n

�

j �=i

W i
j,1,

which yields

V in−1 = 2nεw
i + (n− 1)Mεvi + {1− [2n+ (n− 1)M ]ε}

1

I − 1

�

j �=i

W i
j,1.

We will now recursively demonstrate that

V ik = εC
i
k + (1−Dkε)

1

I − 1

�

j �=i

W i
j,1 (6)

for some constants Cik and Dk.

Suppose (6) holds for k + 1. This and (5) yield

V ik = 2εw
i + (1− 2ε)

k

k + 1



εCik+1 + (1−Dk+1ε)
1

I − 1

�

j �=i

W i
j,1



+ (1− 2ε)
1

I − 1

1

k + 1

�

j �=i

W i
j,1

= ε

�
2wi +

k

k + 1
Cik+1

�
+

�
1− ε

�
2 +

k

k + 1
Dk+1

��
1

I − 1

�

j �=i

W i
j,1,

this means that (6) holds for k, and

Cik = 2w
i +

k

k + 1
Cik+1 and Dk = 2+

k

k + 1
Dk+1. (7)

An analogous argument yields:

W i
j,n−1 = 2nεw

i + (n− 1)Mεwij + {1− [2n+ (n− 1)M ]ε}U
i
j,1,

where

U ij,1 =
1

I − 1

�

m�=i,j

W i
m,1 +

1

I − 1
V i1 ;

and

W i
j,k = εc

i
j,k + (1− dkε)U

i
j,1, (8)

where

cij,k = 2w
i +

k

k + 1
cij,k+1 and dk = 2 +

k

k + 1
dk+1.

By summing up (8) for k = 1 across all j �= i, we obtain

1

I − 1

�

j �=i

W i
j,1 = ε

�

j �=i

cij,1 + [1− (I − 1)d1ε]V
i
1 .
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This equation together with (6) for k = 1 enables us to compute V i1 :

V i1 =

Ci1 +
�

j �=i

cij,1

D1 + (I − 1)d1
, (9)

and

1

I − 1

�

j �=i

W i
j,1 =

(1 +D1ε)
�

j �=i

cij,1 + [1− (I − 1)d1ε]C
i
1

D1 + (I − 1)d1
. (10)

By recursive computing, we obtain:

Ci1 = 2w
i

�
1 +

1

2
+ ...+

1

n− 2

�
+
2nwi

n− 1
+Mvi, (11)

D1 = 2

�
1 +

1

2
+ ...+

1

n− 2

�
+

2n

n− 1
+M , (12)

cij,1 = 2w
i

�
1 +

1

2
+ ...+

1

n− 2

�
+
2nwi

n− 1
+Mwij ,

and

d1 = 2

�
1 +

1

2
+ ...+

1

n− 2

�
+

2n

n− 1
+M .

This yields

lim
n
V i1 = w

i (13)

and implies that the payoff is efficient, if M goes to infinity at a rate lower than

n�

m=1

1

m
.

Similarly, we obtain that

lim
n

1

I − 1

�

j �=i

W i
j,1 = w

i. (14)

5.3 Probabilities of control, incentives

The probabilities of control αik, φ
i
k, β

j
i,k and ψji,k are defined by conditions (2) and (3), where the value

functions are determined by the recursive equations from the previous section. Notice that the value functions

determined by the recursive equations may not be the actual value functions in the repeated game, but the

two value functions will be equal in approximation. It only remains to show that these numbers are positive

but small. We will show that this is the case for αik and φik; for β
j
i,k and ψji,k, the argument is analogous.

First, it follows easily from the recursive equations for Cik and Dk (7) and the formulas for Ci1 and D1

(12) and (11) that

Cik = 2w
i

�
1 +

k

k + 1
+

k

k + 2
+ ...+

k

n− 2

�
+
2knwi

n− 1
+ kMvi,

and

Dk = 2

�
1 +

k

k + 1
+

k

k + 2
+ ...+

k

n− 2

�
+
2kn

n− 1
+ kM .
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By (6)

V ik −
1

I − 1

�

j �=i

W i
j,1 = εC

i
k −Dkε

1

I − 1

�

j �=i

W i
j,1,

and since by (9) and (10), the difference between 1
I−1

�

j �=i

W i
j,1 and V i1 is at most of order ε, which means

that, disregarding expressions of order ε2, one may replace 1
I−1

�

j �=i

W i
j,1 with V i1 on the right-hand side.

Using (9) and the formulas for Ci1, D1, c
i
j,1 and d1, we obtain that

V i1 = w
i +

M

2


1 + 1

2 + ...+
1

n−2

�
+ 2n

n−1 +M



1
I
vi +

1

I

�

j �=i

wij −w
i



 . (15)

If the expression in parenthesis is negative, then

V ik −
1

I − 1

�

j �=i

W i
j,1

= εkM(vi −wi)− ε
[2


1 + k

k+1 +
k
k+2 + ...+

k
n−2

�
+ 2kn

n−1 + kM ]

2


1 + 1

2 + ...+
1

n−2

�
+ 2n

n−1 +M
M



1
I
vi +

1

I

�

j �=i

wij −w
i





≤ εkM(vi −wi)− εkM



1
I
vi +

1

I

�

j �=i

wij −w
i



 = −εkM
I − 1

I



 1

I − 1

�

j �=i

wij − v
i



 ,

and by assumption II, this is a negative expression at least of order kMε, which implies that αik is positive

but small if M is sufficiently large.

If the expression in parenthesis in (15) is positive, then

V ik −
1

I − 1

�

j �=i

W i
j,1 < εkM(v

i −wi),

and so by assumption I, this is again a negative expression at least of order kMε.

Similarly,

V ik − V
i
k+1 = ε[C

i
k −C

i
k+1]− [Dk −Dk+1]ε

1

I − 1

�

j �=i

W i
j,1,

which by the recursive equations for Cik and Dk, and (6) is equal to

−ε
1

k + 1



Cik+1 −Dk+1
1

I − 1

�

j �=i

W i
j,1



+ 2ε



wi −
1

I − 1

�

j �=i

W i
j,1





= −
1

k + 1



V ik+1 −
1

I − 1

�

j �=i

W i
j,1



+ 2ε



wi −
1

I − 1

�

j �=i

W i
j,1



 .

So, by the previous argument and (14), we also have that φik is positive but small if M is sufficiently large.
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6 Play on suspension

To complete the analysis, we need to specify the play when a player is on suspension. First, notice that our

analysis up to now is valid if we assume that players go on suspension not for a deterministic number of M

periods, but for a random number of periods. More precisely, every period a player on suspension is allowed

to come back and become active with probability µ such that

M =
∞�

t=1

tµ(1− µ)t−1 =
1

µ
. (16)

We define the repeated-game strategies as follows: In the original I-player game, all players are initially

active. Once a player i1 goes on suspension, players start playing an (I − 1)-player subgame in which they

maximize the total payoff of players other than i1. In each period of the (I−1)-player subgame, player i1 can

return from suspension, in which case players resume playing the I-player game, and one card is returned

to player i1 (so i1 owes n− 1 cards). What happened in the (I − 1)-player subgame becomes irrelevant. If

player i1 goes on suspension again, then players start playing the (I−1)-player subgame from the beginning,

not from the moment they stopped because player i1 returned from suspension.

It may happen in the (I − 1)-player subgame that another player i2 goes on suspension, in which case a

(I−2)-player subgame is initiated; in this subgame, players maximize the total payoff of active players, that

is, all players but i1 and i2. In each period either of players i1 and i2 may return from suspension. If this

is player i1, then player i2 returns to the game as well; player i1 went on suspension earlier (in the I-player

game), and when she returns, player i2 who went on suspension later must return as well. Players resume

playing the I-player game, one card is returned to player i1, and what happened from the time player i1

went on suspension becomes irrelevant. If this is player i2 who first returns from suspension, then players

resume playing the (I − 1)-player subgame, one card is returned to player i2, and only what happened in

the (I − 2)-player subgame becomes irrelevant.

More generally, for any sequence of players i1, i2, ..., il on suspension, the total payoff of remaining, active

players is maximized in the (I − l)-player subgame.14 If player ik returns from suspension, then all players

ik+1, ..., il return as well; one card is returned to player ik and players continue playing the (I−k+1)-player

subgame. Moreover, what happened after player i1 went on suspension becomes irrelevant.

From the perspective of the (I− l)-player subgame, the probability of interrupting the game, when one of

the players i1, i2, ..., il comes back from suspension is equivalent to additional discounting. This probability,

and so the additional discounting vanishes with the discounting in the (I − l+1)-player subgame. Thus, the

discounting in the (I − l)-player subgame vanishes when the discounting in the (I − l + 1)-player subgame

vanishes, although it does so at a lower rate.

Once the joint-penalty phase is reached, the play remains in this phase forever, and players play the bad

stage-game equilibrium (see assumption III), even if this phase begins when some players are on suspension.

14 In particular, if player i is the only active player, then players play the actions that maximize i’s payoff, given the reported

type of this player. There is no need to keep any penalty-card record until another player returns from suspension.
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An inductive argument shows that the expected payoff of every player i in every subgame at the beginning

of which the play is in the cooperation phase converges to the efficient payoff wi. Therefore, players have

incentives to maintain the play in cooperation phase.

Finally, we need to justify the recursive formulas for V in and W i
j,n. Those formulas were obtained under

the assumption that when a player is on suspension, player i obtains forM periods the stage-game payoff of

vi or wij (depending on whether i or j �= i is on suspension). This, however, is indeed true in approximation.

It can be easily proved by induction (with respect to the number of active players) that the R-efficient payoff

vector is attained in the subgame with R being the subset of active players, when the discount factor δ tends

to 1, and the probability of any player returning from suspension tends to 0.

7 Advantages of penalty-card strategies

7.1 Low number of states

One advantage of penalty-card strategy profiles over other strategies invented for similar purposes in the

existing literature, such as review strategies, is that players condition their actions only on a simple statistics

of the past play, especially when the number of players is small. Namely, they condition on whether the play

is in the cooperation or joint-penalty phase, who are the players on suspension and the order in which they

went on suspension, and who currently holds penalty cards and how many of them.

In particular, the penalty-card strategy profiles only minimally, indirectly depend on the space of types

and actions. Therefore, penalty-card strategies seem particularly attractive in games with a small number

of players, and large numbers of types and actions. In contrast, review strategy profiles typically prescribe

different actions for different types, and when the number of both types and actions is large, then that strategy

profile requires performing a large number of frequency tests that check whether the action prescribed for

each type has been played with roughly “right” frequency.

7.2 Other advantages, and limitations

We believe that penalty-card strategies, or more generally “debt strategies” dominate the review strategies,

in the sense that any test used in a review can induce only some specific features of behavior, in specific

settings, while debt is a more universal way of providing incentives. For example, tests which induce desired

behavior when types are i.i.d. may fail when the types are Markov. In turn, debt strategies allow players to

use their private information in the way that is most beneficial for them, and impose only some limits which

enforce paying the debt back.

Our results in this paper provide only partial support for this claim; as one will see in Appendix, the

construction of efficient strategies depends on the stochastic process which governs the evolution of play-

ers’ types. However, we show in the companion paper Olszewski and Safronov (2015) that in numerous
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applications, the same penalty-card strategies approximate efficiency for all Markov chains with transition

probability bounded away from 1.

In terms of limitations, the discussion of Section 7.1 suggests that penalty-card strategies seem inferior

to review strategies in games with a large number of players and small numbers of types and actions. In

addition, the penalty-card strategies used to prove our general results rely heavily, and in a subtle manner,

on public randomization. However, public randomization, and even communication is redundant in many

specific settings; again, we refer the reader to our companion paper.

8 Markov types

8.1 Signalling and ratcheting effects

In the Markovian case, the construction of equilibria encounters an additional difficulty. Since types are

persistent, reports of types have longer-lasting effects. This may result in “signalling and ratcheting effects,”

namely, reporting some types may affect future reports of other players, giving players additional incentives

to misreport.

To be more specific, recall that in the i.i.d. case player i’s report affects the penalty card structure

through si; we defined si as the difference between the total expected stage-game payoff of players j �= i

contingent on player i’s type being the reported type, and their prior total expected stage-game payoff. By

making the probability of obtaining a penalty card (and so player i’s continuation payoffs) a function of si,

we aligned the player’s individual incentives with the objective of maximizing the total payoff of all players.

In the Markov case, the expected payoffs, and so the difference, depend on the profile reported in the

previous period. So, one might try to define si as the same difference as in the i.i.d. case, but contingent on

the previous-period types being the reported types, that is,

�

j �=i

{Eθ−i [uj(θj , a(θi, θ−i)) | θ
−1
−i ]−Eθ[uj(θj , a(θi, θ−i)) | θ

−1]}, (17)

where θ−1 = (θ−1i , θ
−1
−i ) denotes the type profile reported in the previous period, and Eθ−i [· | θ

−1
−i ] and

Eθ[· | θ
−1] mean that the expected values over the distribution of θ−i and θ contingent on the previous-

period types being equal to θ−1−i and θ−1.

Consider the reporting incentives of player i for so defined si, given truthful reports of all other agents.

The impact of player i’s report θ−1i on her continuation payoff (beginning in the current period) would be ε

times expression (17). The first term of this expression does not depend on report θ−1i , it does depend only

on report θi. The second term, in turn, is determined before observing the current report θi, and depends

on player i’s previous report θ−1i .

This means that player i’s report θ−1i affects the value of si not only in the period it is reported, but

also in the following period. In other words, player i has an additional incentive, compared to the i.i.d. case,
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to report θ−1i ’s that give low values of Eθ[uj(θj , a(θi, θ−i)) | θ
−1]. These are the signalling and ratcheting

effects mentioned earlier.

In order to remove these additional incentives, one might try to add the following term to si:

(1− ε)
�

j �=i

Eθ+1 [uj(θ
+1
j , a(θ

+1
i , θ

+1
−i )) | θi, θ

−1
−i ],

where θ+1 = (θ+1i , θ
+1
−i ) denotes the next-period type profile. This term removes the additional incentives

for misreporting θi. However, a new problem appears, namely, the expected value of all these new terms,

given θ−1, may not be equal to 0. And the nonzero terms make the probability distribution over penalty

cards in the following period depend on the currently reported type profile, which would in turn make the

analysis of value functions intractable.

One can restore the tractability of analysis by subtracting the expected value of the new terms. However,

this operation again creates additional incentives for misreporting. As a result, one keeps including newer

terms to the formula for si. Fortunately, these newer terms refer to the expectations of what will happen

in more remote future given the current report. Due to the convergence of Markov chains to the limiting

distributions at an exponential rate, the dependence of these expectations on current report will be vanishing.

Thus, we need to include only a finite number of them to remove (almost entirely) the additional incentives,

and preserve the tractability of analysis.

It will be essential that the number of these new terms is finite and bounded for all discount factors, since

it will make siε an expression of order O(ε), while an infinite number of terms would make siε an expression

of order O(1). However, since we remove the additional incentives only almost entirely, we will have to

make the additional assumption that the efficient action profiles are unique. (Note that this assumption was

redundant in i.i.d. case, as reports did not have any signalling and ratcheting effects.)

8.2 The result in the Markov case

Recall that by the ergodic theorem, the Markov chain on the space of types has a limiting type distribution

η. Define viR and wiR as the expected stage-game payoff of player i who is not in R and players take the R-

efficient action profile, and the expected stage-game payoff of player i who is a member of R and players take

the R-efficient action profile, respectively, and types are distributed according to η. We make the following

assumptions that are analogous, to the i.i.d. case:

Assumption I’: For any i = 1, ..., n and R such that i /∈ R,

viR < w
i
R∪{i}.

Assumption II’: For any i = 1, ..., n and R such that i ∈ R, we have that

1

|R| − 1

�

i �=j∈R

wiR−{j} > v
i
R−{i}.
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Assumption III’: The repeated game has an equilibrium in which the payoff of every player i is lower

than w̄iR for R = {1, ..., I}.

We elaborate on assumption III’ in the following section. In the Markovian case, we need one additional

assumption. The necessity of making this assumption follows from our discussion in the previous section.

Assumption IV: For all type profiles θ ∈ Θ, and all subsets R ⊂ {1, ..., I} there is a unique action

profile aR(θ) that maximizes the total payoff of all players in R.

We can now state the counterpart of Theorem 2 for Markov types:

Theorem 3. If players types are Markovian, and the stage game satisfies assumptions I’-III’ and IV,

then the efficient payoff can be approximated in penalty-card equilibria when the discount factor δ approaches

1.

8.3 Bad repeated-game equilibria

In the analysis of the i.i.d. case, we assumed the existence of a bad stage-game equilibrium, and specified

the strategy profile in the joint-penalty phase as playing in every period the bad stage-game equilibrium.

When types are Markov, a repetition of stage-game equilibrium may not be a repeated-game equilibrium.

This problem has been pointed out in several earlier papers (see, for example, Athey and Bagwell (2008)

and Escobar and Toikka (2010)).

Actually, the existence of any repeated-game equilibrium in the Markovian case for general stage games

follows only from the recent paper by Escobar and Toikka. (For the oligopoly game, the existence was

established by Athey and Bagwell.) The existence can also be established in a simpler way by referring to a

fixed-point argument. More precisely, the mapping that assigns to every repeated-game strategy profile the

set of best-response profiles satisfies the conditions of the extension of Kakutani’s fixed-point theorem to the

Hilbert cube.

However, the existence does not yet guarantee that assumption III’ is satisfied. Therefore, it must

be assumed that there exist equilibria in which every player obtains a lower payoff than in the efficient

outcome. Assumption III’ is not too restrictive, though. It is relatively easy to construct explicitly some

“bad” repeated-game equilibria in many concrete settings (such as the repeated version of Spulber’s oligopoly

game). In addition, if one is interested in symmetric games, then Theorem 3 delivers efficient strategies by

an argument analogous to that from the second last paragraph of Section 2.3.

9 Appendix

The purpose of this appendix is to prove Theorem 3.
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9.1 Efficient strategies

The strategies will be similar to those used in the i.i.d. case. As before, we will first describe the strategies in

the case when all players are active. At the beginning of period 1, player F is randomly selected, each with

probability 1/I, and that player begins the game with a penalty card. At the beginning of other periods,

F is the player who currently holds a positive number of penalty cards. (As before, there will always be

only one player holding penalty cards.) Player G is selected randomly from the I − 1 players other than F,

each of them with probability 1/(I − 1); this selection takes place at the end of each period, contingent on

the realization of public randomization device. Suppose that player i is currently player F and holds k < n

cards. As before, denote the three possible penalty-card structures at the end of the period by O1G, O
k+1
F

and OkF .

(A&B) All players report their types truthfully, and if θ is the reported type profile, players take action

profile a(θ).

The penalty-card structure in the following period is determined at the end of the period contingent on

the realization of public randomization device, by the following four-component lottery:

(C1) O1G with probability αiksi1{sik(θ−1,θi)>0}, and O
k+1
F with probability −φiksi1{si

k
(θ−1,θi)≤0}.

We will define αik, φ
i
k and sik(θ

−1, θi) later.

(C2) O1G with probability −ψji,ksj1{sj
i,k
(θ−1,θj)≤0}

, and Ok+1F with probability sjβ
j
i,k1{sj

i,k
(θ−1,θj)>0}

.

We will define βji,k, ψ
j
i,k and sji,k(θ

−1, θj) later.

(C3) Ok+1F with probability

k

2(k + 1)
− φikp

i
k(θ

−1)− βji,k
1

I − 1

�

j �=i

pji,k(θ
−1),

independent of the actions played (or messages sent) in the current period; O1G with probability

1

I − 1

�
1

2(k + 1)
− αikp

i
k(θ

−1)− ψji,kp
j
i,k(θ

−1)

�
,

for a given j, independent of the actions played in the current period;15

(C4) OkF with the remaining probability.

Again, pik(θ
−1) and pij,k(θ

−1) will be defined later.

(D) If an action profile other than a(θ) is observed, for any reported type profile θ, players switch in the

following period to playing permanently the bad repeated-game equilibrium.

(E) If player i reaches the limit of n penalty cards, she goes on suspension. This means that for the

expected number of M periods players report truthfully their types, and play the R-efficient action profile

a(θR), where R = {1, ..., I} − {i}. When player i comes back from suspension, one penalty card of player i

is annulled.

15As numbers αi
k
, φik, β

j
i,k

, ψj
i,k

will be small, the formulas in the displays define positive numbers.
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Part (E) applies only under the assumption that no other player goes on suspension during the suspension

of player i. For now, we will make this simplifying assumption, postponing for later the details of play when

a player goes on suspension. It will be important that M and n diverge to infinity at the rates such that

n�

m=1

1

m
≈M3/2.

9.2 Missing definitions

We define the probabilities of control αik, φ
i
k, β

i
j,k, and ψ

i
j,k by equations (2) and (3), where value functions

V ik and W i
j,k are as in the i.i.d. case with the limit ergodic distribution η being the probability distribution

over types. Notice that these probabilities of control are independent of any reports of types. By the analysis

of the i.i.d. case, the probabilities of control satisfy the following condition:

αik =
Aik

M(k + 1)
, βij,k =

Bij,k
M

, φik =
Φik
M

, ψij,k =
Ψij,k

M(k + 1)
, (18)

where Aik, B
i
j,k, Φ

i
k and Ψij,k ≥ 0 are bounded by a constant which does not depend on M and n.

Next, we will define sik(θ
−1, θi) and s

j
i,k(θ

−1, θj). Suppose first that player i is currently player F, and

has k penalty cards. Let

Bik,T (θ
−1
−i , θi) =

T�

t=0

�

j �=i

(1− ε)tE[u+tj | θi, θ
−1
−i ].

where the expression E[u+tj | θi, θ
−1
−i ] stands for the expectation of the stage-game payoff uj of player j in t

periods from now, given the current type θi of player i and the previous types θ−1−i of players other than i.

This expression represents the impact of player i’s current report on the payoffs of all other players in the

following T periods, assuming that all players play the prescribed strategies. Let

sik,T (θ
−1, θi) = B

i
k,T (θ

−1
−i , θi)−Eθi [B

i
k,T (θ

−1
−i , θi) | θ

−1
i ].

Let sik(θ
−1, θi) = sik,T (θ

−1, θi), where T will be defined in a moment. We define sij,k(θ
−1, θi) in a similar

manner, as the impact of player i’s current report when player j is currently player F and currently has k

cards. Notice that sik(θ
−1, θi) may differ from sij,k(θ

−1, θi), for example, because the chance that player i

will be on suspension in t periods ahead depends on who (i or j) currently holds the k cards.

In order to define T , observe that the impact of θi on u
+t
j vanishes in the remote future. More precisely,

we have that

Claim 1. For any ∆ > 0, any player i, and any types θ′i, θ
′′
i and θ−i, there exists a number T such that

for any t > T we have

������

�

j �=i

E[u+tj | θ′i, θ
−1
−i ]−

�

j �=i

E[u+tj | θ′′i , θ
−1
−i ]

������
< ∆.
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If players were never going on suspension, this claim would follow directly from the fact that for any two

current type profiles the probability that the types profiles will coincide t periods from now tends to 1 at

an exponential rate when t grows large. Since players may go on suspension, it may happen that for some

type profile (θ′i, θ
−1
−i ), the probability that player i will be on suspension t periods from now is higher, while

for the other type profile, (θ′′i , θ
−1
−i ), the probability that player i will be on suspension t periods from now

is lower. So, the payoffs u+tj of players j �= i may be different. However, the probability that player’s report

will affect going on suspension is of order O(1/M), and the rate of convergence of type profiles over time is

independent of M . Therefore, we can assume that M is sufficiently large so that the possibility of a player

going on suspension affects the payoffs of other players only marginally.

We can now define T as the number from Claim 1 for any ∆ lower than the difference
�

i∈R

[ui(θi, a(θR))−

ui(θi, a)] for all profiles θ, subsets of players R, and actions a �= a(θR). By assumption IV this difference in

positive.

Finally, let

pik(θ
−1) = Pr{sik(θ

−1, θi) > 0} ·Eθi [s
i
k(θ

−1, θi)|s
i
k(θ

−1, θi) > 0];

similarly, let pij,k(θ
−1) = Pr{sij,k(θ

−1, θi) > 0} · Eθi [s
i
j,k(θ

−1, θi)|s
i
j,k(θ

−1, θi) > 0].

9.3 Efficiency

Given the penalty-card strategies, we define V ik,θ as the continuation payoff of player i, at the beginning of

a period when she does not know yet the current type, she holds k penalty cards, and the type profile in

the previous period was θ. Similarly, we define W i
j,k,θ as the continuation payoff of player i when player j

holds k penalty cards. These values are defined for the true type profile θ, or assuming that players reported

their types truthfully. When a player returns from suspension, these values are different, and are denoted

by V̂ in−1,θ, Ŵ
i
j,n−1,θ; in this case θ denotes the type profile in the last period before suspension.

The recursive equations for the value functions in their exact form are long and complicated, but we will

now show that they coincide with the recursive equations in the i.i.d. case up to a factor that vanishes with

the discount rate.

The value function V ik,θ, for k < n− 1, is equal to the expectation over the type profile θ′ in the current

period of the sum of the stage-game payoff εwiθ′ and the continuation payoff. The continuation payoff is in

turn the sum of the following expressions:

(1− ε)
1

I − 1

�

j �=i

�
αiks

i
k(θ, θ

′
i)χ{s

i
k(θ, θ

′
i) > 0} − ψ

j
i,ks

j
i,k(θ, θ

′
j)χ{s

j
i,k(θ, θ

′
j) ≤ 0}

+

�
1

2(k + 1)
− αikp

i
k(θ)− ψ

j
i,kp

j
i,k(θ)

��
W i
j,1,θ′ ,

where χ{} ∈ {0, 1} is the indicator of whether the condition in {} is satisfied,
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(1− ε)



−φiks
i
k(θ, θ

′
i)χ{s

i
k(θ, θ

′
i) ≤ 0}+

1

I − 1

�

j �=i

βji,ks
j
i,k(θ, θ

′
j)χ{s

j
i,k(θ, θ

′
j) > 0}

+



 k

2(k + 1)
− φikp

i
k(θ)−

1

I − 1

�

j �=i

βji,kp
j
i,k(θ)







V ik+1,θ′ ,

and

(1− ε)

�
1

2
+ αik

�
pik(θ)− s

i
k(θ, θ

′
i)χ{s

i
k(θ, θ

′
i) > 0}

�

+
1

I − 1

�

j �=i

ψji,k(p
j
i,k(θ) + s

j
i,k(θ, θ

′
j)χ{s

j
i,k(θ, θ

′
j) ≤ 0}) + φ

i
k(p

i
k(θ) + s

i
k(θ, θ

′
i)χ{s

i
k(θ, θ

′
i) ≤ 0})

+
1

I − 1

�

j �=i

βji,k(p
j
i,k(θ)− s

j
i,k(θ, θ

′
j)χ{s

j
i,k(θ, θ

′
j) > 0})



V ik,θ′ .

The computation of continuation payoffs follows directly from the prescribed strategies. For example,

the first expression refers to the situation that a player other than i will hold a penalty card in the following

period. This situation happens: (a) when player F’s report determines the penalty-card structure and

sik(θ, θ
′
i) > 0; in this case, it happens with probability αiks

i
k(θ, θ

′
i) (see (C1) of the definition of the prescribed

strategies); (b) when player G’s report determines the penalty-card structure and sji,k(θ, θ
′
j) ≤ 0; in this

case, it happens with probability −ψji,ks
j
i,k(θ, θ

′
j) (see (C2) of the definition of the prescribed strategies); (c)

independently of players’ reports with probability given in (C3) of the definition of the prescribed strategies.

Thus, the recursive equation for V ik,θ, k < n− 1, has the form

V ik,θ =
�

θ′

ηθ,θ′





εwiθ′ + (1− ε)

1

I − 1

�

j �=i

1

2(k + 1)
(1 + J ij,k,θ,θ′)W

i
j,1,θ′

+ (1− ε)
k

2(k + 1)
(1 + Iik,θ,θ′)V

i
k+1,θ′ + (1− ε)

1

2



1−
1

I − 1

�

j �=i

1

k + 1
J ij,k,θ,θ′ −

k

k + 1
Iik,θ,θ′



V ik,θ′





,

where J ij,k,θ,θ′ , I
i
k,θ,θ′ are terms of order O(1/M) by (18), and because sik(θ, θ

′
i) is bounded across all values

of ε. That is, V ik,θ is a sum of a term of order ε, and a weighted average of W i
j,1,θ′ , V

i
k+1,θ′ , V

i
k,θ′ . In addition,

we have that

�

θ′

ηθ,θ′J
i
j,k,θ,θ′ =

�

θ′

ηθ,θ′I
i
k,θ,θ′ = 0,

so the ex ante probability that W i
j,1,θ′ , for some θ′, will be the following period continuation payoff is

1
I−1

1
2(k+1) , and the ex ante probability that V ik+1,θ′ , for some θ′, will be the following period continuation

payoff is k
2(k+1) , and with the remaining probability V ik,θ′ , for some θ′, will be the following period continuation

payoff.
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Let V̄ ik =
�

θ

η(θ)V ik,θ and W̄ i
j,k =

�

θ

η(θ)W i
j,k,θ. Then, by stability of η,16 we have

�

θ

η(θ)
�

θ′

ηθ,θ′εw
i
θ′ =

�

θ′

η(θ′)εwiθ′ = εw
i,

�

θ

η(θ)
�

θ′

ηθ,θ′
1

2(k + 1)

1

I − 1

�

j �=i

W i
j,1,θ′ =

1

2(k + 1)

1

I − 1

�

j �=i

W̄ i
j,1,

and
�

θ

η(θ)
�

θ′

ηθ,θ′
k

2(k + 1)
V ik+1,θ′ =

k

2(k + 1)
V̄ ik+1.

This yields, by summing expressions V ik,θ with weights ηθ,θ′ ,

V̄ ik = εw
i + (1− ε)

1

2(k + 1)

1

I − 1

�

j �=i

W̄ i
j,1 + (1− ε)

k

2(k + 1)
V̄ ik+1 + (1− ε)

1

2
V̄ ik

+
�

θ

η(θ)
�

θ′

ηθ,θ′





(1− ε)

1

2(k + 1)

1

I − 1

�

j �=i

J ij,k,θ,θ′W
i
j,1,θ′

+ (1− ε)
k

2(k + 1)
Iik,θ,θ′V

i
k+1,θ′ − (1− ε)

1

2



 1

k + 1

1

I − 1

�

j �=i

J ij,k,θ,θ′ +
k

k + 1
Iik,θ,θ′



V ik,θ′





.

Since
�

θ′
ηθ,θ′J

i
j,k,θ,θ′ = 0, the term

�

θ

η(θ)
�

θ′
ηθ,θ′

1
2(k+1)

1
I−1

�

j �=i

J ij,k,θ,θ′W
i
j,1,θ′ is a weighted sum of differ-

ences W i
j,1,θ′ −W

i
j,1,θ”. The following claim shows that these differences are of order O(ε), and since J ij,k,θ,θ′

is of order O(1/M), we have that
�

θ

η(θ)
�

θ′
ηθ,θ′

1
2(k+1)

1
I−1

�

j �=i

J ij,k,θ,θ′W
i
j,1,θ′ is of order O(ε/M).

Claim 2. For any players i and j, number of cards k, and type profiles θ and θ′ there is constant C > 0,

independent of ε,M, n such that |V ik,θ − V
i
k,θ′ | < Cε and |W

i
j,k,θ −W

i
j,k,θ′ | < Cε. Analogous estimates hold

for V̂ in−1,θ and Ŵ i
j,n−1,θ.

17

By analogous arguments applied to other terms of the formula for V̄ ik , we obtain that

V̄ ik = εw
i + (1− ε)

1

I − 1

1

2(k + 1)

�

j �=i

W̄ i
j,1 + (1− ε)

k

2(k + 1)
V̄ ik+1 + (1− ε)

1

2
V̄ ik +O (ε/M) .

If we disregard the terms of order lower than ε, we can transform this formula into

16By stability we mean that

η(θ′) =
�

θ

η(θ)ηθ,θ′

for all θ′. By the ergodic theorem, the limit distribution of any Markov chain has this property.

17This claim follows from two facts: (a) for any two initial type profiles, the probability that the types profiles will coincide t

periods from now tends to 1 at an exponential rate, independent of the discount factor, when t grows large; and (b) given the

prescribed strategies, for any current card structure the distribution over card structures in the following periods is independent

of the previous type profiles θ and θ′.

26



V̄ ik = 2εw
i
k + (1− 2ε)

1

I − 1

1

k + 1

�

j �=i

W̄ i
j,1 + (1− 2ε)

k

k + 1
V̄ ik+1,

where wik differs from wi by a term of order O(1/M).

It appears that this formula for V̄ ik , differs from the formula for V ik in the i.i.d. case only by replacing wi

with wik. One can perform similar calculations for W̄ i
j,k, and then repeat the reasoning from the i.i.d. case

to obtain that

V̄ i1 = w
i +O(1/M1/2) and

1

I − 1

�

j �=i

W̄ i
j,1 = w

i +O(1/M1/2).

This, together with Claim 2 implies that our penalty-card strategies attain, as the discount factor tends

to 1 (and n and M diverge to infinity), the efficient payoffs.

9.4 Incentives

Observe first that V̄ ik and W̄ i
j,k can be determined by the same system of equations as V ik and W i

j,k from

the i.i.d. case, except wi replaced with wik, and the differences between wi and wik are of order O(1/M).

Therefore, by the same calculations as in the i.i.d. case (see formulas (2) and (3)), we obtain that

αik(1− ε)



 1

I − 1

�

j �=i

W̄ i
j,1 − V̄

i
k



 = ε(1 +O(1/M));

φik(1− ε)[V̄
i
k − V̄

i
k+1] = ε(1 +O(1/M));

1

I − 1
βij,k(1− ε)[W̄

i
j,k+1 − W̄

i
j,k] = ε(1 +O(1/M));

1

I − 1
ψij,k(1− ε)

�
W̄ i
j,k − V̄

i
1

�
= ε(1 +O(1/M)).

Denote the current actual type profile by θ′. Assume for now that no player is going on suspension within

T periods. We will argue in the next section that this simplifying assumption is inessential. By inspection of

the formula for V ik,θ, one can see that player i’s current report θ̂
′

i affects: the current payoff w
i
(θ′
−i
,θ̂
′

i)
, the value

of sik(θ, θ̂
′

i), and continuation payoffs W i
j,1,(θ′

−i
,θ̂
′

i)
, V i

k+1,(θ′
−i
,θ̂
′

i)
and V i

k,(θ′
−i
,θ̂
′

i)
. More specifically, sik(θ, θ̂

′

i) is

affected through its first component Bik,T (θ−i, θ̂
′

i), and the continuation payoffs are affected through the

value of Eθ+1
i
[Bik,T (θ

′
−i, θ

+1
i ) | θ̂

′

i].

We will first estimate the effect of player i’s report θ̂
′

i on W i
j,1,(θ′

−i
,θ̂
′

i)
. By referring to the one-stage

deviation principle, we will assume that player i will report truthfully in the future, so the distribution of

her future reports will be determined by her true type θ′i, rather than the reported type θ̂
′

i.
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If the future report θ+1i is such that Bij,1,T (θ
′
−i, θ

+1
i ) > Eθ+1i

[Bij,1,T (θ
′
−i, θ

+1
i ) | θ̂

′

i], then W i
j,1,(θ′

−i
,θ̂
′

i)

depends on player i’s report θ̂
′

i through

(Bij,1,T (θ
′
−i, θ

+1
i )−Eθ+1

i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i])
1

I − 1
βij,1[W

i
j,2,θ+1 −W

i
j,1,θ+1 ]

= (Bij,1,T (θ
′
−i, θ

+1
i )−Eθ+1

i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i])
1

I − 1
βij,1[W̄

i
j,2 − W̄

i
j,1 +O(ε)]

= (Bij,1,T (θ
′
−i, θ

+1
i )−Eθ+1

i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i])(ε+O(ε/M)).

The first equality follows from the fact that W i
j,1,θ+1

= W̄ i
j,1+O(ε), which in turn follows from Claim 2, and

the second equality follows from the observation made at the beginning of this section (the third display) and

the fact that βij,1 = O(1/M). Similarly, if Bij,1,T (θ
′
−i, θ

+1
i ) ≤ Eθ+1

i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i], then W
i
j,1,(θ′

−i
,θ̂
′

i)

depends on player i’s report θ̂
′

i through

(Bij,1,T (θ
′
−i, θ

+1
i )−Eθ+1

i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i])
1

I − 1
ψij,1[W

i
j,1,θ+1 − V

i
1,θ+1 ]

= (Bij,1,T (θ
′
−i, θ

+1
i )−Eθ+1

i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i])(ε+O(ε/M)).

The effects of player i’s report θ̂
′

i on V
i
k+1,(θ′

−i
,θ̂
′

i)
and V i

k,(θ′
−i
,θ̂
′

i)
take the same form. (Recall that we

assumed that no player goes on suspension within T periods.) The overall effect of report θ̂
′

i on player i’s

value function through continuation payoffs must be adjusted by factor (1−ε), and considered in expectation

contingent on θ−i. This yields

−(1− ε)Eθ′
−i
Eθ+1

i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i, θ−i](ε+O(ε/M)).

The effect of player i’s report θ̂
′

i through terms sik(θ, θ̂
′

i)I{s
i
k(θ, θ̂

′

i) > 0} and sik(θ, θ
′
i)I{s

i
k(θ, θ̂

′

i) ≤ 0}

turns out to be Bik,T (θ−i, θ̂
′

i)(ε + O(ε/M)). Therefore, the total effect of player i’s report θ̂
′

i, disregarding

terms of order lower than ε, is

Bik,T (θ−i, θ̂
′

i)(ε+O(ε/M))− (1− ε)Eθ′−iEθ+1i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i, θ−i](ε+O(ε/M))

= ε[Bik,T (θ−i, θ̂
′

i)− (1− ε)Eθ′−iEθ+1i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i, θ−i]] +O(ε/M).

The term O(ε/M) does not affect incentives. Recalling the definition of Bik,T (θ−i, θ̂
′

i), we obtain that

Bik,T (θ−i, θ̂
′

i)− (1− ε)Eθ′−iEθ+1i
[Bij,1,T (θ

′
−i, θ

+1
i ) | θ̂

′

i, θ−i]

=
T�

t=0

�

j �=i

(1− ε)tE[u+tj | θ̂
′

i, θ−i]− (1− ε)
T�

t=0

�

j �=i

(1− ε)tE[u+t+1j | θ̂
′

i, θ−i]

=
�

j �=i

E[uj | θ̂
′

i, θ−i]−
�

j �=i

(1− ε)T+1E[u+T+1j | θ̂
′

i, θ−i].
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The first of the two sums is equal to

�

j �=i

Eθ−i [uj(θj , a(θ̂
′

i, θ−i)) | θ̂
′

i, θ−i],

and together with the effect of player i’s report on her current payoff provides the player incentives to

maximize the total payoff, while the second sum depends on θ̂
′

i by a value lower than ∆, and therefore is

inessential for player i’s incentives.

9.5 Play on suspension.

The strategy profile when some players are on suspension is similar to that in the i.i.d. case. The ordering

in which players go on suspension is recorded, and the return of a player from suspension means that all

players who went on suspension after her also become active. When a return from suspension interrupts a

“subgame”, it is not continued in the future; that is, if the same set of players happens to be active, they

play the subgame from the very beginning (with a random player having one penalty card). However, there

are some issues, specific for the Markovian case, that we will now shortly discuss:

(i) When some players are on suspension, values of Bik,T (θ
−1
−i , θi) and s

i
k(θ

−1, θi) for all active players i

should include only the payoffs of other active players j, and should not include the payoffs after a return

from suspension interrupts the subgame with this particular set of active players.

(ii) Recall that sin−1(θ
−1, θi) = B

i
n−1,T (θ

−1
−i , θi) − Eθi [B

i
n−1,T (θ

−1
−i , θi) | θ

−1
i ]. It is important that

when sin−1(θ
−1, θi) is computed for the period following a return from suspension, θ−1i in its second term

Eθi [B
i
n−1,T (θ

−1
−i , θi) | θ

−1
i ] stands for the type of player i in the last period before the suspension. If it were

the type in the last period of suspension, player i might have incentives to misreport her type while being

on suspension in order to affect Eθi [B
i
n−1,T (θ

−1
−i , θi) | θ

−1
i ] in the case she becomes active next period. A

similar comment applies to sji,n−1(θ
−1, θj).

(iii) We estimated the impact of player i’s report θ̂
′

i on W
i
j,1,(θ′

−i
,θ̂
′

i)
, V i

k+1,(θ′
−i
,θ̂
′

i)
and V i

k,(θ′
−i
,θ̂
′

i)
under

the assumption that player i will not go on suspension. However, if k is close to the limit number of cards,

the impact of the report of player i may be slightly different for three value functions above, because of

the possibility of going on suspension; even more, a player’s current report affects probability of going on

suspension. However, when a player is on suspension, his report does not matter for the value function,

and the probability of going on suspension is affected by a player’s report only to the order of O(1/M), and

therefore both differences are inessential for incentives.

Similarly, some players may return from suspension within T periods, and this will change the impact of

player i’s current report. However, since M can be chosen large compared to T , the chance of a return from

suspension within the interval of length T is again of the order of O(1/M), and therefore is inessential for

incentives.
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